
Chapter 13
Mechanisms for Complex Systems Engineering
Through Artificial Development

Taras Kowaliw and Wolfgang Banzhaf

Abstract We argue that artificial development is an appropriate means of approach-
ing complex systems engineering. Artificial development works via the inclusion of
mechanisms that enhance the evolvability of a design space. Two of these mecha-
nisms, regularities and adaptive feedback with the environment, are discussed. We
concentrate on the less explored of the two: adaptive feedback. A concrete example
is presented and applied to a simple artificial problem resembling vasculogenesis. It
is shown that the use of a local feedback function substantively improves the efficacy
of a machine learner on the problem. Further, inclusion of this adaptive feedback
eliminates the sensitivity of the machine learner to a system parameter previously
shown to correspond to problem hardness.

13.1 Introduction

Future engineering tasks will require dramatically larger scales of design. To meet
these challenges, we need to incorporate techniques from complex systems science
into engineering. One such technique, which holds promise for the creation of large
and robust designs, is artificial development (AD). It concerns the inclusion of a mid-
step between the representation and a pattern in an automated design task, inspired
by biological embryogenesis. Through the emulation of this biological phenomenon,
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desirable properties of biological organisms can be included into the machine-learned
designs, resulting in increased evolvability in the underlying search space.

In this chapter, we concentrate on two developmental mechanisms by which
increased evolvability can be achieved in an evolutionary design task. We exam-
ine abstractions of these mechanisms as search strategies, and discuss their function
and advantages. The first strategy, regularities, is considered to be simple gradient-
based functions and is reviewed here. The second, adaptive feedback, seen as a means
of adding information to a developing phenotype from its environment, is discussed
in more detail, as we believe it to be the newer and less explored of the two.

13.1.1 Complex Systems Engineering

It has been argued that complex systems engineering requires biological development-
like conceptualization in order to make progress, that is, the traditional state-based
approach in engineering has reached its limits, and the principles underlying complex
systems—self-organization, nonlinearity, and adaptation—must be accommodated
in new engineering processes [2]. It is our belief that developmental mechanisms
will play an important role in the heightened evolvability of these problem spaces.

13.2 Artificial Development

13.2.1 Biological Embryogenesis

Organismal development is a means by which complex and robust designs can be
produced by natural evolution, and is properly viewed as a means of increasing evolv-
ability in phenotypic space [13]. Paradoxically, it often does so by constraining the
space of possible designs searched by evolution. These constraints limit the potential
phenotypic configurations achievable from genotypic configurations, ideally creat-
ing a more evolvable space of phenotypes. As Gould notes, there exist “positive
aspect[s] of constraint as fruitful channeling, along lines of favorable variation that
can accelerate or enhance the work of natural selection” [10].

This viewpoint has been further developed by Arthur [1], who refers to any change
in ontogeny caused by mutation of developmental genes as developmental repro-
gramming, as opposed to other forces affecting ontogeny, such as environment and
epigenetics. Due to the genotype-to-phenotype map, phenotypic traits have an “ease
of variance” associated with developmental reprogramming. For Arthur, traits hard
to vary are subject to developmental “constraints”, whereas traits easy to vary are
subject to developmental “drives”. Newman et al. [31] list several candidates for
these drives, and argue that to understand organismal form, one must understand the
“originating physical and otherwise non-programmed determinants of multicellular
form”. They suggest that these determinants influence much of the adaptivity and
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Fig. 13.1 An illustration of
the different leaf types in
Myriophyllum. Image from
the USDA-NRCS PLANTS
Database [3]

morphological plasticity seen in modern organisms, and moreover that the generative
entrenchment of these morphological motifs has been the major role of molecular
evolution over the past half billion years.

Here we also mention another mechanism believed to increase evolvability in bio-
logical embryogenesis: local cellular adaptation to environmental stimuli. A simple
example of a means by which environmental feedback might help with the evolv-
ability of an organism can be seen in so-called “amphibious plants” (e.g. Myriophyl-
lum). In this case, leaves grow both underwater and in dry air, where the presence of
water in a meristem’s immediate neighborhood will influence the type of leaf growth
(Fig. 13.1) [4]. Hence, for the Myriophyllum, it is unnecessary to encode the height
of the water in the genome, the growth of the plant will naturally select an appro-
priate height at which to change leaf types. A lengthy list of examples of organisms
exploiting environmental information during development is available in [9].

There are also numerous examples of functional self-adaptation to internal stimuli,
ones which seem to use indicators of a developing organism’s ultimate fitness. A
classic example is the remarkable plasticity found in the visual cortex, where the
stimuli (or lack thereof) presented to the brain during early development strongly
influence brain architecture [15]. Another example is cellular response to physical
stress: some cells are capable of specific differentiation via cues from the stiffness of
the extracellular matrix [30]. We note with some interest that this factor, mechanical
stress, recovers an interesting and global property of the overall phenotype otherwise
unavailable to the locally minded cell.

13.2.2 Artificial Development

There is much interest at present in the use of development in evolutionary computa-
tion (EC). Artificial development (sometimes called artificial embryogeny, artificial
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Fig. 13.2 An illustration of the typical AD process: a representation g (genome) is transformed
via a developmental mapping δ into a pattern p (phenotype), which is then, in turn, evaluated by a
fitness function f

ontogeny, computational embryogeny, and so on) is used to describe a developmen-
tal phase in artificial evolution, that is, an indirect mapping between the genotype
(representation) and phenotype (evaluated organism). Usually, this mapping incor-
porates a notion of time or some other notion of ordered processes. AD is inspired
by, but does not necessarily resemble, biological embryogenesis. The “typical” setup
for an AD system is shown in Fig. 13.2.

The first computational models of embryogenesis include chemical diffusion by
Turing [38] and simple automata by Lindenmayer [25]. Perhaps the best known
model, however, is an exceedingly simple proof of concept using recursive systems:
Dawkins’ “biomorphs”, a simple user-guided evolutionary strategy that controls the
development of stick-based trees [6]. With biomorphs, the mapping between the
genotype and phenotype imposes biases on the space of generated patterns: the
recursive structures show repetitions and self-similarities that suggest life-like forms
to users, no small part of the popularity of the system.

A primary interest in AD is in the creation of very large designs, ones which cannot
be evolved through direct encodings. This is sometimes phrased as the generation of
designs through “complexification”, and is related to the notion of representations
that “scale-up”. Indeed, the capacity for AD to generate designs too large for evolution
via bijective encodings (and the converse, AD’s occasional failure to recreate direct
encodings’ results) has been demonstrated in different domains [8, 11, 12]. Several
other desirable properties have been shown to be plausible in AD models, such as
the capacity for self-organization, including self-repair [8, 29], and the generation
of not only the final organism, but also a plan for assembly [32].

There are many potential mechanisms, borrowed by analogy from biology, by
which AD might achieve these aims. Some of these mechanisms include: cell physics
(which has, to some extent, been explored as a means of engineering designs [28]),
regularities, and local adaptation to environmental information. Below, we consider
in some detail cellular growth models for AD, that is, the use of Cellular Automata
(CAs) and CA-like models on a lattice as a means of producing designs (for an
introduction to CAs, see [16]). In the next section, we outline an exemplar of cellular
growth and describe its application to structural design.
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13.2.3 Truss Design

Structural design is a popular application in both evolutionary computation generally,
and in AD. Here we concentrate specifically on truss models. Trusses are simple but
realistic models of structural form usually employed in the initial plans for buildings,
bridges, and numerous other structures. For our purposes, we assume that they consist
of beams and joints, where the beam material and structure is constant. Trusses have
two key requirements: to be stable, that is, not to change their shape drastically,
and to support external load, that is, to distribute the force resulting from external
weight efficiently. Given some truss and some collection of external forces, we may
calculate the forces on the beams and the displacement of the joints via a system of
linear equations: evaluation of a truss is hence a matter of matrix inversion, which
takes time O(n3) (or slightly less via LU decomposition). The design of topology of
trusses (as opposed to, say, the optimization of materials, thickness, member lengths,
etc.) is referred to as topological optimization. It has been addressed multiple times in
evolutionary computation (for a review, see [18]). AD in particular has been applied
to trusses or truss-like analysis by several researchers [7, 17, 36, 40].

Kowaliw et al. approached this domain of application using Deva, a CA-like
model of growth. The Deva system begins with a single differentiated cell in the
centre of a lattice. Each cell in the lattice utilizes an identical CA-like rule set. At each
discrete time step, a cell activates one of its rules, executing a specified action. These
actions include cell-based functions, such as division, elongation, and specialization.
Overall growth is constrained by a system-specified limit on the amount of resources
available: once development fails to produce additional changes (guaranteed to occur
due to finite resources), it is considered complete. Through this means, Deva develops
an image on the lattice, consisting of a collection of colored cells.

These images are then converted to a truss structure through a custom inter-
pretation. Each cell color corresponds to either a cell type or an elongation of an
adjacent cell type. The cell types consist of a joint (or absence thereof) and some
collection of beams extending from this central joint. Through this mapping, it is
possible to interpret any Deva-produced image as a truss. These trusses are further
post-processed to remove obviously redundant components. This mapping process
is shown in Fig. 13.3.
Kowaliw et al. showed that indeed, evolution was capable of developing good designs,
and moreover that manipulation of the fitness function allowed for the evolution of
several distinct truss designs [24].

Fig. 13.3 An illustration of
the conversion of a Deva-
produced image to a truss



336 T. Kowaliw and W. Banzhaf

13.3 Regularities

The notion of regularities is slippery, and, to the best of our knowledge, has thus far
not been rigorously defined.1 We believe that usage is based loosely on Wolpert’s
notion of gradient-based, positional information [39]. As a working definition, we
take regularity to mean some simple gradient-based function on a physically defined
space. Indeed, this description seems to encompass some associated biological phe-
nomena, such as: various symmetries, repetition, and repetition with variation. Reg-
ularities in artificial development are well studied and present in many models.
Arguably the first AD attempt, Turing’s model of chemical morphogenesis relied
implicitly on such mechanisms through chemical diffusion [38].

The idea of regularities, at least under our conception, is a primarily geometric
phenomenon. It is, however, applicable to areas of inquiry where notions of physical
space are typically not used: a common example is in the design of neural network
topology or weighting. In traditional neural networks, physical space is unimportant,
and training is accomplished strictly via the topology of the network. Yet, there
are many new approaches that utilize the proximity of neurons as a key factor in
development (perhaps motivated by neurological studies suggesting that physical
proximity is still an important concept in the biological brain).

The notion of regularities can, in principle, be easily added to nearly any encod-
ing scheme. Seys and Beer [34], for instance, have explored the explicit use of
bilateral symmetry in a neural network topology. They compared two encodings
for neural controllers: a direct encoding and a symmetric encoding. This symmetry
was achieved by copying a smaller direct encoding of network connections twice.
Indeed, not only are the symmetric encodings more evolvable than their asymmetric
counterparts, these gains remain even when the latter genomes are made larger in
size than the former: Seys and Beer conclude that in their domain, genetic re-use is
more valuable to efficient evolution than genotypic size.

Some authors argue that regularities of this form are the sole necessary idea from
biology in order to generate scalable designs. For instance, Stanley et al. [35] have
designed an encoding scheme termed Compositional Pattern Producing Networks
(CPPNs). This encoding consists of a composition of primitive functions: simple
functions defined on a (potentially continuous) coordinate space. For any point in
the coordinate space, the composition of functions returns a value, the collection of
which make up the phenotype. Interpreting the results as an image in two-dimensional
space, images showing phenomena such as repetition with variation and other life-like
phenomena are easily evolved. CPPNs have been further applied to neural network

1 One proposed definition from Lipson defines “structural regularities” as an “inverse Kolmogorov
complexity”, that is, the amount by which a structural description could be compressed by a Univer-
sal Turing Machine [26]. Unfortunately, Kolmogorov complexity is generally uncomputable, and
simpler forms of compression are often poorly correlated [20]. Further, the attempt to approximate
the Kolmogorov complexity of evolved designs does not figure largely in current AD literature.
Thus, we believe that most authors are referencing something quite different from Lipson’s defini-
tion when discussing “regularities”.
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connection weight discovery, where the same set of underlying regularities has been
shown to be capable of generating efficiently evolved neural networks, and also to
have potential for scaling-up with problem size.

13.3.1 Regularities via Developmental Mechanisms

While regularities can be explicitly specified, this is certainly not a necessity, nor
the norm. Several regularities are implicitly generated by many popular models of
development: for instance, symmetric or repetitive forms are typical for many devel-
opmental systems; repetition with variation is commonly seen through exceedingly
simple tree-growing L-systems, or, say, in the Sierpinski triangle as generated by
simple cellular automata.

Kowaliw et al. were concerned with understanding the effect that low-level
changes to Deva’s developmental mechanisms would have on the final result achieved
via evolution. Indeed, it is not clear how the potentially chaotic CA-like develop-
mental stage would interact with the ergodicity of evolutionary computation. To test
this, they modified the Deva growth algorithm to support four different sorts of cell
division. These division mechanisms were:

• Orig, the original model choosing the direction by a best free location algorithm
• Dir, where directions are explicitly specified directly by the genome
• Clockwise, where the direction chosen is a simple, heavily biased function: always

select left, or the next free location going clockwise
• AllWay, where division occurs in all four (available) directions simultaneously.

The latter strategy produced left-right symmetric Deva images (and hence, sym-
metric trusses, up to cell type). These developmental mechanisms were contrasted
through a series of empirical runs. A simple fitness function (one maximized by two
simple pyramids composed of four long members) was used. Some exemplar trusses
discovered by these methods are shown in Fig. 13.4.

Indeed, significant differences were discovered between the performance of the
four Deva algorithms. Both the AllWay and the Orig strategies typically found trusses
near the suspected global optimum. However, AllWay did so with less evolutionary
effort, and discovered a better truss overall. The Dir version had a strong tendency to
become stuck in a local optimum: nearly all discovered trusses consisted of very tall

Fig. 13.4 Best trusses found
by strategy. All trusses were
stable, and all but the Dir truss
were capable of supporting
the external load

Orig Clockwise Dir AllWay
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and thin structures, which, while stable, could not support the applied external load.
Such trusses seem to maximize aspects of fitness very quickly, but cannot, from
this stage, evolve into load-bearing trusses. Hence, the allowance of full genetic
control in the division operator seems to be a hindrance, while the tyranny of a pre-
specified procedure for cell growth forces a more robust approach. The performance
of the Clockwise version was unsurprisingly poor. Organisms evolved through the
Clockwise strategy had a tendency to resemble large groups of identical beams and
joints leaning left, of lesser height (due to a tendency to lean left) than other trusses
from these experiments.

It seems that low-level mechanisms can indeed be found to match the problem
space, and can be utilized to increase the evolvability of solutions through evolution-
ary computation. In this case, the AllWay division strategy successfully increased
performance by exploiting the problem space’s preference for (or perhaps indiffer-
ence to) left-right symmetric designs [19].

13.3.2 Genetic Re-Use

An alternative view of regularities is that they are instances of a more general phe-
nomenon, genetic re-use. Indeed, in many cases previously discussed, genetic re-use
is inherently included in the implementation of the regularity. For instance, Hornby
shows that encouraging regularity and modularity improves the efficacy of evolu-
tionarily designed objects, such as tables [14], and in the process, produces examples
which do not seem easily described as a simple gradient function. Indeed, given that
geometric regularities are often, possibly always, the result of genetic re-use, it is
difficult to distinguish between the two.

However, we note that the genetic re-use conception of increased evolvability is
inherently encoding-specific, hence does not allow us to discuss the possibility that
two unrelated mechanisms accomplish the same thing, or operate in the same way.

13.4 Environmental Feedback

A second, less studied developmental mechanism is that of local adaptation. By
this, we mean the exploitation of local environmental information by individual
components during embryogenesis. “Polymorphism” is a term used by biologists to
refer to the capacity of some organisms to achieve any of several morphs—distinct
phenotypic types—on the basis of environmental cues. A dramatic example is the
capacity of some species (e.g., alligators) to select their gender during development
based on embryonic environmental conditions (e.g., temperature) [5].

Here, our notion of environmental feedback is highly inclusive, taking into account
any change based on external environmental influence. This means that the number
of distinct phenotypes for any genotype is potentially infinite. There is some sense
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Fig. 13.5 An illustration of inclusion of environmental feedback into the AD process

in which nearly all AD models exploit environmental feedback, since nearly all
include some container in which a phenotype develops and component-to-component
interaction is possible. We, however, will restrict our attention to cases where some
additional information source is included, one which a developing phenotype can
incorporate or adapt to. In short, an external mechanism by which a single genotype
can express several reactive phenotypes, and do so reliably. It is our belief that through
this local environmental interaction the developing organism can “add information”
to its phenotype not explicitly included in its genotype (Fig. 13.5).

There has been ample work on the incorporation of environmental influence into
visual models of plant development. An early example was Open L-systems, where
models of plant growth were replaced by a second and distinct environmental process,
and morphological plasticity—visually convincing output of plant growth adapted
to environmental stimulus—was demonstrated [27]. Indeed, these ideas have been
extended in several directions. For instance, works creating visual models of trees
include some interaction with external forces or global properties such as gravity
or amount of light, geometric effects such as support for climbing plants, and bi-
directional effects such as inter-organism competition for resources [33].

While these results are certainly visually impressive, and do indeed seem to cap-
ture the interesting causal effects of their biological counterparts, they do little to
inform us on the relative evolvability of developmental systems that incorporate
such mechanisms. For this, we need some well-defined task and measurable notion
of success. Some work on the matter has been conducted in regard to resistance to
environmental perturbation in the development of an artificial agent [22], and in the
development of distinct circuits from various initial environmental states [37]. We
outline below the adaptation of the Deva system to different environmental specifi-
cations [23].

13.4.1 Environment as Geometric Constraint

Kowaliw et al. used spatial geometry as a means to guide morphological growth.
They did so by specifying a collection of alternative geometric environments for
growth, and evolving good genotypes in each. The conjunction of spatial geometry
and objective function indeed could be used to control evolutionary output. The same
objective function, utilizing differing spatial geometries, produced wildly different,
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Fig. 13.6 Phenotypic regrowth of a single genome in multiple environments

but functioning, designs. Next, a series of experiments compared phenotypic expres-
sion of evolved genotypes to new phenotypes grown at sizes and in environments
new to the genome. It was shown that genomes re-grown at different sizes usually
retained much of their fitness, and that some genomes evolved in a particular spatial
geometry could perform well when regrown in a different environment. Moreover,
genomes that performed well in some previously unseen environment tended to per-
form well in all the environments. The phenotypes of one such genome are illustrated
in Fig. 13.6 [23].

This work has potential repercussions on the use of AD for engineering design.
First, it shows that one can potentially discover genomes having some resistance
to variations in the problem domain. This, in turn, suggests that a genetic-toolkit
approach might be valuable. Second, it shows that the inclusion of an explicit devel-
opmental mapping between representation and pattern includes an alternative context
for the imposition of constraints. This suggests that alternatives to tuning the fitness
function or multi-objective methods exist, and that geometric information can indeed
be added to the developing phenotype.

13.5 Fitness Feedback

There is a sense in which the previously described work does not include the full
benefits of environmental feedback, since the environment was explicitly specified
by the programmers. One would prefer the more general sense in which nature’s
exploitation of environmental information serves to reinforce “good” phenotypic
developments, and penalize “bad” ones, where “good” is linked to the ultimate suc-
cess of the organism. In this case, amongst other mechanisms, there is a “viability
constraint” at play, one in which growth can simply not occur in the absence of suffi-
cient resources, and sufficient resources will not exist without a pre-existing “good”
design.
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Fig. 13.7 The left image is (assumably) a viable tree design, and the right image a silly one.
In nature, the necessity of resource transport during growth would likely make the right design
impossible

As a simple illustration, consider the hypothetical example in Fig. 13.7. Let us
assume that the left image is a viable tree, adept at distributing resources between
the base and the leaves. Further, let us assume that the right image is not a viable
design, for the evident reason that the thickness of the upper branches significantly
outweigh the thickness of the base. Most evolutionary representations make both
designs equally likely, a consequence of a generally unbiased combinatorics of para-
meters. In nature, however, the necessity of resource transport during growth would
surely make the right design impossible, that is, the thickness of the upper branches
would be naturally constrained by the amount of resources which could be trans-
ported through the trunk, and such an imbalanced tree could not grow.

One possible model for this fitness-feedback is shown in Fig. 13.8. A significant
problem with this model is that it requires repeated computation of the fitness func-
tion. In many design problems, however, the cost of fitness calculation dominates
the developmental process. Hence, computational complexity will be a significant
concern when using this model. We will refer to the computation time of the devel-
opmental stage as δ(n), and the computation time of the fitness as ϕ(n). We further
note that for many AD models, including CAs, L-systems, and matrix re-writers,
the development can be decomposed into two levels: δ(n) = δtime(n) · δN (n), where
δtime refers to the number of discrete time steps, and δN (n) the time taken by each
of the components during a single time step.

To test these theories, we have explored a model of fitness-feedback in artificial
development. Due to computational constraints, we have chosen to operate on a toy
problem, since the comparison of several strategies required many evaluations to
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Fig. 13.8 An illustration of the inclusion of fitness feedback in the AD process. Unlike most
applications in AD, here fitness is computed as a component of the developmental stage
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be undertaken. This work is summarized below (the interested reader can find full
explication in [21]).

13.5.1 A Highly Simplified Model of Vasculogenesis

The problem is as follows: Given some two-dimensional developmental environment,
including a “start” square, design a network of cells capable of distributing a resource
to as many cells as possible from a single source cell. Our task consists of “normal”,
“transport”, and “barrier” cells. Beginning with the start cell, fluid is distributed to
all transport cells in the immediate von Neumann neighborhood recursively. Finally,
any normal cells which are bordered by a fluid-carrying transport cell are considered
“served”. The global fitness is the number of “served” normal cells:

fglob(E) = 1

|E |
∑

c∈E

{
1; if color(c) = “normal ” ∧ c is “served”

0; otherwise.
(13.1)

where |E | is the total number of cells of color “normal” and “transport” in E . Hence,
we aim to design a transport system that covers as much of the non-barrier environ-
ment as possible in a connected fashion, but one which does not take up more space
than is necessary. Since the process is governed by a flood-fill extending from the
start cell, it can be accomplished in time O(|E |).

In smaller cases, via brute force, we can find the global optima: there are 44 optimal
configurations if E is a torus of dimension 4 × 4, and 126 at dimension 5 × 5. Some
examples are shown in Fig. 13.9. The global optimum lies around fglob = 2/3, and
it is likely that any particular environment will support many distinct global optima.

The starting environment consists of “normal” and “barrier” cells everywhere
except at the start square, which is of type “transport”. We will refer to any devel-
opment of this environment over time toward some final network as vasculogenesis,
or simply as growth. Our general goal is to find developers that optimize fglob. Via
the “barrier” symbol in our alphabet, it is possible to generate a collection of random
starting environments, ones that divide a space into “normal” and “barrier” regions,

SS

barrier

normal (served)

normal (unserved)

transport (served)

transport (unserved)

start

S S S S

S S S

Fig. 13.9 Examples of optimal configurations in toroidal environments of size 4 × 4 and 5 × 5
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S S S S

Fig. 13.10 Illustration of the creation of a random environment: (from left to right) The start cell
is placed in the centre; four random points are placed; Voronoi regions are computed; the regions
are assigned to either “barrier” or “normal”

Fig. 13.11 Environments with dot complexities (from left to right) dC = 5, 20, 50, 100, 200

thus give rise to a very large number of variations on our vasculogenesis problem,
each with a different geometry for vascular growth. These environments are produced
by stochastic placement of dots in a containing rectangle, and next a division of space
into Voronoi diagrams (see Fig. 13.10 for an example). Steps are taken to ensure that
all “normal” regions are connected by a corridor of width at least 3. The number of
dots used in the construction, dC , seems—at least by visual estimation—to form a
measure of complexity on the space of all possible environments. This is illustrated
in Fig. 13.11.

13.5.2 Vasculogenesis Strategies

In this section we outline a number of strategies for solving our vasculogenesis
problem, some pre-programmed and some evolved.

13.5.2.1 Cellular Automata (CA)

The CA strategy is a straight-forward implementation in two-dimensional CAs. Rep-
resentation consists of a cell state for each possible neighborhood, where a cell state
is either “normal”, “transport” or “barrier”. This leads to a ruleset representation of
size 2 ·3|N |−1, where the neighborhood is a cross extending a distance of two cells in
each of the four primary directions (i.e., N = 9). At each time step, in parallel, each
cell collects a description of its local neighborhood, queries the ruleset for an action,
then changes its cell state. An illustration of a possible collection of rules are shown
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Neighbourhood 
configuration

Output state

..... .

..... .

Fig. 13.12 Three of the 2 ·3|N |−1 rules making up a particular cellular automaton. At each develop-
mental time step, every cell in the environment will find the matching neighborhood configuration
and change color to the associated output state

CA #1

CA #2

developmental time

Fig. 13.13 Two evolved exemplars of the CA strategy. The configurations are far from optimal:
transport cells are placed too close together (ideally, they should be separated by two normal cells
rather than one), sometimes transport cells are placed together in clusters, and there is unnecessary
redundancy in the connection network. We attribute this poor performance to the difficulties of
evolving cellular automata generally

in Fig. 13.12. Some exemplars of evolved CAs solving the vasculogenesis problem
can be seen in Fig. 13.13.

13.5.2.2 Local Fitness

Two local functions were designed to capture important aspects of the problem. The
goal is to generate simple functions capable of approximating the fitness function
in constant time, in an attempt to optimize the global design via many simple local
optimizations: in this respect, it resembles energy minimization.

A “blind” local fitness function, fblind was defined on a local neighborhood sur-
rounding a point. In this function, the (often false) assumption was made that any
present “transport” cells were served (i.e., the explicit assumption was made that
this neighborhood was connected to the central start cell); fblind then returned the
number of served “normal” cells.
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A “sighted” local fitness function, fsight was designed under the assumption that
global fitness would be computed with each discrete time step, so that any particular
cell would have access to information regarding its connectivity to the central cell in
the previous time step. Hence, a lesser assumption was made: that any “transport”
cells in the current neighborhood had the same connectivity in this time step as they
did in the last time step. The sighted local fitness function then computed the number
of served “normal” cells in the local neighborhood, and output that number.

13.5.2.3 Fitness-Enhanced Random Growth

The first attempted strategies were not evolved at all: the effects of fitness enhance-
ment were investigated on random growth instead, that is, a scheme was designed by
which any “transport” cell in the developing phenotype had a probability of being
copied in a random direction. However, for each proposed change, the current fglob
value and the fglob value that would result if the change were made were computed.
If the expected fitness was higher than the current fitness, the change was made.
This strategy is called the Random Global fitness-enhanced greedy Growth (RGG).
Since fglob is computed at each time step, for a maximum of |E | time steps, we
have complexity O(|E |3). A local version was also designed, one which utilized
fblind rather than fglob. This strategy was named the Random Local fitness-enhanced
greedy Growth (RLG) strategy, taking time O(|E |2).

Knock-out versions of these strategies were also considered: that is, development
began with an environment filled entirely with “transport” cells, and randomly chosen
cells were changed to type “normal”, if local or global fitness improved. The Random
Local fitness-enhanced greedy kNockout (RLN) strategy has running time O(|E |2),
while the Random Global fitness-enhanced greedy kNockout (RGN) strategy has
running time O(|E |3).

The RLN strategy performed very poorly, almost immediately devolving to a
single served point. We have included discussion of the strategy to highlight that the
fblind local fitness function has a limitation: it cannot see global connectivity, and
hence cannot preserve it outside of a purely constructive context. Instances of the
other random strategies, RLG, RGG, and RGN, are shown in Fig. 13.14.

13.5.2.4 Fitness-Enhanced Cellular Automata (F-CA)

Finally, the global and local fitness functions were used to enhance CA rules, instead
of random growth. By a Constructive Cellular Automaton (CCA), we mean a CA
in which it is possible for a “normal” cell to change state to a “transport” cell, but
not vice-versa. Thus, a CCA is a much simpler machine than a CA, evidenced by
the recognition that a CCA must eventually reach a stable point. Since CCAs cannot
eliminate global connectivity once it has been created, however, they can be used
with the fblind fitness function, in much the same way as the RLG strategy.
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RGG #1

RGN #1

developmental time

RLG #1

Fig. 13.14 Exemplars of the RLG, RGG, and RGN strategies. The greedy nature of random growth
leads to sub-optimal configuration here: for instance, transport cells are placed too close together
(separated by one rather than two normal cells), and, for the RGN strategy, some transport cells are
located directly adjacent to barriers

The Blind Local Fitness-enhanced CCA (BLF-CCA) strategy is a constructive CA
guided via the fblind fitness function, that is, for each possible cell action suggested
by the rule set, the value of fblind is computed first for the current neighborhood,
and next for the neighborhood with the action undertaken. If the proposed action
increases fblind then the action is undertaken; otherwise, no action is taken. Since the
fblind function can be computed in constant time, running time is unchanged between
the CA and the BLF-CCA strategies: O(|E |2).

For more robust means of computing fitness—such as fsight and fglob—the pos-
sibility exists that we can use a full CA, and hence potentially access a wider breadth
of growth types. The Sighted Local Fitness-enhanced CCA (SLF-CCA) strategy
includes the use of the fsight local fitness function as a guide. With every developmen-
tal step, global fitness is computed. Then, for every cell action, the difference in fsight
is computed for the original and new neighborhoods, and the action is undertaken only
if fsight increases. Since we compute global fitness at each time step, and since fsight is
constant time, we have a running time of O(δtime(|E |) ·ϕ(|E |)+δ(|E |)) = O(|E |2).

Finally, the Global Fitness-enhanced CCA (GF-CA) strategy computes fglob for
every cell action, and cell actions are only executed if there is an expected increase.
This leads to a running time of O(δ(|E |)·ϕ(|E |)) = O(|E |3). Even for this relatively
small domain of application, using a global fitness-enhanced ADS is computationally
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SLF-CA #1

GF-CA #1

developmental time

BLF-CCA #1

Fig. 13.15 Exemplars of the BLF-CCA, SLF-CA, and GF-CA strategies. Much like the random
growth strategies, the BLF-CCA strategy places transport cells too close together for optimal dis-
tribution. The SLF-CA and GF-CA strategies do better in this regard

expensive, with individual evolutionary runs requiring several hours to complete. An
illustration of highly evolved individuals’ growth can be seen in Fig. 13.15.

13.5.3 Comparative Experiments

As previously alluded to, the strategies were evolved through a standard evolutionary
algorithm 50 times and contrasted. The random growth strategies were also run 50
times. The first experiments were conducted in an empty environment, that is, a
simple square of “normal” cells of size 30 × 30. The average best global fitness is
shown in Fig. 13.16.

The random strategies, despite being quite simple, performed admirably well.
Interestingly, the local fitness-enhanced strategy RLG performed with the same effi-
cacy as the global fitness-enhanced strategy RGG, making the excess computational
time spent on computing global fitness unnecessary. The global knockout strategy
performed approximately as well as RLG and RGG. It should be further noted that the
random strategies did not optimize the layout of the transport-veins, where the more
efficient network (with two spaces between veins) is sacrificed for greedy immediate
fitness gain (one space between veins).
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Fig. 13.16 Boxplots of the fitness values of vasculogenesis strategies in the trivial environment

The simple CA strategy performed very poorly. It seems that the chaotic growth
of CAs, and the associated issues with evolvability, proved too daunting to overcome
in this context. In contrast, the fitness-enhanced strategies all outperformed both the
standard CA strategy, and the random strategies. This in terms of both overall fitness
and speed of convergence. It is clear that the combination of fitness-enhancement
and artificial development is a strong boon in this context.

13.5.4 Dependency on Problem Complexity

The above experiments were repeated, this time using randomly generated environ-
ments. At the beginning of each run, a particular starting environment was generated
with dC between 10 and 75. For each strategy, the Spearman’s rank correlation coef-
ficient (ρ) between the variables dC and fitness was computed. Each strategy was
also evaluated through 50 runs.

Indeed, as expected with a more difficult problem, fitness was generally lower for
all strategies. However, the general trend remained the same, with the CA strategy
performing the worst, followed by the random strategies, and the F-CA strategies all
clustered near the expected global optimum. The correlation between environmental
complexity dC and fitness scored were highly negative for both the CA and BLF-CCA
strategies, with values of −0.608 (p < 0.001) for the CAs and −0.603 (p < 0.001)
for the BLF-CCAs. This is not surprising: the more complex the environment, the
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lower the performance. Indeed, our intuition that dC was a measure of problem
difficulty was confirmed with these findings.

It is interesting to note that there was little to no recognizable dependency on prob-
lem complexity (|ρ| < 0.2) for all random strategies. Arguably, the pre-programmed
strategies are the simplest, and are likely the most adaptive as a result. Similarly,
the GF-CA and the SLF-CA strategies were also resistant to problem complexity
(|ρ| < 0.3) suggesting that the combination of fitness-enhancement and a robust
developmental programs can sometimes overcome problem complexities.

13.5.5 Summary of Vasculogenesis Results

The use of global fitness as a feedback mechanism, at least in the explored con-
text, made immediate and substantial improvements to the efficacy of the evolved
solutions. Indeed, even the random-growth strategies exceeded the capacity of the
evolved cellular automata! And augmentation of an evolved cellular automaton with
global fitness quickly achieved values we believe to be optimal.

In nearly any real-world scenario, however, global fitness is likely an intensive
process, and computing its value for each incremental change during development is
unlikely to be feasible. The use of a local fitness function, as demonstrated here, can
recover much of the efficiency gains with little to no change to asymptotic running
time.

Finally, in the vasculogenesis problem, there existed a notion of problem com-
plexity, associated with the complexity of the environment in which the development
took place. The use of global fitness, and one local fitness strategy, eliminated this
dependency, suggesting that fitness-feedback is capable of promoting self-adaptation
during development to environmental conditions.

13.6 Conclusions

In this chapter, we have argued that artificial development is an appropriate means
of approaching complex systems engineering. Artificial development works via the
inclusion of mechanisms that enhance the evolvability of a design space. Two of
these mechanisms, regularities and adaptive feedback with the environment, have
been reviewed.

The explicit use of biologically inspired mechanisms of development, includ-
ing local adaptation, have been shown to potentially improve the evolvability of
complex problem spaces. It is our belief that more such developmental mechanisms
exist—possibly including mechanisms such as cell physics, or cell chemistry-induced
biases—and form a means of approaching complex problems.
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