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Abstract. We consider a method for optimization of 
NP-problems motivated by natural evolution. The basic 
entity is a population of individuals searching in state 
space defined by the problem. A message exchange 
mechanism between individuals enables the system to 
proceed fast and to avoid local optima. We introduce 
the concept of isolated evolution to maintain a certain 
degree of variance in the population. The global opti- 
mum can be approached to an arbitrary degree. The 
method is applied to the TSP and its behavior is shown 
in a couple of simulations. 

1 Introduction 

In recent years interest has raised to apply search 
strategies motivated by natural evolution to compli- 
cated technical optimization problems. Though al- 
gorithms simulating evolution were proposed over at 
least 30 years (Bremermann et al. 1965; Rechenberg 
1973; Holland 1975; Schwefel 1981), the application to 
combinatorial optimization problems only recently be- 
came an actual research topic. A large number of 
papers on evolutionary optimization of NP-problems 
has been published since (Brady 1985; Grefenstette et 
al. 1985; Boseniuk et al. 1987; Fontana and Schuster 
1987; Wang 1987; Miihlenbein et al. 1988; Fogel 1989). 

A classical problem of this kind is the "traveling 
salesman problem" (TSP) where the shortest tour on a 
given distribution of cities is looked for which visits all 
cities once and returns to the starting point (Lawler et 
al. 1985). This problem is of particular interest, since it 
is one member out of the class "NP-complete", the 
members of which are 

/) transformable into each other 
ii) classically unsolvable for higher dimensions. 
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The former means that if a method for the solution of 
one of these problems is known it naturally carries over 
to other problems of the class. The latter amounts to an 
exploding computation time (with an increase greater 
than any polynomial in the problem dimension N) 
which hinders an effective solution for arbitrary dimen- 
sions. The reason for this poor behaviour is the expo- 
nential growth of the number of locally optimal 
solutions with growing dimensionahty. 

A similar development like in the case of evolution- 
ary algorithms happened after the proposition of an- 
other dynamical optimization method, the Monte- 
Carlo-algorithm originally suggested by Metropolis 
et al. (Metropolis et al. 1953) in the late forties. The 
breakthrough to applications on NP-problems has been 
achieved there after a seminal paper on simulated an- 
nealing (SA) by Kirkpatrick et al. (Kirkpatrick et al. 
1983). 

The advantage of evolutionary search methods 
compared to thermodynamical methods (hke SA) is 
that the former ones are operating far from equi- 
librium. The SA method is based on the introduction of 
a parameter analogous to the temperature of a physical 
system. A stochastic relaxation process is created to 
reach Boltzmann distribution starting from any intial 
configuration in state space. By departing from a high 
value of the temperature parameter and slowly cooling 
it down, it is possible to find local or global minimal- 
energy-states of the simulated system. In this approach, 
however, one critical point is, that one has to wait 
during any cooling step until the equilibrium distribu- 
tion of states is reached. Being deafly a time consuming 
process, this contrasts sharply to simulated evolution 
methods. 

In natural evolution we find three main ingredients 
to guarantee the success of the optimization process 
which it embodies: 
1.) randomness 
2.) selection 
3.) populations of searching subjects. 
Let us discuss these points a bit further before coming 
to our concrete system. 



A d  I.): Randomness - often associated with muta- 
tional effects only - appears in nature in different phe- 
nomena: Firstly, as various sorts of mutations, i.e. 
point mutations, gene deletions, chromosome muta- 
tions, and so on, secondly, in random mating behavior 
of individuals and, thirdly, even as abrupt changes of 
environmental conditions. Consequently, local (diffu- 
sion or tunneling like), intermediate and global (Monte- 
Carlo-like) random effects are needed if a simulating 
system designed to optimize functions should reflect 
evolution. 

A d  2.): Limited availability forces the individuals of 
a species in nature to compete for resources. This gives 
rise to a selection of those individuals who are better 
suited for a given task. In a simulation system, the 
selective pressure is imposed by limited computational 
resources in terms of equipment (processor time, stor- 
age capacity) and this pressure in turn generates an 
uphill (downhill) motion in the abstract landscape of 
fitnesses (cost functions) to be searched. Though differ- 
ent scenarii are reasonable, the common effect of selec- 
tion is comparable to gradient ascent (descent) in a 
simple landscape (i.e. without local optima). Progress 
velocity over time typically decays exponentially in 
systems with random forces working under a selection 
rule. This is an often observed phenomenon in evolu- 
tionary algorithms and it seems to be independent of 
the detailed structure of the mutational and/or selective 
operations applied. 

A d  3.): Nature generally adapts populations of in- 
dividuals, not individuals themselves. This is the most 
important ingregient gleaned from natural evolution. 
The intrinsic parallelism (Holland 1975) of evolutionary 
algorithms stems from a parallel search in state space 
which is done simultaneously by an entire population 
of individuals. In order to profit from each others' 
knowledge, the individuals should be able to exchange 
messages- at least from time to time. Usually, the 
message exchange is done by applying recombination 
or cross-over operations between subjects. Yet, this 
results in a decreasing variance of the population. Since 
maintaining a considerable variance is of immense im- 
portance during the search for a global optimum, it turns 
out that the influence of the recombination frequency 
is a crucial parameter as far as the convergence behavior 
of the algorithms is concerned. 

In the following we shall apply some of the opera- 
tional recipes nature used in the molecular evolution of 
macromolecular strings. Our intention, however, is not 
to model closely natural evolution but to apply the 
principles to technical optimization problems. Thus, we 
are free to take advantage of arbitrary sets of opera- 
tions existing in natural evolution. We shall combine 
operations suitable for solving the traveling salesman 
problem without consideration whether their actual 
combination occurs in nature or not. 

More specifically, we shall study a population of 
data-strings searching the underlying state space of the 
problem by means of operations which a couple of 
machines (processors in technical systems) is applying 
on them. Data-strings are virtually realized in a com- 

puter, thus the algorithm is freed from the necessity to 
introduce more and more parallel processors. 

2 The "molecular" system 

The individuals in our system are pieces of data lumped 
together to form data-strings of a certain length. In a 
sense, they resemble the strings of macromolecules 
formed in prebiotic evolution. Every string carries all 
the informations necessary to put together a particular 
solution of the optimization problem we want to get 
solved. This principle of full representation is a neces- 
sary prerequisite to the totally local character of the 
search processes to be introduced below. 

Like in macromolecular evolution a soup of organic 
material and strings of aminoacids was formed, the 
ensemble of all individuals in our data population 
forms a pool out of which specialized machines pick up 
exemplars to perform various sorts of operations. The 
machines - analoguous to enzymes working on macro- 
molecules - operate serially on those strings they have 
isolated out of the pool, in a way determined by their 
respective internal cycle length and time scale. The 
requirement of minimal bias dictates that the machines' 
operations are controlled mainly by random number 
generators ensuring that various trials are made during 
the search process. Obviously, some knowledge must be 
incorporated into the action of machines, so that they 
are specialized in the sense of performing different sorts 
of operations which are usually adapted to the opti- 
mization problem to be solved. Figure 1 gives a sketch 
of the overall system. 

A strict locality principle is invoked for the search 
process which states that every machines performs op- 
erations on the strings it has picked up and does not 
care about what the others are doing. This has as one 
of its immediate consequences that reproduction in our 
algorithm is not based on a global ranking of fitness 
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Fig. 1. The overall system, a pool of data-strings. Every string is 
equipped with all the information necessary to produce a solution, 
Especially, the strings carry their quality signal (circle). The strings 
are subject to changeg imposed on them by machines (squares) 
picking them up at random 



values in the entire population. Rather, the fitness value 
of the existing individual is compared to the trial solu- 
tion generated by the action of the machine. On the 
local basis, a selection is performed in order to release 
only one string back into the pool. Another conse- 
quence is that at the same time even different problems 
of the same sort could be solved simultaneously. 

More explicitely, a local operation cycle of one 
particular machine consists of the following serial steps: 
1. picking up the number nap of strings necessary to 
perform the prescribed operation, 
2. performing the operation controlled by a random 
generator, 
3. evaluating the newly generated strings(s) according 
to a predefined fitness criterion, 
4. comparing it (them) to the original string(s), 
5. releasing the nap best one(s) into the population. 

Let us now assume that we have a number, p, of 
distinct machines. We are free to apply as many copies 
of each machine as we want, with the following restric- 
tion, yet: The effective number of machines should be 
smaller than the number of data-strings in order to 
maintain a truly parallel search. We discriminate be- 
tween the number of machines and the effective number 
of machines, since machines may act at different fre- 
quencies, and indeed this will be used later on exten- 
sively. We therefore define: 

P 
Perf" = ~a tj x mj  ( 1 )  

j = l  

mj: number of machines of sort j. 

A natural order in time for the succession of indi- 
viduals is provided by a generation counter t. Since we 
are simulating the system on a serial computer, a gener- 
ation is defined here as the number c of local operation 
cycles which suffices to give every string a chance to be 
changed, i.e. t ~ t + 1 after c = I_M/peg] operations 
were performed. (Lx.] symbolizes the next smaller in- 
teger to x.) 

Due to the independent operation of machines, the 
contribution of each sort of machines is distributed 
stochastically and reflects the success of the respective 
machine operation given the particular state of the 
optimization problem. The frequency of successfully 
applied operations, i.e. those which improve the string 
population, is left to be completely determined by the 
system itself. Thus the system is forced to self-organize 
in order to approach the global optimum. 

To simplify things a bit, we restrict ourselves to 

m j = l V j .  

The only parameters, then, to be chosen are tj. Those 
will be the object of our particular attention below, 
since one of the time scale parameters is related to a 
possible isolation or non-isolation of  individuals in the 
course of development. 

The system we introduced so  far is applicable to a 
large variety of optimization problems and it needs 
some further specification in terms of the operations 
applied to get it doing the concrete optimization task. 

Therefore, some knowledge about the problem domain 
and some intuition about possibly useful operations are 
necessary before starting. 

Constraining ourselves to the TSP now, the particu- 
lar system consists of tours symbolized by data-strings 
5, 

= {SO, S I , . . . ,  SN} 

where 

so~R + 

and 

siC{1 . . . .  N}, i = l  . . . . .  N 

represents the actual position of one of the N cities on 
the tour 2. For explicational purposes, let N = 4, then 
the string 

g = (l, 1, 3,4, 2) 

represents the tour of visiting city 3 after city 1 and city 
4 after city 3. The tour must be closed, so that city 1 is 
visited after city 2. The first component of the string, So, 
is the quality signal which serves as selection criterion. 
The TSP criterion is the distance between cities 

N 
l = ~ Ds,, ,, +, (2) 

i = l  

where D~,j is the euclidean distance between cities i and 
L in our case 2-dimensional 

Di, j = ~/(xi - xj) 2 + (Yi - y j ) 2  

and the cyclic constraint 

SN + 1 ~ Sl 

is invoked. 
There are N! different strings realizable with a certain 
geometric distribution of cities and the aim is to find 
those strings which have lowest tour-length. 

To make use of the intrinsic parallelism of evolu- 
tionary search we introduce a population of  M data- 
strings (the pool) 

gu(t), # = 1 , . . . ,  M 

on which search operations are performed by various 
machines. Therefore, the datastrings are subject to 
changes and should be described by time dependent 
quantities gu( t). 

Our four sorts of machines are called the C-, I-, R- 
and E-machines performing cutting, inversion, recombi- 
nation and exchange-2 operations. Depending on the 
size of the string population, machines of the same sort 
could act in a parallel manner. 

Let us now consider in more detail the different 
effects the machines have on strings: 
The E-machine just fixes two (randomly chosen) cities 
and inverts their order in the tour, compare Fig. 2b. 
The C-machine again fixes two cities and transposes the 
part of the tour lying inbetween them behind of a third 
(randomly chosen) city, compare Fig. 2c. 
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Fig. 2. a A sample traveling salesman tour. Original tour. b - e  The 
actions of four different machines b Exchange; e Cut; d Cut-inverse; 
e Recombine on the sample tour 

The I-machine performs the same operation as the 
C-machine, except that the part cut is inserted in in- 
verted order, compare Fig. 2d. 
The recombination machine takes two strings and cuts 
a randomly chosen part of the first string fixing it at the 
overlapping city of the second string. In order to guar- 
antee a valid tour, all cities inserted from the first string 
and already present at the second must be deleted there 
simultaneously, compare Fig. 2e. 

As may be seen here, it is the local activity of 
machines working on hop strings without any reference 
to the global state of the system that leads to continu- 
ous progress in terms of a decreasing mean population 
tour-length (P').  



3 Simulation 

In this section we report on a simulation with the 
previously described system. Simulation 1 is aimed at a 
demonstration of different features of the algorithm. 
Simulation 2 studies the TSP with randomly distributed 
cities in greater detail. 

Concerning the first simulation, we have chosen a 
particular toy problem, the global solution of which is 
well known: A ring of N = 30 cities (points) should be 
connected in the order of minimal tour-length. On a 
ring, the obvious solution is a connection of any city to 
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its two next neighbors. Actually, the ring solution is the 
only one, so there are no local minima in this special 
case.  

A population of M = 9 strings searches the state 
space of this problem. Initially, the data-strings do not 
possess any knowledge about the city-configuration. 
Rather, the initial tours are generated randomly. Figure 
3a shows the resulting initial tours as represented by the 
data-strings. Figure 3b monitors the state of the strings 
after 1000 generations have passed. Still, all individuals 
perform their own way towards the optimal state. 

In this experiment, we have fixed the time-scales of 
our different machines as follows: 

1 
t c  = t t  = tE = l ,  tR=100 

This ensures that developments in one part of the state 
space are able to evolve before recombination unifies 
them with strings of other parts. In biology, there exists 
a similar mechanism which is called isolated evolution. 
It enables subpopulations to evolve rather independent 
before merging again to evolve in an entire population. 

In order to see the effect of the different operators 
applied during search we performed 4 comparative runs 
for the same initial conditions but with a varying 
number of machines. 

Table l a displays the results for the ring-distribu- 
tion of cities. As can be seen immediately, the recombi- 
nation operation has considerable influence on the 
number of necessary generations as well as on the 
computation time. The speed-up is considerable. In 
fact, one can see that invoking recombination enables 
the population to profit from different individuals' pro- 
gress. 

In order to estimate this influence further, we list in 
Table l b the results of different runs starting with 

Table 1. a Effects of the different machines applied to a ring problem. 
Sample of N = 30, M = 9, tR = ~ .  Evaluated after reaching an 
average quality 10% above optimum (time in seconds) 

Machines 
operating CPU-time Number of generations 

E 20.93 3846 
E + C + I 24.27 5447 
E + R 7.59 1322 
E + C + I + R 19.47 4358 

Table 1. b Acceleration through application of recombination opera- 
tions. Same conditions as in a 

TR CPU-time Number of generations :D Q Q 
b 

Fig. 3a, b. The toy problem of Simulation I: A ring distribution of 
N = 30 cities, a State of a population of M = 9 data strings at the 
starting time, b after 1000 generations have passed. Any individual 
follows its own path towards the optimum due to a low recombina- 

1 tion frequency of tR - loo 

I/lO00 23.63 5000 
1/500 29.74 61 lO 
I/I00 19.47 4358 
1/50 18.51 3700 
I/I0 12.52 2556 
I/5 8.21 1600 
I/I 5.62 738 
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identical initial conditions. We have varied the recombi- 
nation frequency ranging from 1 in 1000 generations up 
to 1 in every generation. Quite evidently, the higher the 
frequency, the faster the optimization process. The de- 
viation from this rule is a statistical fluctuation due to 
the influence of initial conditions. 

There is, however, one serious drawback of adjust- 
ing a higher and higher recombination frequency. This 
has to do with the disappearance of variance in the 
population. Since it can be understood best in the 
context of a real NP problem with many local minima, 
we now turn to simulation 2 which deals with those 
problems, consisting of randomly distributed city 
configurations. 

Table 2a gives again, now for randomly distributed 
cities, the effects of the different operations applied 
during search. We discover that without the use of the 
recombination operation, things get not only slower, 
but become even impossible. For, the use of local 
search operations leads to traps in bad local minima, 
the use of all operations except recombination leads at 
least to local minima. The use, however, of recombina- 
tion additionally in either case allows to reach the 
preset quality criterion which still has a distance of 
nearly 1% from the global optimum. 

Table 2b summarizes the effect of rising the recom- 
bination frequency. We can observe that a limit for 
suitable recombination frequencies exists which allows 
the search process to converge to the preset quality. At 
the lower end of the recombination frequency table, 
however, the search failed due to a collapse in variance. 
Imposing additionally a certain, yet arbitrary time limit 
could result in another failure at the upper end of the 
table. 

Table 2. a Effects of the different machines applied to a random city 
problem of size N = 30, M = 9. Evaluated after a certain average 
quality was reached of the time limit was exceeded 

Machines 
operating CPU-time Number of generations 

Eta) 1400 (~) 270000 ta) 
E + C + P )  1400 (~) 100000 ta) 
E + R (b) 146.99 27667 
E + C + I + R 112.42 24900 

a Preset quality not reached 
b tR = 1/1000 

Table 2. b Acceleration effect and variance collapse is due to different 
recombination frequencies 

t R CPU-time Number of generations 

1/1000 489.13 105000 
1/500 166.38 34000 
l / 100 112.42 24900 
1/50 42.77 8650 
1/10 22.09 4035 
1/5 15.73 2767 
1 / 1 (a) 49.25(a) 10000 ta) 

a Variance breakdown 

In order to observe the degree of variance in a 
population of datastrings we have to define the overlap 
or similarity in the population. This is done here invok- 
ing the following definitions: Let the sum of the (upper 
half) adjacency matrices Adj*j (Lawler 1976) of tours 
represented by datastrings be called the population 
matrix P: 

M 
ei, j = ~ A d j * f '  (3)  

m=l 

Then the percentage of overlapping edges in the popu- 
lation O may be defined as 

O -- ~i'J(P~iJ(P)iJ (4) 
M:N 

which evidently is a measure of the population vari- 
ance. 

Figure 4 shows an examples of a run with N = 100 
cities at a state where 90% overlap between the solu- 
tions in the population have been reached. 

Figure 5 is a more detailed record of one search 
process. The contributions of different machines to the 
progress are reported separately. Starting out with a 
randomly generated population, the progress velocity as 
shown in Fig. 5 reaches a plateau of small values after 
nearly 105 generations. Before that, it shows a be- 
haviour which is a strong reminescent of exponential 
progress decay. The similarity between strings increases 
not very smoothly, interrupted at certain points by a 
decrease due to fast progress of a few individuals. 

As stated before, the different machines contribute 
differently during the search process: At the very begin- 
ning the E-machine is contributing mostly, whereas 
later on the non-local search operations (C and I- 

Fig. 4. Final state of population of M = 9 strings on a N = 100 cities 
problem in Simulation 2. Evaluation was stopped when 90% overlap 
has been reached, t R = i-~ and at least 2 different solutions are 
observable 
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Fig. 5. Sample run with N = 30 and M = 9, random distribution of  
cities. Contributions of  the different sorts o f  machines are shown with 
different markers (t R = i~) .  
+ :  Cut machine; O: Exchange machine; 
x :  Cut and Inverse machine; .: Recombination machine. 
Solid line: Overlap in the population; Dashed line: Average quality of  
the solutions obtained 

machine) take over, followed even later on by the 
recombination operation. This precisely reflects the state 
of the population under a given city distribution. 

Figure 6 shows the transition between different 
quality levels in a N = 30, M = 100 problem. We ob- 
serve population waves sweeping through the different 
quality levels on their way downwards. The search 
process slows down due to a deceleration of the transi- 
tion between levels. 

In simulation 2, the recombination frequency was 
fixed again at 

1 
t R - -  100" 
We claim that this parameter regulating the "degree of 
isolation" in a population can be adjusted to arbitary 
small values as to ensure that the true global optimum 
of the problem is reached. 

4 Statistics 

The proposed algorithm possesses a strong element of 
randomness. One may, therefore, raise the objection that 
most of the results produced so far are the result of very 
special conditions provided by the random number 
generators. In order to study the global behavior of this 
algorithm we have processed hundreds of runs under 
similar conditions. 

Our experiments centered arround the question 
which influence the population size exerts on the prob- 
lem solution. We have chosen one random city configu- 
ration of N = 30 cities, the global optimum of which was 
known. We then performed 100 runs with different 
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Fig. 6. Development of  the population density in certain quality 
ranges, M = 100, otherwise same conditions as in Fig. 5. A quick 
decay in the worst quality range is followed by slower and slower 
transitions towards better quality levels (shorter tour lengths). Lowest 
level not yet reached 

initial strings and checked whether and how fast it 
reached the global solution. The results are given in 
Table 3a for different sizes of the population. The 
certainty of finding the global optimum is near 90%, 
whereas the reason for failure changes from (irre- 
versible) variance collapse for smaller populations to 
time-limit-excess in larger ones. The average computa- 
tion time needed to optimize one string approaches a 
value well below 12 s. 

In Table 3b we show (for 50 TSP problems of size 
N = 100) the computation time and the average quality 
found after the overlap between strings, i.e. the similarity 
between solutions in the populations, has reached 90% 
(cf. Fig. 4). Since we had no ab initio information about 
the true global optimum for this problems, we have 
chosen the intrinsic criterion of similarity as a measure 
of quality. Such a criterion proves useful as a general 
method of ranking the actual stages of the search process 
(in other optimization problems as well). 

How does our result compare to other statistical 
results? It is well known from the literature (Bonomi and 
Lutton 1984) that the average TSP has its global opti- 
mum at 

/ =  0.739x/~ for N ~ oo 

In the worst case of Table 3b, M = 9, we compare 
this theoretical limit with the best string found by the 
evolutionary algorithm. The deviation is smaller than 
10%. In other words, our stopping criterion allows us to 
approach the global optimum to at least 10%. One 
should, however, keep in mind that the statistical result 
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Table 3. a 100 different starting strings for a N = 30 random city 
configuration for which the global optimum was known. Influence of 
different recombination frequencies on the security of finding the 
global optimum 

Population Recombination Variance Time limit (cpu-time) 
size frequency collapse exceeded per string 

M = 9 1/100 9 2 14.66 
M = 18 1/50 l 3 12.36 
M = 36 1/25 0 4 12.07 
M = 72 1/12 0 10 11.89 

Table 3. b 50 different N = 100 random city configurations. Average 
of best solutions found at the state when the overlap reached 90% 

Population Recombination (cpu-time) Best quality 
Size frequency per string found 

M = 9 1/I00 181.5 8.093 
M = 18 1/50 232.9 7.980 
M = 36 1/25 240.8 7.892 

Table 4. Scaling of computational time 
needed until 90% overlap is reached for 
different dimension of the problem 

Problem 
Size (cpu-time) 

N = 2 0  35.12 
N = 40 211.34 
N = 60 493.94 
N = 80 935.77 
N = 100 1615.95 

of (Bonomi and Lutton 1984) is valid in a limit we are 
still far away from at N = 100! 

Table 4 finally shows a report on increasing the 
dimension of the problem. 100 different runs were 
performed for every dimensional size to get statistically 
more reliable statements. We can deduce from this Table 
that even for serial computers the computational time 
needed does not explode seriously. 

5 Conclusion 

We have shown that a parallel optimization process 
inspired by natural macromolecular evolution is able to 
approach the optimum in the complicated NP-complete 
TSP. We have demonstrated the action of a search 
process which is totally based on local search operations 
thus minimizing the communication needs in a parallel 
implementation of the algorithm. 

In making use of a population of different data- 
strings we have made clear that the recombination 
operation is crucially important in accelerating the evo- 
lutionary search process and in overcoming local op- 
tima. 

We have introduced the recombination frequency 
parameter in analogy to the phenomenon of isolated 
evolution in nature as a means to control the variance 
conserving tendencies of the algorithm. We have varied 

this parameter in order to study its effects. It turned out 
that if the recombination frequency was too high, the 
variance of the population broke down too early as to 
allow an approach to the global optimum. 

Therefore, we expect an optimal recombination fre- 
quency to exist at which the search process is maximally 
fast. This will depend on the problem dimension N, the 
number of independent search operations p, and the 
number, M, of individuals participating in the search. 

The further examination of this question, as well as a 
more theoretical description of the processes involved in 
the proposed search method will be left to a future study. 
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