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Abstract—Evolutionary feature construction is a key technique
in evolutionary machine learning, with the aim of construct-
ing high-level features that enhance performance of a learning
algorithm. In real-world applications, engineers typically con-
struct complex features based on a combination of basic features,
reusing those features as modules. However, modularity in evo-
lutionary feature construction is still an open research topic.
This article tries to fill that gap by proposing a modular and
hierarchical multitree genetic programming (GP) algorithm that
allows trees to use the output values of other trees, thereby rep-
resenting expressive features in a compact form. Based on this
new representation, we propose a macro parent-repair strategy
to reduce redundant and irrelevant features, a macro crossover
operator to preserve interactive features, and an adaptive con-
trol strategy for crossover and mutation rates to dynamically
balance the tradeoff between exploration and exploitation. A
comparison with seven bloat control methods on 98 regression
datasets shows that the proposed modular representation achieves
significantly better results in terms of test performance and
smaller model size. Experimental results on the state-of-the-art
symbolic regression benchmark demonstrate that the proposed
symbolic regression method outperforms 22 existing symbolic
regression and machine learning algorithms, providing empiri-
cal evidence for the superiority of the modularized evolutionary
feature construction method.

Index Terms—Evolutionary feature construction, evolutionary
forest, genetic programming (GP), modularity, random forest.
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I. INTRODUCTION

AUTOMATED feature construction is an important task in
machine learning. The goal of feature construction is to

construct expressive features � based on the original features
X to enhance the performance of existing machine learning
algorithms [1]. A good feature representation can facilitate
the learning process for an algorithm, compared to the original
feature space.

In machine learning, various representation learning meth-
ods like non-linear dimensionality reduction, kernel meth-
ods [2], and deep neural networks [3] have been developed
to construct expressive features. Among these, neural-
network-based deep learning algorithms achieve outstanding
performance in computer vision and natural language pro-
cessing. However, in tabular data learning tasks, they often
overfit the training data and cannot generalize well on unseen
data [4]. Additionally, the large number of parameters makes
neural-network-based methods challenging to interpret [5]. In
recent years, evolutionary feature construction methods have
shown promising results in constructing expressive features
for tabular data [1], [6]. The general idea behind evolutionary
feature construction methods is to iteratively optimize a set of
features use evolutionary algorithms, aiming to improve the
generalization performance of the learned model.

In the evolutionary feature construction domain, genetic pro-
gramming (GP)-based methods have demonstrated outstanding
performance in various scenarios. The flexible representation
and gradient-free search mechanism make GP attractive for
feature construction, particularly for non-differentiable mod-
els and high-order features. Based on the evaluation method,
GP-based evolutionary feature construction methods can be
classified as filterbased [7], wrapper-based [1], [8], and embed-
ded [9] methods. Filter methods evaluate features based
on information gain [10], correlation [11], and other mea-
sures. Wrapper methods evaluate features based on a specific
machine learning algorithm and use the model’s performance
as fitness value. Embedded methods construct features during
the learning process, such as solely using GP for symbolic
regression [12].

Recently, multitree genetic programming (GP) methods
have become increasingly prevalent in evolutionary feature
construction tasks, demonstrating impressive results [1], [8].
The key idea behind multitree GP is similar to ensemble
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learning, in which several weak GP trees are combined to obtain
good predictive capabilities. Although multitree GP achieves
good predictive performance, it also increases model size, which
often reduces interpretability [13]. Moreover, increasing model
size may not always lead to improved performance, which has
spurred the development of numerous model size control meth-
ods [14], [15], [16], [17]. One key reason for the large model size
in multitree GP is that many identical building blocks appear
in different trees in a GP individual. When delving deeper into
this problem, it becomes evident that GP researchers typically
assume that the evolved features can only take original fea-
tures as inputs. However, in real-world feature construction
scenarios, machine learning engineers often develop basic fea-
tures at first, such as φ1 = x + y and φ2 = x − y, and then
construct higher-order features using these basic features, such
as φ1 ∗ φ2. Similarly, in deep learning, deep neural networks
construct higher-order features hierarchically [3]. Therefore,
it would be sensible to develop a modular and hierarchical
GP system that can automatically maintain shared building
blocks to reduce model size and improve search effectiveness.
In this article, modularity denotes the presence of reusable
building blocks within the system, and hierarchy refers to
arranging these building blocks in a tiered structure based on
their relationships. In other words, a modular and hierarchical
GP system should explicitly maintain some basic low-order
GP-constructed features as building blocks to be jointly used by
high-order GP-constructed features, allowing for more effective
feature construction.

Based on this analysis, one idea is that trees φi in a multitree
GP system can take not only the original features as inputs
but also the output of other trees. Based on this idea, we
propose a modular multitree GP (MMTGP) system in this
article that evolves a compact GP model with high accuracy.1

Considering that MMTGP is a special multitree GP with a
strong restriction in tree sizes, to leverage the representation
of MMTGP, we further propose a macro parent repair strategy
to reduce the number of redundant and irrelevant features in
MMTGP. Additionally, we introduce an adaptive parameter
control strategy for controlling crossover and mutation rates
and a macro crossover operator to increase search effectiveness.
In summary, the main objectives of this article are as follows.

1) To develop a compact MMTGP representation that allows
later GP trees in an individual to use the outputs from
previous GP trees, forming a modular GP system with
minimal changes to existing multitree GP algorithms. The
proposed modular GP is equipped with a layer constraint,
a scope constraint, and a sliding window connection
style to restrict the search space and explicitly encourage
modularization to improve search effectiveness.

2) To design a macro parent repairing mechanism that
can repair irrelevant and redundant feature/trees before
crossover and mutation. This mechanism facilitates the
generation of relevant and nonredundant features in
offspring and guides MMTGP in searching for useful
features.

3) To develop a macro crossover operator that improves
search effectiveness by performing crossover on the

1Source Code: https://tinyurl.com/Modular-MTGP.

individual level rather than the tree level, thus not
disrupting the interdependency relationship between dif-
ferent GP trees.

4) Proposing an adaptive crossover and mutation rates con-
trol strategy that can dynamically tune the variation
rate according to the diversity of GP trees for each
index of the multitree GP to balance exploration and
exploitation.

5) To investigate whether the proposed compact represen-
tation can outperform existing tree GP with bloat control
methods in terms of both model size and accuracy, as
well as whether it can surpass state-of-the-art symbolic
regression and machine learning algorithms.

The remainder of this article is organized as follows.
Section II introduces bloat control and modularization tech-
niques in GP as well as related work for evolutionary feature
construction. Section III describes the proposed representation
and related genetic operators. Section IV presents the experi-
mental settings. Section V reports the experimental results to
demonstrate the effectiveness of the proposed representation.
Section VI further analyzes the effectiveness of all components
in the proposed method. Section VII concludes the article and
proposes some future work.

II. RELATED WORK

A. Modularization in Genetic Programming

Modularization is a well-established research topic in
GP [18]. Researchers have proposed various GP algorithms
for achieving modularization, including Automatically Defined
Function (ADF) [19], Tangled Program Graphs (TPG) [20],
Cartesian genetic programming (CGP) [21], linear genetic pro-
gramming (LGP) [22], and stack-based genetic programming
(SGP) [23]. ADF is a modularization technique in tree GP
that evolves multiple GP trees as functions for use in the
primary GP tree, showing impressive performance in discover-
ing complex symbolic models [24]. However, unlike multitree
GP, it lacks the ability to combine the outputs of multiple
weaker GP trees to enhance predictive performance. CGP,
on the other hand, represents computer programs as directed
acyclic graphs (DAG) and has been successful in search-
ing for neural network architectures [25]. LGP is another
modular GP representation that uses a linear sequence of
instructions to represent evolved programs, excelling in solv-
ing even parity problems [26]. SGP is a GP technique that
uses a stack data structure for program representation and has
achieved great success in program synthesis [27]. Recently,
a modular and hierarchical GP method named TPG has been
proposed, demonstrating impressive performance in multi-task
timeseries prediction tasks and visual reinforcement learning
tasks [20]. Although these methods have achieved success
across domains, an intriguing direction to explore is whether
a specialized representation is necessary to address the evo-
lutionary feature construction problem. Recent research on a
symbolic regression benchmark [28] suggests that multitree
GP [8], [13] outperforms stack-based GP [29]. It would be
desirable to slightly modify multi-tree GP to make it modular,
rather than reinventing the wheel.
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B. Bloat Control in Genetic Programming

Code bloat is a long-standing issue in GP for over three
decades. It refers to solutions becoming increasingly complex
without improving the fitness value. Hypotheses for explain-
ing the reasons for bloat include hitchhiking [30], defense
against crossover [31], removal bias [32], and the nature of
the program search space [33]. Although the reason for bloat
is still an ongoing research topic, the benefits of control-
ling bloat have been widely acknowledged [15], [34], [35].
Generally speaking, bloat control techniques can be catego-
rized as selection-based, variationbased, and evaluation-based
methods based on when they are applied in the evolutionary
process.

For the evaluation-based methods, parsimony pressure is a
traditional method to control bloat by adding tree size to the
fitness function with a user-specified weight [36]. However,
determining the optimal weight to balance model accuracy
and size can be challenging. To circumvent this dilemma,
researchers in GP utilize dynamic depth limit tuning strategies
to adjust the depth limit based on the size distribution of high-
quality individuals, thus preventing the excessive generation of
large individuals [34], [37], [38], [39]. In addition to dynamic
depth limit, multiobjective evolutionary algorithms (MOEAs)
offer an alternative approach to balance accuracy and com-
plexity by generating a set of candidate models with varying
degrees of accuracy and complexity in a single run. Then,
users can determine the optimal trade-off among the set of
Pareto-optimal models [6], [40], [41]. However, MOEA-based
methods may favor trivial solutions, i.e., very small solutions
with poor performance [42]. For example, in symbolic regres-
sion tasks, a study shows that traditional MOEA-based GP
(MOGP) methods have more than 30% individuals in the final
population containing only one node [42]. To address this, α-
dominance relationship [17] and evolvability estimation [42]
algorithms are proposed to guide GP search more effectively.

As for selection-based bloat control methods, one such
method is lexicographic parsimony pressure [43], which
selects parents based on fitness values and uses tree size
as a secondary criterion to break ties. Proportional tourna-
ment selection and double tournament selection [15] are also
developed to control bloat in GP. Among these methods, dou-
ble tournament selection has been found to be superior for
symbolic regression and multiplexer problems [15].

Unlike evaluation-based and selection-based methods,
variation-based bloat control methods actively prune GP trees
to control bloat. For example, size fair crossover [44] explic-
itly requires the size of the second subtree sb in a crossover
operator to be less than sa ∗ 2 + 1, where sa is the size of
the first subtree. Moreover, pruning operators, such as hoist
mutation [19] and prune and plant (PAP) [45], are also useful
for bloat control. These operators replace a subtree with either
a subtree from itself or a randomly sampled node.

While variation-based methods can prune GP trees to any
size, they may remove useful building blocks without consid-
ering program semantics. To address this, program simplifi-
cation methods have been developed. These methods can be
categorized as exact simplification and approximate simplifica-
tion [46], depending on whether they strictly require semantic

Fig. 1. Overall workflow of MMTGPALL.

equivalence. Exact simplification methods use mathematical
rules to simplify GP trees [47] or remove inactive code from
GP trees [48]. However, requiring strict semantic equivalence
can be too restrictive. In contrast, approximate simplification
methods only demand similar semantics after pruning. For
example, a subtree can be replaced with a semantically similar
subtree within itself [49], or a randomly generated tree with
similar semantics [50].

Although bloat control methods based on genetic operators
have shown impressive results, they can only reduce model
sizes when unnecessary parts are present. To further reduce
the size of GP trees that do not contain redundant components,
modularized representations is worth investigating.

III. NEW ALGORITHM

In this section, a novel algorithm with modular representa-
tion, named MMTGP, is proposed for GP-based evolutionary
feature construction. This section first introduces the over-
all process of the algorithm. Then, we describe the new
representation. Finally, a macro parent repairing mechanism,
a macro crossover operator, and an adaptive variation rate
tuning strategy are introduced. It is important to note that
MMTGP refers only to multitree GP with modular represen-
tation, whereas MMTGP with the three proposed strategies
(macro parent repairing, macro crossover, and adaptive vari-
ation rates) plus an index-aware guided mutation operator is
named MMTGPALL. The index-aware guided mutation oper-
ator is introduced in Section I of the supplementary materials,
as it is a simple variant of the guided mutation operator [51]
adapted to MMTGP.

A. Overall Algorithm

The MMTGP algorithm follows a structure similar to stan-
dard GP, as depicted in Fig. 1. The algorithm consists of the
following five steps.

1) Population Initialization: This stage involves randomly
initializing n individuals. Each individual contains m GP
trees, initialized using the ramped half-and-half method.

2) Fitness Evaluation: In this stage, MMTGP trans-
forms original features X into constructed features
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{φ1(X), . . . , φm(X)}. A linear model is then trained on
these constructed features to make a prediction, with the
coefficients of the linear model fitted using ridge regres-
sion. To encourage the constructed features to generalize
well on unseen data, efficient leave-one-out ridge regres-
sion is employed to obtain a vector of squared errors
{L1, . . . ,Ln} for each training instance, which is used
for parent selection. The fitness metric of each individ-
ual is the mean squared error, which is the criterion used
for selecting the final model for making predictions on
unseen data.

3) Parent Selection: After obtaining fitness values for the
individuals, parent individuals are selected using the
automatic ε-lexicase selection operator [52] to preserve
good population diversity. The lexicase selection opera-
tor randomly selects a case index k ∈ [1, n] and filters
out individuals in an individual pool P with training error
larger than minp∈PLk(p)+εk, where εk is the mean abso-
lute deviation of fitness values on case k. The individual
pool is initialized by filling it with all individuals in
the population, and the filtering process is repeated until
only one individual remains, which is then selected as
the parent.

4) Offspring Generation: After selecting parent individuals,
random subtree crossover and random subtree mutation
operators are applied to vary the parent individuals. In
MMTGP, each individual contains m GP trees, so the
crossover and mutation operators are performed in m
rounds. In each round, a tree φt ∈ [φ1, . . . , φm] is ran-
domly selected, and the variation operators are applied
to the kth GP tree of both parents under the control of
variation probability to generate offspring.

B. Modular Multitree GP

In MMTGP, each individual contains m GP trees
{φ1, . . . , φm}. These m trees can construct m features
{φ1(X), . . . , φm(X)}, and a linear model can combine these
features to give a final prediction. The primary differ-
ence between MMTGP and multitree GP is that MMTGP
allows the latter tree φi to use the outputs of the previous
trees {φ1(X), . . . , φi−1(X)}. Fig. 2(a) shows an example of
MMTGP, where tree φ4 takes the outputs of {φ1, φ2, φ3} and
X2 as inputs. In this way, previous features {φ1, φ2, φ3} can
be viewed as building blocks.

The naive version of MMTGP, as depicted in Fig. 2(a),
does not impose any constraints on the connections, allow-
ing each GP tree φi to use any outputs of the previous GP
trees {φ1(X), . . . , φi−1(X)} and input variables {X1, . . . ,Xk}.
However, this may result in an overly large search space when
i is large, which can hinder MMTGP from finding good solu-
tions within a limited evaluation budget. To increase search
effectiveness, we introduce three constraints in MMTGP to
restrict the variables that can be used as inputs.

1) Scope Constraint: In MMTGP, we limit each GP tree
φi to use only the outputs of the previous v GP trees
{φi−v(X), . . . , φi−1(X)}, thereby alleviating the issue of
an overly large search space. For the first v GP trees that

Fig. 2. Illustrative examples of MMTGP with and without constraints.
(φ1, φ2, φ3, φ4 represent four GP trees and solid lines represent active con-
nections between trees). (a) MMTGP without constraints. (b) MMTGP with
scope constraint. (c) MMTGP with layer constraint. (d) MMTGP with sliding
window.

do not have enough previous GP trees, their scopes are
set to {φ1(X), . . . , φi−1(X)}.

2) Layer Constraint: In the naive MMTGP representa-
tion, it is possible that all GP trees only use original
variables instead of forming a modular representation.
To reduce the search space and encourage modulariza-
tion, we add a layer constraint that restricts GP trees
{φi|i > v} to only use the output of previous GP
trees {φi−v(X), . . . , φi−1(X)} as inputs and forbids them
from using original variables. As for other GP trees
{φi|i ≤ v}, they are allowed to use all original features
{X1, . . . ,Xn} as well as all outputs from previous GP
trees {φ1(X), . . . , φi−1(X)}.

3) Sliding Window Connection: In MMTGP, the scope of
nodes is determined based on a sliding window rather
than a layer boundary. This means that each tree φ has a
unique scope, which significantly differs from the layer-
to-layer architecture in neural networks.

The differences between the constrained version of MMTGP
and the naive MMTGP are illustrated in Fig. 2. In Fig. 2(b),
a scope constraint is added, which means φ4 is not allowed to
take inputs from φ1. Similarly, a layer constraint was added to
MMTGP in Fig. 2(c), and thus φ4 cannot take X2 as inputs.
Fig. 2(d) further shows the sliding window connection style
in MMTGP, and thus φ3 and φ4 have their unique connection
scopes.
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Algorithm 1 Feature Construction in MMTGP
Input: GP Individuals � = {φ1, . . . φm}, Original Features X
Output: Constructed Features φ1(X), . . . , φm(X)

1: FS← {}
2: for φ ∈ � do
3: φ(X)← Feature Construction(X ∪ FS)
4: FS← FS ∪ {φ(X)}
5: return φ1(X), . . . , φm(X)

Fig. 3. Macro parent repair strategy in MMTGP.

C. Macro Parent Repairing

In MMTGP, each individual consists of m GP trees repre-
senting m constructed features. To ensure a compact represen-
tation, we limit the maximum tree depth to 2, i.e., three layers
of nodes. Thus, it often constructs irrelevant and redundant
features.

1) Irrelevant Features: In this article, irrelevant features are
defined as those with importance values Iφ lower than
0.01 in a fitted machine learning model. For a linear
regression model, feature importance Iφ is determined
by the coefficient assigned to each feature in the trained
model, with the precondition of normalizing all fea-
tures before training the linear model. Lower-importance
values indicate that the corresponding features do not
help predict the output variable in regression. Thus, to
enhance the effectiveness of GP search, it is desirable
to repair individuals containing irrelevant features.

2) Redundant Features: In evolutionary feature construc-
tion, if two GP trees have equivalent semantics,
i.e., φa(X) = φb(X), the features constructed by the
two trees are considered redundant to each other. Similar
to repairing irrelevant features, repairing redundant fea-
tures can also improve search effectiveness, enabling GP
to find better solutions in a limited time.

For repairing irrelevant and redundant features, one feasi-
ble idea is to borrow useful features from other individuals.
Therefore, before performing crossover and mutation, for
each parent �A, we apply the lexicase selection operator
to select another parent �B as the donor parent. Then, as
shown in Fig. 3, the repair strategy enumerates all features
{φA

i ∈ �A|i ∈ [1,m]} in individual A. For each irrelevant fea-
ture φA

i , the repair operator checks whether the importance
value of the corresponding feature φB

i in individual B is larger
than that of φA

i . If so, the repair operator replaces φA
i with φB

i .
Similar to the repair operator for irrelevant features, the repair
operator for redundant features replaces every redundant fea-
ture φA

i , but this replacement is performed directly without

Fig. 4. Illustrative example of macro crossover.

checking feature importance. By combining these two repair-
ing strategies, the number of irrelevant and redundant features
could be reduced, thereby improving search effectiveness.

D. Macro Tree Crossover and Adaptive Variation Rate

In MMTGP, random subtree crossover and random subtree
mutation [19] operators are used to generate offspring. In this
section, we propose a macro crossover operator and an adap-
tive variation probability control strategy to improve search
effectiveness.

1) Macro Tree Crossover: In MMTGP, the crossover oper-
ator is performed at the GP tree level, where the random
crossover operator swaps a randomly chosen subtree ψa from
φA

k in the first parent �A and a randomly chosen subtree ψb

from φB
k in the second parent �B. However, in MMTGP, some

features {φA
k1, φ

A
k2} may have dependencies that perform well

in �A. For example, φA
k2 may take the outputs of φA

k1 as inputs.
Independently performing crossover may break the depen-
dency between different GP trees. To address this issue, we
propose a macro tree crossover (MTC) operator in this article
to exchange genetic materials on the individual level rather
than the tree level. Specifically, considering m GP trees in each
individual, the MTC operator randomly selects two indices
i ∈ [1,m], j ∈ [i,m]. Then, the MTC operator exchanges
two sets of GP trees {φA

i , . . . , φ
A
j } and {φB

i , . . . , φ
B
j } in two

individuals �A and �B, as shown in Fig. 4. By exchanging
multiple entire trees in a single crossover operator, the MTC
operator preserves the coexistence relationship of features and
may be able to generate high-quality feature sets more effec-
tively. It is worth noting that the probability of using a macro
crossover operator is controlled by a parameter CRMTC. Once
the macro crossover operator has been invoked, the random
subtree crossover operator and the guided mutation operator
will not be applied as the macro crossover has already made
a large change to the parent individuals.

2) Adaptive Variation Rate: In GP, crossover and mutation
rates for random crossover and random mutation operators
are usually set in advance. However, in MMTGP, GP trees
at different positions i ∈ [1,m] exhibit distinct evolutionary
dynamics. For simplicity, we refer to GP trees with lower
indices within an individual as low-level GP trees, as they
serve as fundamental building blocks. In contrast, GP trees
with higher indices within an individual are referred to as high-
level GP trees, as they use low-level GP trees to construct more
expressive features. The low-level GP trees are easier to con-
verge upon than high-level GP trees, as the input features of
low-level GP trees in MMTGP are stable, whereas the input
features of high-level GP trees are always changing. Based
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Fig. 5. Illustrative example of adaptive crossover and mutation rate control
in early generations.

on this, it is desirable to have an adaptive crossover/mutation
rate control strategy that assigns a higher-variation probabil-
ity to low-level GP trees to prevent premature convergence
in the early stage, while assigning a lower-variation proba-
bility to high-level GP trees to avoid excessive fluctuation.
Fig. 5 presents an example of such an adaptive rate control
strategy. In this example, GP trees at the first two indices
should have a higher-crossover/mutation rate, as the pheno-
typic diversity at these two indices is low, and we need to
have a higher-crossover/mutation rate to encourage exploration
in the early stage of evolution. To dynamically adjust the
crossover/mutation rate, we first need to measure the pheno-
typic diversity of each index i ∈ [1,m]. In MMTGP, we count
the number of GP trees with unique semantics for each index
as c1, . . . , cm, and use them as an indicator of diversity. The
greater the number of GP trees with unique semantics, the
higher the diversity. Assuming the maximum crossover rate
is cr, and cmin = mini∈[1,m] ci represents the minimum num-
ber of unique GP trees for all indices, the crossover rate for
each index i is defined as shown in

cri = cr ∗ cmin

c2
i

. (1)

Based on (1), it is clear that the index with the smallest diver-
sity corresponds to the largest crossover rate cr, whereas the
index with the largest diversity corresponds to the smallest
crossover rate. The mutation rate is controlled in the same
way as the crossover rate, with the difference being that the
maximum mutation rate is limited to mr. However, in the later
stage of evolution, low-level GP trees should be encouraged to
converge, and computational resources ought to be allocated
to explore high-level GP trees. Consequently, the crossover
rate is inverted according to (2), where cmax = maxi∈[1,m] ci

represents the maximum number of unique GP trees for all
indices

cri = cr ∗ c2
i

cmax
. (2)

Based on (2), the index exhibiting the lowest diversity is
encouraged to converge, while the index with the highest
diversity continues to explore the search space. Consequently,
a portion of the features become fixed, while the remaining
features maintain the ability to change until the end of the evo-
lutionary process. The strategy of fixing several GP trees to
optimize others is widely used in gradient boosting GP [53] to
achieve good performance. However, in MMTGP, the adaptive
variation rate strategy allows the remaining tree to optimize

Fig. 6. Properties of the regression benchmark.

at a small rate rather than being completely fixed, providing
more flexibility.

IV. EXPERIMENTAL SETTINGS

In this article, a series of experiments have been conducted
to evaluate the effectiveness of the proposed MMTGP method
for feature construction. This section describes the experi-
mental settings, including the experimental datasets, baseline
methods, parameter settings, and evaluation protocol.

A. Datasets

The experiments are conducted on datasets from the Penn
machine learning benchmark (PMLB) [54]. To save computa-
tional resources, the experiments are conducted on all the 98
datasets in PMLB with less than 2000 instances. The details
of the 98 datasets are presented in Fig. 6. The details show
that the number of instances ranges from 47 to 1059, whereas
the number of dimensions (original features) is between 2 and
124. It is worth noting that in comparative experiments with
other SR and machine learning methods on the state-of-the-art
symbolic regression benchmark (SRBench) [28], we use all
120 datasets in PMLB to ensure consistency with SRBench.

B. Baseline Methods

MMTGP with a new compact representation aims to reduce
model sizes and improve model accuracies. In the GP domain,
there are many bloat control techniques for reducing model
sizes. Consequently, we compare MMTGP with seven bloat
control methods to study the advantages of the proposed com-
pact representation. These seven bloat control methods are
selected because they are widely used for comparisons in
existing literature and have demonstrated good performance
in controlling bloat [17], [50]. For a fair comparison, all bloat
control methods are combined with multitree GP methods
for feature construction, and a linear model is used to com-
bine features for making predictions. The seven baseline bloat
control methods include the following.

1) Depth Limiting: Depth limiting is the standard bloat con-
trol method in GP [19]. This method adds a strict limit
to the depth of each tree for bloat control.

2) double tournament selection (DTS) [15]: DTS is a
selection-based bloat control method that uses the tour-
nament selection operator to select two parents, and
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then selects the smaller one with a higher probability
to control bloat.

3) Tarpeian [14]: The Tarpeian bloat control method ran-
domly kills some individuals that are larger than the
average tree size to avoid generating excessively large
trees.

4) Prune-and-Plant (PAP) [16]: PAP prunes a GP tree by
replacing a subtree with a random node and plants the
pruned subtree in the population as a new GP tree to
preserve genetic materials.

5) α-MOEA-based GP (MOGP) [17]: α-MOGP is an
multiobjective evolutionary algorithm (MOEA)-based
bloat control method that balances the fitness and com-
plexity using the α-dominance relationship.

6) TS-S [55]: The statistics tournament selection method
(TS-S) controls bloat by explicitly keeping the smaller
solution if the semantics of two individuals are not
significantly different.

7) Dynamic Semantic Approximation (DSA) [50]: DSA is
a variation-based bloat control method that randomly
replaces a subtree with randomly generated smaller
trees. DSA is named dynamic because it dynamically
chooses trees larger than the average tree size to prune.

C. Evaluation Protocol

In this article, we follow the traditional experimental setup
in the GP field. All experiments are independently run 30
times to ensure reliable results. In each run, each dataset is
randomly split into training data and test data with a ratio of
80:20 [1]. In order to avoid the magnitude difference between
different dimensions in each dataset, all data are standardized
at the beginning of the training process. After the training
process, to eliminate the magnitude difference between dif-
ferent datasets, test R2 scores are reported, which is defined
as 1− ([∑i(yi − ŷi)

2]/[
∑

i(yi − ȳ)2]), where yi represents the
prediction on test instance i, and ȳ stands for the average
of target values. The optimal value for the R2 score is 1,
which represents a perfect fit of the model to the data. For
0 < R2 < 1, the model can identify and capture some of the
underlying patterns in the data, with a higher R2 indicating a
better fit. However, if the predictions provided by the model
are worse than those made by using the average output value,
the R2 score will be less than zero, indicating poor prediction
results. After 30 runs of experiments, a Wilcoxon signed rank
test with a significance level of 0.05 is used to compare the
performance of MMTGP with benchmark methods. In addi-
tion to the significance test, Friedman’s rank is also presented
to show the relative rank of different algorithms.

D. Parameter Settings

Most parameters in the GP methods use common settings
in the existing literature, as shown in Table I. In order to show
the high-search effectiveness of the proposed representation,
we use a smaller evolution budget than existing common set-
tings in the current GP literature. Specifically, the number of
generations is set to 100 and the population size is set to 30
times the number of original features D, with an upper bound

TABLE I
PARAMETER SETTINGS FOR MMTGP

TABLE II
PARAMETER SETTINGS FOR BLOAT CONTROL

IN DIFFERENT ALGORITHMS

of 300 [56]. A relatively large initial crossover rate is used,
which is 0.9. In comparison, the initial mutation rate is set
to a relatively low value, which is 0.1. In order to avoid the
zero division error, we use the analytical quotient (AQ) [57]
instead of the division operator. For the parameters of other
bloat control methods, we use the suggested values in their
original papers as shown in Table II. It is worth noting that the
height limit of standard GP in baseline bloat control methods
is set as 10 to be able to construct expressive features without
modularization. For the parameters of machine learning and
SR methods in SRBench, they are tuned using the successive-
halving grid search method according to the parameter search
space defined in [28].

As mentioned in Section III, MMTGP does not use the
macro parent repair strategy, the macro crossover operator,
the adaptive parameter control strategy and the guided muta-
tion operator when compared to other bloat control methods.
This ensures a direct comparison between standard GP with
modular GP and tree GP on predictive performance and tree
sizes. In experiments on the state-of-the-art SRBench, we con-
duct experiments with MMTGP, as well as MMTGP with the
four proposed strategies, which is named MMTGPALL, for
achieving state-of-the-art performance in the benchmark.

V. EXPERIMENTAL RESULTS

A. Experimental Results on R2 Scores

The experimental results are presented in Table III. The
experimental results show that MMTGP is significantly better
than multitree GP with bloat control techniques. Specifically,
compared to the second-ranked bloat control method, αMOGP,
MMTGP outperforms it on 46 datasets and performs similarly
on 48 datasets. As for other bloat control methods, MMTGP
outperforms them on 52 datasets and is inferior to them on up
to 14 datasets. It is worth noting that MMTGP is significantly
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TABLE III
STATISTICAL COMPARISON ON Test R2 Scores FOR DIFFERENT BLOAT CONTROL METHODS. (“+,” “∼,” AND “-” INDICATE THAT USING

THE METHOD IN A ROW PERFORMS BETTER THAN, SIMILAR TO, OR WORSE THAN USING THE METHOD IN A COLUMN)

TABLE IV
STATISTICAL COMPARISON ON Tree Sizes FOR DIFFERENT BLOAT CONTROL METHODS. (“+,” “∼,” AND “-” INDICATE THAT USING

THE METHOD IN A ROW PERFORMS BETTER THAN, SIMILAR TO, OR WORSE THAN USING THE METHOD IN A COLUMN)

Fig. 7. Distribution of test R2 scores for different bloat control methods on
four representative datasets.

better than the standard GP on 54 datasets and only worse on
three datasets. In comparison, other bloat control methods can
only have slightly better-test performance than standard GP
with the depth limiting method.

Fig. 7 further presents the distribution of R2 scores over
the 30 independent runs on four representative datasets
randomly chosen from all experimental datasets. Fig. 7
shows that MMTGP not only has better-average performance
than standard GP but is also more stable in achieving
good performance, which is particularly noticeable in the
“OpenML_646” dataset, reflected by a much smaller stan-
dard deviation. In order to gain a better understanding of
how different bloat control methods affect search effective-
ness, we present the convergence curves for the best-fitness
values in Fig. 8. From these figures, we can see that although
all methods start from the same initial point, MMTGP has a
significantly faster convergence rate than other GP with bloat

Fig. 8. Evolutionary plots of the best-fitness values for different bloat control
methods and 95% confidence interval.

control methods in the early stages. These results indicate
that simply removing noisy and less informative subtrees with
existing bloat control methods is not enough to improve search
effectiveness, and that using the modularization technique to
remove duplicate building blocks is a better approach. This can
explain why MMTGP outperforms other baseline methods on
many datasets.

B. Experimental Results on Tree Sizes

The goal of modular GP is not only to obtain better-R2

scores but also to obtain smaller GP trees. Specifically, we
aim to reduce the average number of nodes of all trees in
each individual, which is defined as the average tree size.
To validate the decrease in average tree sizes, we present a
statistical comparison on tree sizes for different bloat con-
trol methods in Table IV. The results show that the size of
GP trees found by MMTGP is also smaller than that of other
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Fig. 9. Distribution of tree sizes for different bloat control methods on four
representative datasets.

Fig. 10. Evolutionary plots of average tree sizes for different bloat control
methods and 95% confidence interval.

bloat control methods. For example, when comparing MMTGP
with the second-best method, PAP, it significantly outperforms
DSA on 43 out of the 98 datasets and has worse results on
24 datasets. Compared with the third-ranked method, TS-S,
MMTGP outperforms it on 65 datasets and is inferior to it
on 23 datasets. As for the other methods, MMTGP has a
clear advantage, where MMTGP is significantly better than
the other methods on at least 97 datasets and no worse on any
dataset. These results validate the effectiveness of MMTGP in
controlling code bloat.

A more concrete comparison of four representative datasets
for the distribution of tree sizes over the 30 runs is presented
in Fig. 9. These results further confirm that MMTGP not only
has smaller average tree sizes than standard GP with bloat
control methods but is also stable across different runs. This
is exactly as expected since MMTGP sets the maximal tree
depth to 2, and thus the tree size will not be very large, which
makes the tree size stable across different runs. To have a
deeper understanding of why MMTGP can have a small tree
size, we plot the evolutionary plots of tree sizes in Fig. 10. It

TABLE V
FRIEDMAN’S RANK OF R2 TEST SCORES AND AVERAGE TREE SIZES OF

ALL BLOAT CONTROL METHODS ON ALL DATASETS. (THE

RELATIVE RANKS ARE PRESENTED IN PARENTHESES.)

is evident that, except for PAP and MMTGP, all bloat con-
trol methods show an increase in tree size as the evolutionary
progress continues. This is not necessarily a problem, as a
modest increase in tree size to search for more complex trees
is reasonable. However, Fig. 10 shows that the average tree
size of MMTGP decreases as the evolution progresses. This
could be attributed to the modular representation employed
by MMTGP, which allows small GP trees to effectively rep-
resent complex programs. When resources are limited, smaller
GP trees, corresponding to a smaller search space, tend to be
more effective in finding good solutions compared to larger GP
trees. Thus, smaller trees are more likely to survive, leading
to a decrease in average tree size. Given that MMTGP is sig-
nificantly better than other bloat control methods in predictive
performance, we can conclude that increasing tree sizes to
improve predictive performance is unnecessary as long as the
modular technique is used.

Table V summarizes Friedman’s rank of R2 scores and the
average tree sizes. The results show that MMTGP has both
the best result in test R2 scores and model sizes. In compari-
son, the second-ranked and third-ranked methods in terms of
R2 scores, αMOGP and DSA, have significantly larger model
size than MMTGP. As for the second-ranked and third-ranked
methods with respect to model size, PAP, and TS-S, they
only rank eighth and fourth in R2 scores. These results show
that MMTGP achieves the best tradeoff between predictive
performance and tree sizes.

C. Comparison With Symbolic Regression Methods

In this section, we present experimental results on SRBench,
which includes the proposed MMTGPALL and MMTGP meth-
ods, and the 22 benchmark algorithms with 120 datasets.
Fig. 11 presents the normalized test R2 scores, model size,
and training time distribution of all algorithms. Test R2 scores
are normalized by the maximum and minimum score on each
dataset across all algorithms. This normalization eliminates
the magnitude bias where it is easy to get an R2 of 0.99
on simple regression datasets, whereas it is hard to get an
R2 of 0.8 on difficult regression datasets. The result shows
that the proposed MMTGP variant MMTGPALL is the best
method among all comparison methods in terms of normal-
ized R2 scores. Further statistical analysis in Fig. 12 shows that
MMTGPALL is significantly better than other SR and machine
learning methods except for PS-Tree, which has similar R2
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Fig. 11. R2 scores, model sizes, and training time of 24 algorithms on 120 regression problems. (Asterisk means that the method is a symbolic regression
method.)

Fig. 12. Pairwise statistical comparison on R2 scores with Wilcoxon signed-
rank tests and a Bonferonni correction.

scores to MMTGP. As for the model size, MMTGPALL has a
significantly smaller size than PS-Tree and has a comparable
size to FEAT. It is worth noting that we follow the guideline
of SR-Bench to count the number of nodes in a SymPy-
compatible format. For example, the AQ operator (a/

√
1+ b2)

is counted as 10 nodes because SymPy does not support the
division operator, and it needs to be transformed with the
power operation as a(

√
1+ b2)−1 before counting the number

of nodes. As for baseline methods, some methods, e.g., GP-
GOMEA, in SRBench only count the number of nodes in
GP trees rather than transforming GP trees into a SymPy-
compatible format, which may cause MMTGPALL to have a

slightly larger value in model sizes. Finally, with respect to the
training time, MMTGPALL spends more time than PS-Tree and
Operon but has a shorter training time than SBP-GP and FEAT.
Considering that MMTGPALL has better-test performance than
these benchmark methods, the increase in training time is
acceptable. It is worth noting that although MMTGP is worse
than MMTGPALL, it still has a good rank and significantly
outperforms MTGP, indicating that modular representation is
the key component for achieving state-of-the-art performance.

VI. FURTHER ANALYSIS

In this section, we first conduct further analysis of the layer
constraint and scope constraint in MMTGP. Then, we discuss
the effectiveness of the macro parent repair strategy, the macro
crossover operator, and the adaptive parameter control strategy.

A. Structural Constraints

In MMTGP, we add a layer constraint and a scope con-
straint to encourage component reuse and avoid an overly
large search space. Additionally, we employ a sliding-window-
style connection instead of a layer-to-layer-style connection,
as it allows for a more flexible connection. In this section, we
investigate the impact of these three constraints. Specifically,
we test three variants of MMTGP.

1) MMTGP Without the Layer Constraint (W/O Layer):
This variant removes the strict component reuse con-
straint and allows high-level GP trees to directly access
original features.

2) MMTGP Without the Scope Constraint (W/O Scope):
This variant allows high-level GP trees to access all
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TABLE VI
STATISTICAL COMPARISON ON Test R2 Scores

WITH DIFFERENT CONSTRAINTS

TABLE VII
STATISTICAL COMPARISON ON Test R2 Scores

WITH MACRO PARENT REPAIR

outputs of previous GP trees instead of having a scope
of 10 GP trees.

3) MMTGP Without Sliding Window Style Connection
(W/O Sliding): This variant divides 20 GP trees
into four layers: a) {�1, . . . , �5}; b) {�6, . . . , �10};
c) {�11, . . . , �15}; and d) {�16, . . . , �20}, with each
layer consisting of five GP trees. Without the sliding
window connection, all GP individuals in the same layer
share and use the same set of outputs from GP trees in
the previous layer. MMTGP without sliding windows
style connection is similar to a deep neural network
(DNN), with the difference being that the activation
function at each node is a GP tree rather than a sigmoid
or ReLU function.

Experimental results are presented in Table VI. The results
show that the layer constraint improves the test performance of
MMTGP on 33 out of the 98 datasets, whereas it only worsens
the test R2 score on two datasets. As for the scope constraint,
it significantly improves the performance on 29 datasets and
only results in worse performance on four datasets. In terms
of the sliding-window-style connection, it enhances the test
performance of MMTGP on 60 datasets and only degrades the
test performance on six datasets. Based on these experimental
results, we can conclude that the scope constraint and layer
constraint are necessary for MMTGP. Moreover, for the layer
constraint, using a sliding-window-style connection is more
advantageous than the layer-style connection.

B. Effectiveness of Macro Parent Repair

In MMTGPALL, we propose a macro parent repair strategy
to repair redundant and irrelevant GP trees in each individual.
This section investigates whether these repair strategies can
enhance the test performance of MMTGP. The experimental
results are presented in Table VII. The results show that repair-
ing redundant features can improve the test performance on
29 out of the 98 datasets, whereas repairing irrelevant features
can improve the test performance on 27 out of the 98 datasets.
Compared to the performance improvements, the performance
degradation is negligible, as the two repair strategies only
degrade the test performance on 1 dataset. To gain a deeper
understanding of the repair strategies, we plot the change in
the number of redundant features and irrelevant features during

Fig. 13. Change for the number of redundant features with the use of repair
strategies during the evolutionary process.

Fig. 14. Change for the number of irrelevant features with the use of repair
strategies during the evolutionary process.

the evolution process in Figs. 13 and 14, respectively. Fig. 13
shows that the redundant feature repair strategy can signifi-
cantly reduce the number of redundant features, and Fig. 14
validates that the irrelevant feature repair strategy can signif-
icantly reduce the number of irrelevant features. Based on
these results, we can conclude that MMTGP may generate
many redundant and irrelevant features during the evolution
process, and the macro parent repair strategy improves the
search effectiveness of MMTGP.

C. Effectiveness of Macro Crossover

In this article, we propose a macro crossover operator to
allow MMTGPALL to exchange interactive GP features. To
validate the effectiveness of the proposed macro crossover
operator, as well as to determine the optimal value of
macro crossover probability, we conduct experiments in
this section to investigate four macro crossover probabili-
ties: {0, 0.1, 0.25, 0.5}. Table VIII presents the experimental
results. It is clear that using macro crossover is beneficial, and
using the macro crossover with a probability of 0.25 is the
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TABLE VIII
STATISTICAL COMPARISON ON Test R2 Scores WITH DIFFERENT

MACRO CROSSOVER PROBABILITIES

TABLE IX
STATISTICAL COMPARISON ON Fitness Values WITH DIFFERENT

MACRO CROSSOVER PROBABILITIES

(a) (b)

Fig. 15. Statistical comparison results for using adaptive parameter control
strategies or not. (a) R2 scores. (b) Fitness values.

optimal choice, as it can improve the test performance on 38
datasets compared to not using the macro crossover operator,
while only degrading the test performance on three datasets.

More significant results can be seen from the best-fitness
values. As shown in Table IX, using the macro crossover prob-
ability of 0.25 can lead to significantly better-fitness values on
78 datasets, not degrade performance on any datasets. If fur-
ther increasing the crossover probability to 0.5, it can further
improve fitness value on 12 datasets. These results indicate that
considering feature interaction in the crossover operator is ben-
eficial to improve the performance of MMTGP. In practice, it
is recommended to set the macro crossover probability to 0.25,
since Table VIII shows that further increasing the probability
will not significantly improve the predictive performance.

D. Effectiveness of Adaptive Crossover and Mutation Rates

In this article, we propose an adaptive crossover rate and
mutation rate control strategy to dynamically determine the
crossover rate and mutation rate during the evolution process.
Here, we first present the statistical significance compari-
son results on the test R2 scores in Fig. 15(a). The results
show that the adaptive parameter control strategy can signif-
icantly improve test performance on 31 datasets and degrade
performance on seven datasets, showing the effectiveness of
the adaptive parameter control strategy. The reason why the
control strategy can improve predictive performance is that
models with better-generalization capability can be found by
balancing the tradeoff between exploration and exploitation
during the evolutionary process. Fig. 15(b) shows the gain
in fitness values. The experimental results show that the

Fig. 16. Crossover rate for the first index and the last index when using the
adaptive crossover rate control strategy.

(a)

(b)

Fig. 17. Example for the number of unique trees out of 300 trees and the
corresponding adaptive probabilities on the “OpenML_605” dataset at the end
of evolution. (a) Number of unique trees. (b) Adaptive crossover probabilities.

adaptive rate control strategy can significantly improve the
best-fitness value on 78 datasets and only degrade performance
on one dataset. This verifies that adaptive parameter control
is an effective strategy to improve predictive performance by
enhancing search effectiveness. Moreover, to gain a deeper
understanding of the change in variation rate during the evolu-
tion process, we present the change in the crossover rate in the
first index and last index in Fig. 16. The results verify that the
adaptive parameter control strategy makes the first index have
a large variation rate to encourage exploration in early gener-
ations. In comparison, the adaptive parameter control strategy
makes the last index have a relatively smaller variation rate in
early generations as it has large diversity. The crossover rate
significantly changes after 75% generations, as low-level GP
trees need to converge in later generations, and high-level GP
trees can fully be explored in this stage.

A more concrete example is presented in Fig. 17, where
Fig. 17(a) represents the number of unique trees at each index
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Fig. 18. R2 scores, model sizes, and training time of integrating different
strategies on 120 regression problems.

at the end of evolution, and Fig. 17(b) shows the correspond-
ing adaptive crossover probabilities based on the number of
unique trees. The first ten indices have fewer unique trees
as these trees can use original variables and exhibit stable
behaviors. The adaptive variation rate control strategy encour-
ages their convergence in the later stages of evolution, further
resulting in only a few unique trees surviving in the popula-
tion. In contrast, the last ten indices have a larger number of
unique trees because these trees can only use low-level mod-
ules, and their behavior is more unstable. Coupled with the
adaptive variation rate control strategy assigns them relatively
large variation rates in the later stages, leading to greater diver-
sity at the end stage of evolution. Based on this design, the
evolutionary algorithm can focus on exploiting useful features
while still having enough probability to explore new features
in the later stages. This explains why the adaptive parameter
control strategy is effective for MMTGP.

E. Overall Analysis

To have an intuitive view of the effectiveness of the
proposed strategies, we develop four variants of MMTGP.

1) MMTGPMPR: MMTGP with macro parent repairing,
which is proposed in Section III-C to replace irrelevant
and redundant features with more promising features.

2) MMTGPMCR: MMTGP with macro crossover opera-
tor, which is proposed in Section III-D1 to preserve
interdependency relationships between features.

3) MMTGPACMR: MMTGP with adaptive crossover
and mutation rate strategies, which is proposed in
Section III-D2 to adaptively balance exploration and
exploitation for each tree.

4) MMTGPIAGM: MMTGP with index-aware guided muta-
tion, the details of which are presented proposed in
Section I of the supplementary materials to increase the
usage of effective original features.

Fig. 18 shows the normalized test R2 scores, model sizes, and
training time of MMTGP with different strategies. Generally,
experimental results show that all the proposed strategies are
helpful in improving the overall R2 test scores, and com-
bining all these strategies can achieve the best performance.
Furthermore, Fig. 19 shows that MMTGPALL is significantly
better than MMTGP and has a better-mean rank than other

Fig. 19. Critical diagram of integrating different strategies in MMTGP with
Wilcoxon signed-rank tests and Holm method.

MMTGP variants, although it does not significantly outper-
form MMTGPMPR and MMTGPIAGM. Overall, these results
indicate that simply using MMTGP has good performance,
and including some additional strategies, provides further
improvements for MMTGP.

F. Example Models

In order to further understand the constructed features, we
present an example of generated features in Fig. 20 based
on a galaxy visualization dataset [58]. This model achieves
an R2 test score of 0.973, whereas XGBoost only achieves
an R2 test score of 0.886, showing that the modular GP
system can achieve high-predictive accuracy without impairing
interpretability. Based on the coefficients of the constructed
features, it is clear that the high-level GP trees have large
coefficients in the final model, indicating that MMTGP can
effectively combine low-level GP trees to construct expres-
sive features. Moreover, Fig. 20 shows that {φ0, φ1, φ3} are
important features in MMTGP. This is consistent with the
important features found by FEAT [8], and thus a domain-
knowledge-based analysis for the features found by MMTGP
is worthwhile to investigate in the future.

VII. CONCLUSION

This article aimed to develop a novel GP method to
automatically construct compact features that enhance regres-
sion performance. The goal has been successfully achieved
by proposing a MMTGP representation with three connec-
tion constraints. Additionally, we proposed a macro parent
repairing strategy, a macro crossover operator, and an adap-
tive crossover and mutation rate control strategy to achieve
better-search effectiveness.

The performance of MMTGP was examined on 98 regres-
sion datasets and compared with seven bloat control methods.
The experimental results indicate that MMTGP can evolve
a compact and accurate GP model and significantly outper-
forms traditional GP with bloat control methods. Based on
this, MMTGP achieved competitive test R2 scores with exist-
ing state-of-the-art symbolic regression methods while greatly
reducing the model size. Furthermore, incorporating the four
proposed strategies makes MMTGP outperform all baseline
methods on test R2 scores.

This article explored the effectiveness of MMTGP on
regression problems. In the future, it would be interesting
to study whether MMTGP is useful for classification and
operational research problems. It is worth noting that this
article limits the depth of tree to 2 for obtaining an inter-
pretable model. Investigating modularization with large GP
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Fig. 20. Example of constructed features based on MMTGP. Red nodes represent original features. Purple nodes represent building blocks, which are the
outputs of other low-level GP trees in practice. Blue nodes represent functions.

trees to tackle complex problems like image classification is
also an interesting future direction. Also, the current method
still needs to determine the number of trees in advance, which
could be avoided by developing a genetic operator that can
automatically insert or remove GP trees. Further investigations
are worthwhile in the future.
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