
Biol. Cybern. 64, 7-14 (1990) (ybiolog ical
emetics

�9 Springer-Verlag 1990

The "molecular" traveling salesman
W. Banzhaf*

Central Research Laboratory, Mitsubishi Electric Corporation, 1-1, Tsukaguehi Honmaehi 8-ehome, Amagasaki, Hyogo, 661 Japan

Received March 27, 1990/Accepted in revised form May 30, 1990

Abstract. We consider a method for optimization of
NP-problems motivated by natural evolution. The basic
entity is a population of individuals searching in state
space defined by the problem. A message exchange
mechanism between individuals enables the system to
proceed fast and to avoid local optima. We introduce
the concept of isolated evolution to maintain a certain
degree of variance in the population. The global opti-
mum can be approached to an arbitrary degree. The
method is applied to the TSP and its behavior is shown
in a couple of simulations.

1 Introduction

In recent years interest has raised to apply search
strategies motivated by natural evolution to compli-
cated technical optimization problems. Though al-
gorithms simulating evolution were proposed over at
least 30 years (Bremermann et al. 1965; Rechenberg
1973; Holland 1975; Schwefel 1981), the application to
combinatorial optimization problems only recently be-
came an actual research topic. A large number of
papers on evolutionary optimization of NP-problems
has been published since (Brady 1985; Grefenstette et
al. 1985; Boseniuk et al. 1987; Fontana and Schuster
1987; Wang 1987; Miihlenbein et al. 1988; Fogel 1989).

A classical problem of this kind is the "traveling
salesman problem" (TSP) where the shortest tour on a
given distribution of cities is looked for which visits all
cities once and returns to the starting point (Lawler et
al. 1985). This problem is of particular interest, since it
is one member out of the class "NP-complete", the
members of which are

/) transformable into each other
ii) classically unsolvable for higher dimensions.

* On leave from: Institut ffir Theoretisehe Physik und Synergetik,
Universitfit Stuttgart, Pfaffenwaldring 57/IV, D-7000 Stuttgart 80,
Federal Republic of Germany

The former means that if a method for the solution of
one of these problems is known it naturally carries over
to other problems of the class. The latter amounts to an
exploding computation time (with an increase greater
than any polynomial in the problem dimension N)
which hinders an effective solution for arbitrary dimen-
sions. The reason for this poor behaviour is the expo-
nential growth of the number of locally optimal
solutions with growing dimensionahty.

A similar development like in the case of evolution-
ary algorithms happened after the proposition of an-
other dynamical optimization method, the Monte-
Carlo-algorithm originally suggested by Metropolis
et al. (Metropolis et al. 1953) in the late forties. The
breakthrough to applications on NP-problems has been
achieved there after a seminal paper on simulated an-
nealing (SA) by Kirkpatrick et al. (Kirkpatrick et al.
1983).

The advantage of evolutionary search methods
compared to thermodynamical methods (hke SA) is
that the former ones are operating far from equi-
librium. The SA method is based on the introduction of
a parameter analogous to the temperature of a physical
system. A stochastic relaxation process is created to
reach Boltzmann distribution starting from any intial
configuration in state space. By departing from a high
value of the temperature parameter and slowly cooling
it down, it is possible to find local or global minimal-
energy-states of the simulated system. In this approach,
however, one critical point is, that one has to wait
during any cooling step until the equilibrium distribu-
tion of states is reached. Being deafly a time consuming
process, this contrasts sharply to simulated evolution
methods.

In natural evolution we find three main ingredients
to guarantee the success of the optimization process
which it embodies:
1.) randomness
2.) selection
3.) populations of searching subjects.
Let us discuss these points a bit further before coming
to our concrete system.

A d I.): Randomness - often associated with muta-
tional effects only - appears in nature in different phe-
nomena: Firstly, as various sorts of mutations, i.e.
point mutations, gene deletions, chromosome muta-
tions, and so on, secondly, in random mating behavior
of individuals and, thirdly, even as abrupt changes of
environmental conditions. Consequently, local (diffu-
sion or tunneling like), intermediate and global (Monte-
Carlo-like) random effects are needed if a simulating
system designed to optimize functions should reflect
evolution.

A d 2.): Limited availability forces the individuals of
a species in nature to compete for resources. This gives
rise to a selection of those individuals who are better
suited for a given task. In a simulation system, the
selective pressure is imposed by limited computational
resources in terms of equipment (processor time, stor-
age capacity) and this pressure in turn generates an
uphill (downhill) motion in the abstract landscape of
fitnesses (cost functions) to be searched. Though differ-
ent scenarii are reasonable, the common effect of selec-
tion is comparable to gradient ascent (descent) in a
simple landscape (i.e. without local optima). Progress
velocity over time typically decays exponentially in
systems with random forces working under a selection
rule. This is an often observed phenomenon in evolu-
tionary algorithms and it seems to be independent of
the detailed structure of the mutational and/or selective
operations applied.

A d 3.): Nature generally adapts populations of in-
dividuals, not individuals themselves. This is the most
important ingregient gleaned from natural evolution.
The intrinsic parallelism (Holland 1975) of evolutionary
algorithms stems from a parallel search in state space
which is done simultaneously by an entire population
of individuals. In order to profit from each others'
knowledge, the individuals should be able to exchange
messages- at least from time to time. Usually, the
message exchange is done by applying recombination
or cross-over operations between subjects. Yet, this
results in a decreasing variance of the population. Since
maintaining a considerable variance is of immense im-
portance during the search for a global optimum, it turns
out that the influence of the recombination frequency
is a crucial parameter as far as the convergence behavior
of the algorithms is concerned.

In the following we shall apply some of the opera-
tional recipes nature used in the molecular evolution of
macromolecular strings. Our intention, however, is not
to model closely natural evolution but to apply the
principles to technical optimization problems. Thus, we
are free to take advantage of arbitrary sets of opera-
tions existing in natural evolution. We shall combine
operations suitable for solving the traveling salesman
problem without consideration whether their actual
combination occurs in nature or not.

More specifically, we shall study a population of
data-strings searching the underlying state space of the
problem by means of operations which a couple of
machines (processors in technical systems) is applying
on them. Data-strings are virtually realized in a com-

puter, thus the algorithm is freed from the necessity to
introduce more and more parallel processors.

2 The "molecular" system

The individuals in our system are pieces of data lumped
together to form data-strings of a certain length. In a
sense, they resemble the strings of macromolecules
formed in prebiotic evolution. Every string carries all
the informations necessary to put together a particular
solution of the optimization problem we want to get
solved. This principle of full representation is a neces-
sary prerequisite to the totally local character of the
search processes to be introduced below.

Like in macromolecular evolution a soup of organic
material and strings of aminoacids was formed, the
ensemble of all individuals in our data population
forms a pool out of which specialized machines pick up
exemplars to perform various sorts of operations. The
machines - analoguous to enzymes working on macro-
molecules - operate serially on those strings they have
isolated out of the pool, in a way determined by their
respective internal cycle length and time scale. The
requirement of minimal bias dictates that the machines'
operations are controlled mainly by random number
generators ensuring that various trials are made during
the search process. Obviously, some knowledge must be
incorporated into the action of machines, so that they
are specialized in the sense of performing different sorts
of operations which are usually adapted to the opti-
mization problem to be solved. Figure 1 gives a sketch
of the overall system.

A strict locality principle is invoked for the search
process which states that every machines performs op-
erations on the strings it has picked up and does not
care about what the others are doing. This has as one
of its immediate consequences that reproduction in our
algorithm is not based on a global ranking of fitness

I

\ f

[]

..1o
- , , , _ _ . . o

Fig. 1. The overall system, a pool of data-strings. Every string is
equipped with all the information necessary to produce a solution,
Especially, the strings carry their quality signal (circle). The strings
are subject to changeg imposed on them by machines (squares)
picking them up at random

values in the entire population. Rather, the fitness value
of the existing individual is compared to the trial solu-
tion generated by the action of the machine. On the
local basis, a selection is performed in order to release
only one string back into the pool. Another conse-
quence is that at the same time even different problems
of the same sort could be solved simultaneously.

More explicitely, a local operation cycle of one
particular machine consists of the following serial steps:
1. picking up the number nap of strings necessary to
perform the prescribed operation,
2. performing the operation controlled by a random
generator,
3. evaluating the newly generated strings(s) according
to a predefined fitness criterion,
4. comparing it (them) to the original string(s),
5. releasing the nap best one(s) into the population.

Let us now assume that we have a number, p, of
distinct machines. We are free to apply as many copies
of each machine as we want, with the following restric-
tion, yet: The effective number of machines should be
smaller than the number of data-strings in order to
maintain a truly parallel search. We discriminate be-
tween the number of machines and the effective number
of machines, since machines may act at different fre-
quencies, and indeed this will be used later on exten-
sively. We therefore define:

P
Perf" = ~a tj x mj (1)

j = l

mj: number of machines of sort j.

A natural order in time for the succession of indi-
viduals is provided by a generation counter t. Since we
are simulating the system on a serial computer, a gener-
ation is defined here as the number c of local operation
cycles which suffices to give every string a chance to be
changed, i.e. t ~ t + 1 after c = I_M/peg] operations
were performed. (Lx.] symbolizes the next smaller in-
teger to x.)

Due to the independent operation of machines, the
contribution of each sort of machines is distributed
stochastically and reflects the success of the respective
machine operation given the particular state of the
optimization problem. The frequency of successfully
applied operations, i.e. those which improve the string
population, is left to be completely determined by the
system itself. Thus the system is forced to self-organize
in order to approach the global optimum.

To simplify things a bit, we restrict ourselves to

m j = l V j .

The only parameters, then, to be chosen are tj. Those
will be the object of our particular attention below,
since one of the time scale parameters is related to a
possible isolation or non-isolation of individuals in the
course of development.

The system we introduced so far is applicable to a
large variety of optimization problems and it needs
some further specification in terms of the operations
applied to get it doing the concrete optimization task.

Therefore, some knowledge about the problem domain
and some intuition about possibly useful operations are
necessary before starting.

Constraining ourselves to the TSP now, the particu-
lar system consists of tours symbolized by data-strings
5,

= {SO, S I , . . . , SN}

where

so~R +

and

siC{1 N}, i = l N

represents the actual position of one of the N cities on
the tour 2. For explicational purposes, let N = 4, then
the string

g = (l, 1, 3,4, 2)

represents the tour of visiting city 3 after city 1 and city
4 after city 3. The tour must be closed, so that city 1 is
visited after city 2. The first component of the string, So,
is the quality signal which serves as selection criterion.
The TSP criterion is the distance between cities

N
l = ~ Ds,, ,, +, (2)

i = l

where D~,j is the euclidean distance between cities i and
L in our case 2-dimensional

Di, j = ~/(xi - xj) 2 + (Yi - y j) 2

and the cyclic constraint

SN + 1 ~ Sl

is invoked.
There are N! different strings realizable with a certain
geometric distribution of cities and the aim is to find
those strings which have lowest tour-length.

To make use of the intrinsic parallelism of evolu-
tionary search we introduce a population of M data-
strings (the pool)

gu(t), # = 1 , . . . , M

on which search operations are performed by various
machines. Therefore, the datastrings are subject to
changes and should be described by time dependent
quantities gu(t).

Our four sorts of machines are called the C-, I-, R-
and E-machines performing cutting, inversion, recombi-
nation and exchange-2 operations. Depending on the
size of the string population, machines of the same sort
could act in a parallel manner.

Let us now consider in more detail the different
effects the machines have on strings:
The E-machine just fixes two (randomly chosen) cities
and inverts their order in the tour, compare Fig. 2b.
The C-machine again fixes two cities and transposes the
part of the tour lying inbetween them behind of a third
(randomly chosen) city, compare Fig. 2c.

I

3 2

a

io

b

I

2

3 4

2

/I I

7

4

r 6

d

I

m
" 5 6

1

N~, N

\ / I ,

@

Fig. 2. a A sample traveling salesman tour. Original tour. b - e The
actions of four different machines b Exchange; e Cut; d Cut-inverse;
e Recombine on the sample tour

The I-machine performs the same operation as the
C-machine, except that the part cut is inserted in in-
verted order, compare Fig. 2d.
The recombination machine takes two strings and cuts
a randomly chosen part of the first string fixing it at the
overlapping city of the second string. In order to guar-
antee a valid tour, all cities inserted from the first string
and already present at the second must be deleted there
simultaneously, compare Fig. 2e.

As may be seen here, it is the local activity of
machines working on hop strings without any reference
to the global state of the system that leads to continu-
ous progress in terms of a decreasing mean population
tour-length (P').

3 Simulation

In this section we report on a simulation with the
previously described system. Simulation 1 is aimed at a
demonstration of different features of the algorithm.
Simulation 2 studies the TSP with randomly distributed
cities in greater detail.

Concerning the first simulation, we have chosen a
particular toy problem, the global solution of which is
well known: A ring of N = 30 cities (points) should be
connected in the order of minimal tour-length. On a
ring, the obvious solution is a connection of any city to

@ @ @
@ @

@ @
Q Q Q

Q

11

its two next neighbors. Actually, the ring solution is the
only one, so there are no local minima in this special
case.

A population of M = 9 strings searches the state
space of this problem. Initially, the data-strings do not
possess any knowledge about the city-configuration.
Rather, the initial tours are generated randomly. Figure
3a shows the resulting initial tours as represented by the
data-strings. Figure 3b monitors the state of the strings
after 1000 generations have passed. Still, all individuals
perform their own way towards the optimal state.

In this experiment, we have fixed the time-scales of
our different machines as follows:

1
t c = t t = tE = l , tR=100

This ensures that developments in one part of the state
space are able to evolve before recombination unifies
them with strings of other parts. In biology, there exists
a similar mechanism which is called isolated evolution.
It enables subpopulations to evolve rather independent
before merging again to evolve in an entire population.

In order to see the effect of the different operators
applied during search we performed 4 comparative runs
for the same initial conditions but with a varying
number of machines.

Table l a displays the results for the ring-distribu-
tion of cities. As can be seen immediately, the recombi-
nation operation has considerable influence on the
number of necessary generations as well as on the
computation time. The speed-up is considerable. In
fact, one can see that invoking recombination enables
the population to profit from different individuals' pro-
gress.

In order to estimate this influence further, we list in
Table l b the results of different runs starting with

Table 1. a Effects of the different machines applied to a ring problem.
Sample of N = 30, M = 9, tR = ~ . Evaluated after reaching an
average quality 10% above optimum (time in seconds)

Machines
operating CPU-time Number of generations

E 20.93 3846
E + C + I 24.27 5447
E + R 7.59 1322
E + C + I + R 19.47 4358

Table 1. b Acceleration through application of recombination opera-
tions. Same conditions as in a

TR CPU-time Number of generations :D Q Q
b

Fig. 3a, b. The toy problem of Simulation I: A ring distribution of
N = 30 cities, a State of a population of M = 9 data strings at the
starting time, b after 1000 generations have passed. Any individual
follows its own path towards the optimum due to a low recombina-

1 tion frequency of tR - loo

I/lO00 23.63 5000
1/500 29.74 61 lO
I/I00 19.47 4358
1/50 18.51 3700
I/I0 12.52 2556
I/5 8.21 1600
I/I 5.62 738

12

identical initial conditions. We have varied the recombi-
nation frequency ranging from 1 in 1000 generations up
to 1 in every generation. Quite evidently, the higher the
frequency, the faster the optimization process. The de-
viation from this rule is a statistical fluctuation due to
the influence of initial conditions.

There is, however, one serious drawback of adjust-
ing a higher and higher recombination frequency. This
has to do with the disappearance of variance in the
population. Since it can be understood best in the
context of a real NP problem with many local minima,
we now turn to simulation 2 which deals with those
problems, consisting of randomly distributed city
configurations.

Table 2a gives again, now for randomly distributed
cities, the effects of the different operations applied
during search. We discover that without the use of the
recombination operation, things get not only slower,
but become even impossible. For, the use of local
search operations leads to traps in bad local minima,
the use of all operations except recombination leads at
least to local minima. The use, however, of recombina-
tion additionally in either case allows to reach the
preset quality criterion which still has a distance of
nearly 1% from the global optimum.

Table 2b summarizes the effect of rising the recom-
bination frequency. We can observe that a limit for
suitable recombination frequencies exists which allows
the search process to converge to the preset quality. At
the lower end of the recombination frequency table,
however, the search failed due to a collapse in variance.
Imposing additionally a certain, yet arbitrary time limit
could result in another failure at the upper end of the
table.

Table 2. a Effects of the different machines applied to a random city
problem of size N = 30, M = 9. Evaluated after a certain average
quality was reached of the time limit was exceeded

Machines
operating CPU-time Number of generations

Eta) 1400 (~) 270000 ta)
E + C + P) 1400 (~) 100000 ta)
E + R (b) 146.99 27667
E + C + I + R 112.42 24900

a Preset quality not reached
b tR = 1/1000

Table 2. b Acceleration effect and variance collapse is due to different
recombination frequencies

t R CPU-time Number of generations

1/1000 489.13 105000
1/500 166.38 34000
l / 100 112.42 24900
1/50 42.77 8650
1/10 22.09 4035
1/5 15.73 2767
1 / 1 (a) 49.25(a) 10000 ta)

a Variance breakdown

In order to observe the degree of variance in a
population of datastrings we have to define the overlap
or similarity in the population. This is done here invok-
ing the following definitions: Let the sum of the (upper
half) adjacency matrices Adj*j (Lawler 1976) of tours
represented by datastrings be called the population
matrix P:

M
ei, j = ~ A d j * f ' (3)

m=l

Then the percentage of overlapping edges in the popu-
lation O may be defined as

O -- ~i'J(P~iJ(P)iJ (4)
M:N

which evidently is a measure of the population vari-
ance.

Figure 4 shows an examples of a run with N = 100
cities at a state where 90% overlap between the solu-
tions in the population have been reached.

Figure 5 is a more detailed record of one search
process. The contributions of different machines to the
progress are reported separately. Starting out with a
randomly generated population, the progress velocity as
shown in Fig. 5 reaches a plateau of small values after
nearly 105 generations. Before that, it shows a be-
haviour which is a strong reminescent of exponential
progress decay. The similarity between strings increases
not very smoothly, interrupted at certain points by a
decrease due to fast progress of a few individuals.

As stated before, the different machines contribute
differently during the search process: At the very begin-
ning the E-machine is contributing mostly, whereas
later on the non-local search operations (C and I-

Fig. 4. Final state of population of M = 9 strings on a N = 100 cities
problem in Simulation 2. Evaluation was stopped when 90% overlap
has been reached, t R = i-~ and at least 2 different solutions are
observable

. I I I I

0 .9

120 , , , , " ,

0 .8

. o ~ 100 0.7

80 0.6

6O 0

0.4

~. 40 0.3

0.2

2O

o,

1~ 9 ~ # ~ I I I I I I I '1 �9 �9 �9 ~"~,,..I I

10 10 = 10 ~ '10 4 10 s

G e n e r a t i o n s

Fig. 5. Sample run with N = 30 and M = 9, random distribution of
cities. Contributions of the different sorts o f machines are shown with
different markers (t R = i~) .
+ : Cut machine; O: Exchange machine;
x : Cut and Inverse machine; .: Recombination machine.
Solid line: Overlap in the population; Dashed line: Average quality of
the solutions obtained

machine) take over, followed even later on by the
recombination operation. This precisely reflects the state
of the population under a given city distribution.

Figure 6 shows the transition between different
quality levels in a N = 30, M = 100 problem. We ob-
serve population waves sweeping through the different
quality levels on their way downwards. The search
process slows down due to a deceleration of the transi-
tion between levels.

In simulation 2, the recombination frequency was
fixed again at

1
t R - - 100"
We claim that this parameter regulating the "degree of
isolation" in a population can be adjusted to arbitary
small values as to ensure that the true global optimum
of the problem is reached.

4 Statistics

The proposed algorithm possesses a strong element of
randomness. One may, therefore, raise the objection that
most of the results produced so far are the result of very
special conditions provided by the random number
generators. In order to study the global behavior of this
algorithm we have processed hundreds of runs under
similar conditions.

Our experiments centered arround the question
which influence the population size exerts on the prob-
lem solution. We have chosen one random city configu-
ration of N = 30 cities, the global optimum of which was
known. We then performed 100 runs with different

13

o\
9 /x

8

q3 ~ 6
.c_

~ 5

bq

3

2

1

i I I I i i i i i

/

" I I

100 200

Generations

Fig. 6. Development of the population density in certain quality
ranges, M = 100, otherwise same conditions as in Fig. 5. A quick
decay in the worst quality range is followed by slower and slower
transitions towards better quality levels (shorter tour lengths). Lowest
level not yet reached

initial strings and checked whether and how fast it
reached the global solution. The results are given in
Table 3a for different sizes of the population. The
certainty of finding the global optimum is near 90%,
whereas the reason for failure changes from (irre-
versible) variance collapse for smaller populations to
time-limit-excess in larger ones. The average computa-
tion time needed to optimize one string approaches a
value well below 12 s.

In Table 3b we show (for 50 TSP problems of size
N = 100) the computation time and the average quality
found after the overlap between strings, i.e. the similarity
between solutions in the populations, has reached 90%
(cf. Fig. 4). Since we had no ab initio information about
the true global optimum for this problems, we have
chosen the intrinsic criterion of similarity as a measure
of quality. Such a criterion proves useful as a general
method of ranking the actual stages of the search process
(in other optimization problems as well).

How does our result compare to other statistical
results? It is well known from the literature (Bonomi and
Lutton 1984) that the average TSP has its global opti-
mum at

/ = 0.739x/~ for N ~ oo

In the worst case of Table 3b, M = 9, we compare
this theoretical limit with the best string found by the
evolutionary algorithm. The deviation is smaller than
10%. In other words, our stopping criterion allows us to
approach the global optimum to at least 10%. One
should, however, keep in mind that the statistical result

14

Table 3. a 100 different starting strings for a N = 30 random city
configuration for which the global optimum was known. Influence of
different recombination frequencies on the security of finding the
global optimum

Population Recombination Variance Time limit (cpu-time)
size frequency collapse exceeded per string

M = 9 1/100 9 2 14.66
M = 18 1/50 l 3 12.36
M = 36 1/25 0 4 12.07
M = 72 1/12 0 10 11.89

Table 3. b 50 different N = 100 random city configurations. Average
of best solutions found at the state when the overlap reached 90%

Population Recombination (cpu-time) Best quality
Size frequency per string found

M = 9 1/I00 181.5 8.093
M = 18 1/50 232.9 7.980
M = 36 1/25 240.8 7.892

Table 4. Scaling of computational time
needed until 90% overlap is reached for
different dimension of the problem

Problem
Size (cpu-time)

N = 2 0 35.12
N = 40 211.34
N = 60 493.94
N = 80 935.77
N = 100 1615.95

of (Bonomi and Lutton 1984) is valid in a limit we are
still far away from at N = 100!

Table 4 finally shows a report on increasing the
dimension of the problem. 100 different runs were
performed for every dimensional size to get statistically
more reliable statements. We can deduce from this Table
that even for serial computers the computational time
needed does not explode seriously.

5 Conclusion

We have shown that a parallel optimization process
inspired by natural macromolecular evolution is able to
approach the optimum in the complicated NP-complete
TSP. We have demonstrated the action of a search
process which is totally based on local search operations
thus minimizing the communication needs in a parallel
implementation of the algorithm.

In making use of a population of different data-
strings we have made clear that the recombination
operation is crucially important in accelerating the evo-
lutionary search process and in overcoming local op-
tima.

We have introduced the recombination frequency
parameter in analogy to the phenomenon of isolated
evolution in nature as a means to control the variance
conserving tendencies of the algorithm. We have varied

this parameter in order to study its effects. It turned out
that if the recombination frequency was too high, the
variance of the population broke down too early as to
allow an approach to the global optimum.

Therefore, we expect an optimal recombination fre-
quency to exist at which the search process is maximally
fast. This will depend on the problem dimension N, the
number of independent search operations p, and the
number, M, of individuals participating in the search.

The further examination of this question, as well as a
more theoretical description of the processes involved in
the proposed search method will be left to a future study.

Acknowledgements. The fundamental ideas behind this work were
developed during my post-doctoral time in the Institute of Theoretical
Physics and Synergetics at the University of Stuttgart, F.R.G.. I am
very grateful to the Director of the institute, Prof. H. Haken, for his
encouragement and continuous support. Much of the simulations
were done on the SUN SPARC 1 workstation at Nakayama Lab. in
the CRL of Mitsubishi Electric Corporation. I want to express my
gratitude to Dr. Nakayama as well as Dr. Nara for providing me with
all the resources necessary to finish this work.

References

Bonomi E, Lutton J-L (1984) The N-city traveling salesman problem:
Statistical mechanics and the metropolis algorithm. SIAM Rev
26:551-568

Boseniuk T, Ebeling W, Engel A (1987) Boltzmann and Darwin
strategies in complex optimization. Phys Lett 125A:307-310

Brady RM (1985) Optimization strategies gleaned from natural evolu-
tion. Nature 317:804-806

Bremermann H J, Rogson M, Salaff S (1965) Search by evolution. In:
Maxfield M, Callahan A, Fogel LJ (eds) Biophysics and cyber-
netic systems. Spartan Books, Washington, pp 157-167

Fogel DB (1989) An evolutionary approach to the traveling salesman
problem. Biol Cybern 60:139-144

Fontana W, Schuster P (1987) A computer model of evolutionary
optimization. Biophys Chem 26:123-147

Gxefenstette JJ, Gopal R, Rosmaita B, Van Gucht D (1985) Genetic
algorithms for the traveling salesman problem. In: Grefenstette JJ
(ed) Proceedings of the International Conference on Genetic
Algorithms and their Applications. Carnegie Mellon University,
Pittsburgh, pp 160-168

Holland JH (1975) Adaption in natural and artificial systems. Univer-
sity of Michigan Press, Ann Arbor

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simu-
lated annealing. Science 220:671-680

Lawler E (1976) Combinatorial optimization, networks and matroids.
Holt, Rinehart and Winston, New York

Lawler E, Lenstra A, Rinnooy Kan G (1985) The traveling salesman
problem. Wiley, New York

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller EJ
(1953) Equations of state calculations by fast computing ma-
chines. J Chem Phys 21:1087-1091

Miihlenbein H, Gorges-Schleuter M, Kr~mer O (1988) Evolution
algorithms in combinatorial optimazation. Par Comp 7:65-85

Rechenberg I (1973) Evolutionsstrategien. Frommann-Holzboog,
Stuttgart

Schwefel HP (1981) Numerical optimization of computer models.
Wiley, Chichester

Wang Q (1987) Optimization by simulating molecular evolution. Biol
Cybern 57:95-101

Dr. Wolfgang Banzhaf
Central Research Laboratory
Mitsubishi Electric Corporation
l-I, Tsukaguchi Honmachi 8-chome
Amagasaki, Hyogo
661 Japan

