IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 5, OCTOBER 2024

1455

Modular Multitree Genetic Programming for
Evolutionary Feature Construction
for Regression

Hengzhe Zhang™', Member, IEEE, Qi Chen

, Member, IEEE, Bing Xue", Senior Member, IEEE,

Wolfgang Banzhat™, Member, IEEE, and Mengjie Zhang ', Fellow, IEEE

Abstract—Evolutionary feature construction is a key technique
in evolutionary machine learning, with the aim of construct-
ing high-level features that enhance performance of a learning
algorithm. In real-world applications, engineers typically con-
struct complex features based on a combination of basic features,
reusing those features as modules. However, modularity in evo-
lutionary feature construction is still an open research topic.
This article tries to fill that gap by proposing a modular and
hierarchical multitree genetic programming (GP) algorithm that
allows trees to use the output values of other trees, thereby rep-
resenting expressive features in a compact form. Based on this
new representation, we propose a macro parent-repair strategy
to reduce redundant and irrelevant features, a macro crossover
operator to preserve interactive features, and an adaptive con-
trol strategy for crossover and mutation rates to dynamically
balance the tradeoff between exploration and exploitation. A
comparison with seven bloat control methods on 98 regression
datasets shows that the proposed modular representation achieves
significantly better results in terms of test performance and
smaller model size. Experimental results on the state-of-the-art
symbolic regression benchmark demonstrate that the proposed
symbolic regression method outperforms 22 existing symbolic
regression and machine learning algorithms, providing empiri-
cal evidence for the superiority of the modularized evolutionary
feature construction method.

Index Terms—Evolutionary feature construction, evolutionary
forest, genetic programming (GP), modularity, random forest.

Manuscript received 14 May 2023; revised 1 August 2023; accepted 11
September 2023. Date of publication 25 September 2023; date of current
version 3 October 2024. This work was supported in part by the Marsden
Fund of New Zealand Government under Contract VUW1913, Contract
VUWI1914, and Contract VUW2016; in part by the Science for Technological
Innovation Challenge (SfTI) Fund under Grant E3603/2903; in part by the
MBIE Data Science SSIF Fund under Contract RTVU1914; in part by the
Huayin Medical under Grant E3791/4165; and in part by the MBIE Endeavor
Research Programme under Contract C11X2001 and Contract UOCX2104.
(Corresponding author: Qi Chen.)

Hengzhe Zhang, Qi Chen, Bing Xue, and Mengjie Zhang are with
the Centre for Data Science and Artificial Intelligence and the School
of Engineering and Computer Science, Victoria University of Wellington,
Wellington 6140, New Zealand (e-mail: hengzhe.zhang@ecs.vuw.ac.nz;
qi.chen@ecs.vuw.ac.nz; bing.xue @ecs.vuw.ac.nz; mengjie.zhang @
ecs.vuw.ac.nz).

Wolfgang Banzhaf is with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI 48824 USA (e-mail:
banzhafw @msu.edu).

This article has supplementary material
authors and color versions of one or
https://doi.org/10.1109/TEVC.2023.3318638.

Digital Object Identifier 10.1109/TEVC.2023.3318638

provided by the
more figures available at

I. INTRODUCTION

UTOMATED feature construction is an important task in

machine learning. The goal of feature construction is to
construct expressive features ® based on the original features
X to enhance the performance of existing machine learning
algorithms [1]. A good feature representation can facilitate
the learning process for an algorithm, compared to the original
feature space.

In machine learning, various representation learning meth-
ods like non-linear dimensionality reduction, kernel meth-
ods [2], and deep neural networks [3] have been developed
to construct expressive features. Among these, neural-
network-based deep learning algorithms achieve outstanding
performance in computer vision and natural language pro-
cessing. However, in tabular data learning tasks, they often
overfit the training data and cannot generalize well on unseen
data [4]. Additionally, the large number of parameters makes
neural-network-based methods challenging to interpret [5]. In
recent years, evolutionary feature construction methods have
shown promising results in constructing expressive features
for tabular data [1], [6]. The general idea behind evolutionary
feature construction methods is to iteratively optimize a set of
features use evolutionary algorithms, aiming to improve the
generalization performance of the learned model.

In the evolutionary feature construction domain, genetic pro-
gramming (GP)-based methods have demonstrated outstanding
performance in various scenarios. The flexible representation
and gradient-free search mechanism make GP attractive for
feature construction, particularly for non-differentiable mod-
els and high-order features. Based on the evaluation method,
GP-based evolutionary feature construction methods can be
classified as filterbased [7], wrapper-based [1], [8], and embed-
ded [9] methods. Filter methods evaluate features based
on information gain [10], correlation [11], and other mea-
sures. Wrapper methods evaluate features based on a specific
machine learning algorithm and use the model’s performance
as fitness value. Embedded methods construct features during
the learning process, such as solely using GP for symbolic
regression [12].

Recently, multitree genetic programming (GP) methods
have become increasingly prevalent in evolutionary feature
construction tasks, demonstrating impressive results [1], [8].
The key idea behind multitree GP is similar to ensemble

1089-778X (© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 23,2025 at 02:42:18 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2254-8304
https://orcid.org/0000-0001-9367-4757
https://orcid.org/0000-0002-4865-8026
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0003-4463-9538

1456

learning, in which several weak GP trees are combined to obtain
good predictive capabilities. Although multitree GP achieves
good predictive performance, it also increases model size, which
often reduces interpretability [13]. Moreover, increasing model
size may not always lead to improved performance, which has
spurred the development of numerous model size control meth-
ods [14],[15], [16], [17]. One key reason for the large model size
in multitree GP is that many identical building blocks appear
in different trees in a GP individual. When delving deeper into
this problem, it becomes evident that GP researchers typically
assume that the evolved features can only take original fea-
tures as inputs. However, in real-world feature construction
scenarios, machine learning engineers often develop basic fea-
tures at first, such as ¢;1 = x+y and ¢ = x — y, and then
construct higher-order features using these basic features, such
as @1 * ¢. Similarly, in deep learning, deep neural networks
construct higher-order features hierarchically [3]. Therefore,
it would be sensible to develop a modular and hierarchical
GP system that can automatically maintain shared building
blocks to reduce model size and improve search effectiveness.
In this article, modularity denotes the presence of reusable
building blocks within the system, and hierarchy refers to
arranging these building blocks in a tiered structure based on
their relationships. In other words, a modular and hierarchical
GP system should explicitly maintain some basic low-order
GP-constructed features as building blocks to be jointly used by
high-order GP-constructed features, allowing for more effective
feature construction.

Based on this analysis, one idea is that trees ¢; in a multitree
GP system can take not only the original features as inputs
but also the output of other trees. Based on this idea, we
propose a modular multitree GP (MMTGP) system in this
article that evolves a compact GP model with high accuracy.'
Considering that MMTGP is a special multitree GP with a
strong restriction in tree sizes, to leverage the representation
of MMTGP, we further propose a macro parent repair strategy
to reduce the number of redundant and irrelevant features in
MMTGP. Additionally, we introduce an adaptive parameter
control strategy for controlling crossover and mutation rates
and a macro crossover operator to increase search effectiveness.
In summary, the main objectives of this article are as follows.

1) To develop a compact MMTGP representation that allows
later GP trees in an individual to use the outputs from
previous GP trees, forming a modular GP system with
minimal changes to existing multitree GP algorithms. The
proposed modular GP is equipped with a layer constraint,
a scope constraint, and a sliding window connection
style to restrict the search space and explicitly encourage
modularization to improve search effectiveness.

2) To design a macro parent repairing mechanism that
can repair irrelevant and redundant feature/trees before
crossover and mutation. This mechanism facilitates the
generation of relevant and nonredundant features in
offspring and guides MMTGP in searching for useful
features.

3) To develop a macro crossover operator that improves
search effectiveness by performing crossover on the

ISource Code: https://tinyurl.com/Modular-MTGP.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 5, OCTOBER 2024

individual level rather than the tree level, thus not
disrupting the interdependency relationship between dif-
ferent GP trees.

4) Proposing an adaptive crossover and mutation rates con-
trol strategy that can dynamically tune the variation
rate according to the diversity of GP trees for each
index of the multitree GP to balance exploration and
exploitation.

5) To investigate whether the proposed compact represen-
tation can outperform existing tree GP with bloat control
methods in terms of both model size and accuracy, as
well as whether it can surpass state-of-the-art symbolic
regression and machine learning algorithms.

The remainder of this article is organized as follows.
Section II introduces bloat control and modularization tech-
niques in GP as well as related work for evolutionary feature
construction. Section III describes the proposed representation
and related genetic operators. Section IV presents the experi-
mental settings. Section V reports the experimental results to
demonstrate the effectiveness of the proposed representation.
Section VI further analyzes the effectiveness of all components
in the proposed method. Section VII concludes the article and
proposes some future work.

II. RELATED WORK
A. Modularization in Genetic Programming

Modularization is a well-established research topic in
GP [18]. Researchers have proposed various GP algorithms
for achieving modularization, including Automatically Defined
Function (ADF) [19], Tangled Program Graphs (TPG) [20],
Cartesian genetic programming (CGP) [21], linear genetic pro-
gramming (LGP) [22], and stack-based genetic programming
(SGP) [23]. ADF is a modularization technique in tree GP
that evolves multiple GP trees as functions for use in the
primary GP tree, showing impressive performance in discover-
ing complex symbolic models [24]. However, unlike multitree
GP, it lacks the ability to combine the outputs of multiple
weaker GP trees to enhance predictive performance. CGP,
on the other hand, represents computer programs as directed
acyclic graphs (DAG) and has been successful in search-
ing for neural network architectures [25]. LGP is another
modular GP representation that uses a linear sequence of
instructions to represent evolved programs, excelling in solv-
ing even parity problems [26]. SGP is a GP technique that
uses a stack data structure for program representation and has
achieved great success in program synthesis [27]. Recently,
a modular and hierarchical GP method named TPG has been
proposed, demonstrating impressive performance in multi-task
timeseries prediction tasks and visual reinforcement learning
tasks [20]. Although these methods have achieved success
across domains, an intriguing direction to explore is whether
a specialized representation is necessary to address the evo-
lutionary feature construction problem. Recent research on a
symbolic regression benchmark [28] suggests that multitree
GP [8], [13] outperforms stack-based GP [29]. It would be
desirable to slightly modify multi-tree GP to make it modular,
rather than reinventing the wheel.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 23,2025 at 02:42:18 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.. MODULAR MULTITREE GP FOR EVOLUTIONARY FEATURE CONSTRUCTION FOR REGRESSION

B. Bloat Control in Genetic Programming

Code bloat is a long-standing issue in GP for over three
decades. It refers to solutions becoming increasingly complex
without improving the fitness value. Hypotheses for explain-
ing the reasons for bloat include hitchhiking [30], defense
against crossover [31], removal bias [32], and the nature of
the program search space [33]. Although the reason for bloat
is still an ongoing research topic, the benefits of control-
ling bloat have been widely acknowledged [15], [34], [35].
Generally speaking, bloat control techniques can be catego-
rized as selection-based, variationbased, and evaluation-based
methods based on when they are applied in the evolutionary
process.

For the evaluation-based methods, parsimony pressure is a
traditional method to control bloat by adding tree size to the
fitness function with a user-specified weight [36]. However,
determining the optimal weight to balance model accuracy
and size can be challenging. To circumvent this dilemma,
researchers in GP utilize dynamic depth limit tuning strategies
to adjust the depth limit based on the size distribution of high-
quality individuals, thus preventing the excessive generation of
large individuals [34], [37], [38], [39]. In addition to dynamic
depth limit, multiobjective evolutionary algorithms (MOEAs)
offer an alternative approach to balance accuracy and com-
plexity by generating a set of candidate models with varying
degrees of accuracy and complexity in a single run. Then,
users can determine the optimal trade-off among the set of
Pareto-optimal models [6], [40], [41]. However, MOEA-based
methods may favor trivial solutions, i.e., very small solutions
with poor performance [42]. For example, in symbolic regres-
sion tasks, a study shows that traditional MOEA-based GP
(MOGP) methods have more than 30% individuals in the final
population containing only one node [42]. To address this, a-
dominance relationship [17] and evolvability estimation [42]
algorithms are proposed to guide GP search more effectively.

As for selection-based bloat control methods, one such
method is lexicographic parsimony pressure [43], which
selects parents based on fitness values and uses tree size
as a secondary criterion to break ties. Proportional tourna-
ment selection and double tournament selection [15] are also
developed to control bloat in GP. Among these methods, dou-
ble tournament selection has been found to be superior for
symbolic regression and multiplexer problems [15].

Unlike evaluation-based and selection-based methods,
variation-based bloat control methods actively prune GP trees
to control bloat. For example, size fair crossover [44] explic-
itly requires the size of the second subtree s, in a crossover
operator to be less than s, * 2 + 1, where s, is the size of
the first subtree. Moreover, pruning operators, such as hoist
mutation [19] and prune and plant (PAP) [45], are also useful
for bloat control. These operators replace a subtree with either
a subtree from itself or a randomly sampled node.

While variation-based methods can prune GP trees to any
size, they may remove useful building blocks without consid-
ering program semantics. To address this, program simplifi-
cation methods have been developed. These methods can be
categorized as exact simplification and approximate simplifica-
tion [46], depending on whether they strictly require semantic

1457

Population Initialization

—> Fitness Evaluation
Parent Selection
No

Macro-Parent Repairing
alV1acro Crossove

Variation
Macro- Rate Tuning

Crossover

Mutation

Termination:

Yes

Overall workflow of MMTGPaj ..

Fig. 1.

equivalence. Exact simplification methods use mathematical
rules to simplify GP trees [47] or remove inactive code from
GP trees [48]. However, requiring strict semantic equivalence
can be too restrictive. In contrast, approximate simplification
methods only demand similar semantics after pruning. For
example, a subtree can be replaced with a semantically similar
subtree within itself [49], or a randomly generated tree with
similar semantics [50].

Although bloat control methods based on genetic operators
have shown impressive results, they can only reduce model
sizes when unnecessary parts are present. To further reduce
the size of GP trees that do not contain redundant components,
modularized representations is worth investigating.

III. NEW ALGORITHM

In this section, a novel algorithm with modular representa-
tion, named MMTGP, is proposed for GP-based evolutionary
feature construction. This section first introduces the over-
all process of the algorithm. Then, we describe the new
representation. Finally, a macro parent repairing mechanism,
a macro crossover operator, and an adaptive variation rate
tuning strategy are introduced. It is important to note that
MMTGP refers only to multitree GP with modular represen-
tation, whereas MMTGP with the three proposed strategies
(macro parent repairing, macro crossover, and adaptive vari-
ation rates) plus an index-aware guided mutation operator is
named MMTGP41 . The index-aware guided mutation oper-
ator is introduced in Section I of the supplementary materials,
as it is a simple variant of the guided mutation operator [51]
adapted to MMTGP.

A. Overall Algorithm

The MMTGP algorithm follows a structure similar to stan-
dard GP, as depicted in Fig. 1. The algorithm consists of the
following five steps.

1) Population Initialization: This stage involves randomly
initializing » individuals. Each individual contains m GP
trees, initialized using the ramped half-and-half method.

2) Fitness FEvaluation: In this stage, MMTGP trans-
forms original features X into constructed features

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 23,2025 at 02:42:18 UTC from IEEE Xplore. Restrictions apply.

1458

{p1(X), ..., ¢ (X)}. A linear model is then trained on
these constructed features to make a prediction, with the
coefficients of the linear model fitted using ridge regres-
sion. To encourage the constructed features to generalize
well on unseen data, efficient leave-one-out ridge regres-
sion is employed to obtain a vector of squared errors
{L1,...,L,} for each training instance, which is used
for parent selection. The fitness metric of each individ-
ual is the mean squared error, which is the criterion used
for selecting the final model for making predictions on
unseen data.

3) Parent Selection: After obtaining fitness values for the
individuals, parent individuals are selected using the
automatic e-lexicase selection operator [52] to preserve
good population diversity. The lexicase selection opera-
tor randomly selects a case index k € [1, n] and filters
out individuals in an individual pool P with training error
larger than min,ep Ly (p)+€k, where € is the mean abso-
lute deviation of fitness values on case k. The individual
pool is initialized by filling it with all individuals in
the population, and the filtering process is repeated until
only one individual remains, which is then selected as
the parent.

4) Offspring Generation: After selecting parent individuals,
random subtree crossover and random subtree mutation
operators are applied to vary the parent individuals. In
MMTGP, each individual contains m GP trees, so the
crossover and mutation operators are performed in m
rounds. In each round, a tree ¢; € [¢1, ..., ¢n] is ran-
domly selected, and the variation operators are applied
to the kth GP tree of both parents under the control of
variation probability to generate offspring.

B. Modular Multitree GP

In MMTGP, each individual contains m GP trees
{¢1,...,dm}. These m trees can construct m features
{01 (X), ..., ¢n(X)}, and a linear model can combine these

features to give a final prediction. The primary differ-
ence between MMTGP and multitree GP is that MMTGP
allows the latter tree ¢; to use the outputs of the previous
trees {¢1(X), ..., ¢i—1(X)}. Fig. 2(a) shows an example of
MMTGP, where tree ¢4 takes the outputs of {¢1, ¢2, ¢3} and
X, as inputs. In this way, previous features {¢1, ¢z, ¢3} can
be viewed as building blocks.

The naive version of MMTGP, as depicted in Fig. 2(a),
does not impose any constraints on the connections, allow-
ing each GP tree ¢; to use any outputs of the previous GP
trees {¢1(X), ..., ¢»i—1(X)} and input variables {X, ..., Xi}.
However, this may result in an overly large search space when
i is large, which can hinder MMTGP from finding good solu-
tions within a limited evaluation budget. To increase search
effectiveness, we introduce three constraints in MMTGP to
restrict the variables that can be used as inputs.

1) Scope Constraint: In MMTGP, we limit each GP tree
¢; to use only the outputs of the previous v GP trees
{pi—v(X), ..., ¢pi—1(X)}, thereby alleviating the issue of
an overly large search space. For the first v GP trees that

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 5, OCTOBER 2024

(©)

(d)

Fig. 2. Illustrative examples of MMTGP with and without constraints.
(¢1, 2, ¢3, ¢4 represent four GP trees and solid lines represent active con-
nections between trees). (a) MMTGP without constraints. (b) MMTGP with
scope constraint. (¢) MMTGP with layer constraint. (d) MMTGP with sliding
window.

do not have enough previous GP trees, their scopes are
set to {$1(X), ..., di—1(X)}.

2) Layer Constraint: In the naive MMTGP representa-
tion, it is possible that all GP trees only use original
variables instead of forming a modular representation.
To reduce the search space and encourage modulariza-
tion, we add a layer constraint that restricts GP trees
{¢ili > v} to only use the output of previous GP
trees {¢i—v(X), ..., $i—1(X)} as inputs and forbids them
from using original variables. As for other GP trees
{¢ili < v}, they are allowed to use all original features
{X1,..., X} as well as all outputs from previous GP
trees {¢1(X), ..., pi—1(X)}.

3) Sliding Window Connection: In MMTGP, the scope of
nodes is determined based on a sliding window rather
than a layer boundary. This means that each tree ¢ has a
unique scope, which significantly differs from the layer-
to-layer architecture in neural networks.

The differences between the constrained version of MMTGP
and the naive MMTGP are illustrated in Fig. 2. In Fig. 2(b),
a scope constraint is added, which means ¢4 is not allowed to
take inputs from ¢;. Similarly, a layer constraint was added to
MMTGP in Fig. 2(c), and thus ¢4 cannot take X, as inputs.
Fig. 2(d) further shows the sliding window connection style
in MMTGP, and thus ¢3 and ¢4 have their unique connection
scopes.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 23,2025 at 02:42:18 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.. MODULAR MULTITREE GP FOR EVOLUTIONARY FEATURE CONSTRUCTION FOR REGRESSION

Algorithm 1 Feature Construction in MMTGP

Input: GP Individuals ® = {¢1, ... ¢}, Original Features X
Qutput: Constructed Features ¢ (X), ..., ¢p(X)

1: FS <« {}

2: for ¢ € @ do

3: ¢ (X) < Feature Construction(X U FS)

4 FS < FSU{p(X)}
5

: return ¢1(X), ..., ¢ (X)

Parent A b1 | ¢y | O3 | P4

parent B [[ETEIEVRIETNENE
¥ Repair
K

offspring IS
Irrelevant

Feature
Macro parent repair strategy in MMTGP.

Redundant
Feature

Fig. 3.

C. Macro Parent Repairing

In MMTGP, each individual consists of m GP trees repre-
senting m constructed features. To ensure a compact represen-
tation, we limit the maximum tree depth to 2, i.e., three layers
of nodes. Thus, it often constructs irrelevant and redundant
features.

1) Irrelevant Features: In this article, irrelevant features are

defined as those with importance values Iy lower than
0.01 in a fitted machine learning model. For a linear
regression model, feature importance I, is determined
by the coefficient assigned to each feature in the trained
model, with the precondition of normalizing all fea-
tures before training the linear model. Lower-importance
values indicate that the corresponding features do not
help predict the output variable in regression. Thus, to
enhance the effectiveness of GP search, it is desirable
to repair individuals containing irrelevant features.

2) Redundant Features: In evolutionary feature construc-
tion, if two GP trees have equivalent semantics,
ie., ¢q4(X) = ¢p(X), the features constructed by the
two trees are considered redundant to each other. Similar
to repairing irrelevant features, repairing redundant fea-
tures can also improve search effectiveness, enabling GP
to find better solutions in a limited time.

For repairing irrelevant and redundant features, one feasi-
ble idea is to borrow useful features from other individuals.
Therefore, before performing crossover and mutation, for
each parent ®4, we apply the lexicase selection operator
to select another parent ®p as the donor parent. Then, as
shown in Fig. 3, the repair strategy enumerates all features
{¢f € ®4li € [1, m]} in individual A. For each irrelevant fea-
ture ¢IA, the repair operator checks whether the importance
value of the corresponding feature qﬁfg in individual B is larger
than that of ¢#. If so, the repair operator replaces ¢ with ¢5.
Similar to the repair operator for irrelevant features, the repair
operator for redundant features replaces every redundant fea-
ture ¢ZA, but this replacement is performed directly without

1459

Parent A P
Parent 8 EYEIRZRITNEN

Macro ¥ Crossover

offspring A NIRRT
Offspring B m b,

lustrative example of macro crossover.

b3 | b

Fig. 4.

checking feature importance. By combining these two repair-
ing strategies, the number of irrelevant and redundant features
could be reduced, thereby improving search effectiveness.

D. Macro Tree Crossover and Adaptive Variation Rate

In MMTGP, random subtree crossover and random subtree
mutation [19] operators are used to generate offspring. In this
section, we propose a macro crossover operator and an adap-
tive variation probability control strategy to improve search
effectiveness.

1) Macro Tree Crossover: In MMTGP, the crossover oper-
ator is performed at the GP tree level, where the random
crossover operator swaps a randomly chosen subtree 1, from
¢£ in the first parent &4 and a randomly chosen subtree
from q),f in the second parent ®p. However, in MMTGP, some
features {qb,?], qb,fz} may have dependencies that perform well
in 4. For example, ¢>f2 may take the outputs of 4’1?1 as inputs.
Independently performing crossover may break the depen-
dency between different GP trees. To address this issue, we
propose a macro tree crossover (MTC) operator in this article
to exchange genetic materials on the individual level rather
than the tree level. Specifically, considering m GP trees in each
individual, the MTC operator randomly selects two indices
i € [1,m],j € [i,m]. Then, the MTC operator exchanges
two sets of GP trees {(]5;4, ...,¢j‘f‘} and {qblB, ...,¢f} in two
individuals ®4 and ®p, as shown in Fig. 4. By exchanging
multiple entire trees in a single crossover operator, the MTC
operator preserves the coexistence relationship of features and
may be able to generate high-quality feature sets more effec-
tively. It is worth noting that the probability of using a macro
crossover operator is controlled by a parameter CRyrc. Once
the macro crossover operator has been invoked, the random
subtree crossover operator and the guided mutation operator
will not be applied as the macro crossover has already made
a large change to the parent individuals.

2) Adaptive Variation Rate: In GP, crossover and mutation
rates for random crossover and random mutation operators
are usually set in advance. However, in MMTGP, GP trees
at different positions i € [1,m] exhibit distinct evolutionary
dynamics. For simplicity, we refer to GP trees with lower
indices within an individual as low-level GP trees, as they
serve as fundamental building blocks. In contrast, GP trees
with higher indices within an individual are referred to as high-
level GP trees, as they use low-level GP trees to construct more
expressive features. The low-level GP trees are easier to con-
verge upon than high-level GP trees, as the input features of
low-level GP trees in MMTGP are stable, whereas the input
features of high-level GP trees are always changing. Based

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 23,2025 at 02:42:18 UTC from IEEE Xplore. Restrictions apply.

1460

Low-Level High-Level

Individual A ¢
Individual B m

Variation Rate 4+ ¢ + +
4+ Large Rate + Small Rate

Fig. 5. Tllustrative example of adaptive crossover and mutation rate control
in early generations.

on this, it is desirable to have an adaptive crossover/mutation
rate control strategy that assigns a higher-variation probabil-
ity to low-level GP trees to prevent premature convergence
in the early stage, while assigning a lower-variation proba-
bility to high-level GP trees to avoid excessive fluctuation.
Fig. 5 presents an example of such an adaptive rate control
strategy. In this example, GP trees at the first two indices
should have a higher-crossover/mutation rate, as the pheno-
typic diversity at these two indices is low, and we need to
have a higher-crossover/mutation rate to encourage exploration
in the early stage of evolution. To dynamically adjust the
crossover/mutation rate, we first need to measure the pheno-
typic diversity of each index i € [1, m]. In MMTGP, we count
the number of GP trees with unique semantics for each index
as cq, ..., Ccm, and use them as an indicator of diversity. The
greater the number of GP trees with unique semantics, the
higher the diversity. Assuming the maximum crossover rate
is ¢r, and cpin = Min;e[1) ¢; represents the minimum num-
ber of unique GP trees for all indices, the crossover rate for
each index i is defined as shown in
Cmin

- (1)

G

Cri =Cr*

Based on (1), it is clear that the index with the smallest diver-
sity corresponds to the largest crossover rate cr, whereas the
index with the largest diversity corresponds to the smallest
crossover rate. The mutation rate is controlled in the same
way as the crossover rate, with the difference being that the
maximum mutation rate is limited to mr. However, in the later
stage of evolution, low-level GP trees should be encouraged to
converge, and computational resources ought to be allocated
to explore high-level GP trees. Consequently, the crossover
rate is inverted according to (2), where cmax = Mmaxe[1, m] Ci
represents the maximum number of unique GP trees for all
indices

c?

2

cri = crx*
Cmax
Based on (2), the index exhibiting the lowest diversity is
encouraged to converge, while the index with the highest
diversity continues to explore the search space. Consequently,
a portion of the features become fixed, while the remaining
features maintain the ability to change until the end of the evo-
Iutionary process. The strategy of fixing several GP trees to
optimize others is widely used in gradient boosting GP [53] to
achieve good performance. However, in MMTGP, the adaptive
variation rate strategy allows the remaining tree to optimize

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 5, OCTOBER 2024

10 .
. ° o -
@
I
2
& o . o .
&
‘s . e . > E
= o =
2. . L) ° .
10 r
5
. ° o -
z o o o -
° e . o o -
L) . . o -
. . -
o L) o ° -

Number of Instances