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Abstract. Algorithmic chemistries intended as computation models sel-
dom model energy. This could partly explain some undesirable phenom-
ena such as unlimited elongation of strings in these chemistries, in con-
trast to nature where polymerization tends to be unfavored. In this pa-
per, we show that a simple yet sufficiently accurate energy model can
efficiently steer resource usage, in particular for the case of elongation
control. A string chemistry is constructed on purpose to make strings
grow arbitrarily large. Simulation results show that the addition of en-
ergy control alone is able to keep the molecules within reasonable length
bounds, even without mass conservation, and without explicit length
thresholds. A narrow energy range is detected where the system neither
stays inert nor grows unbounded. At this operating point, interesting
phenomena often emerge, such as clusters of autocatalytic molecules,
which seem to cooperate.

1 Introduction

Algorithmic Chemistries [1, 2] are artificial chemistries where algorithms or com-
plex functions emerge as the outcome of stochastic interactions among simple
molecules. The role of energy in these chemistries has not been sufficiently em-
phasized so far. Yet energy plays a crucial role in all chemical processes related
to life. Living organisms need a permanent intake of energy in order to drive
essential chemical reactions, which otherwise would rarely occur spontaneously.
At the same time, energy limitations are important selection factors in evolution.

This paper illustrates one of the potential roles of energy in algorithmic
chemistries: that of controlling resource usage in a natural way, in particular, to
restrict the lengths of polymers in a string-based artificial chemistry to reason-
able bounds, without resorting to arbitrary thresholds.

The paper is structured as follows: Section 2 briefly describes the energy
framework used. Section 3 shows elongation control in an evolution scenario
with a population of artificial cells based on a constructive chemistry that is
particularly aggressive in elongating. The emergence of autocatalytic clusters is
observed for a range of energy injection rates. Discussions and conclusions follow
in Sects. 4 and 5.



2 Energy Framework

Most algorithmic chemistries operate at the microscopic level of individual molec-
ular collisions, since the outcome of the reaction is computed from the informa-
tion carried within the molecules [1–3]. Moreover, many algorithmic chemistries
are constructive [1, 3, 4], producing new molecular species all the time. This is
in contrast to many simulations of real chemistry, where the molecular species
and their reactions are known beforehand, and where a deterministic approach
based on ODEs (ordinary differential equations) is often sufficient.

We propose an energy framework aimed specifically at algorithmic chemistries,
especially constructive ones. It provides a microscopic level stochastic simulation
of chemical reactions in a well-stirred vessel under energy constraints, such that
the qualitative behavior is similar to real chemistry, yet still sufficiently abstract
to incur an acceptable computational cost.

The framework is divided into three steps: collision, reaction, and energy
balancing. The first step selects molecules for collision using existing algorithms
such as [5, 6].

The second step (reaction) decides whether a reaction will be effective or
elastic. This step is based on the fact that the kinetic rate coefficient for a given
chemical reaction stems from the activation energy Ea necessary for a reaction to
take place, according to the Arrhenius equation: k = Ae−

Ea
RT for a reaction such

as X+Y k→ Z, where A and R are constants, and T is the absolute temperature.
Since the framework operates at the microscopic level, the quantity Ea must be
rescaled to a single reaction, obtaining εa. Moreover, the kinetic energy εk of
the colliding reactants must be modeled with low computation penalty. We do
this by tracking the overall kinetic energy Ek in the vessel of N molecules rather
than the velocity of individual molecules and by drawing εk from an exponential
distribution, based on results from statistical mechanics [7]: εk ∼ Exp(Ek/N).
The reaction is effective if εk > εa. It can be easily demonstrated that this
procedure leads to Arrhenius behavior at the macroscopic level (mathematical
derivation omitted for conciseness).
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Fig. 1. Energy diagram of an exothermic reaction. The total energy is conserved.

The third step implements energy conservation, i.e. the first law of ther-
modynamics, by making sure the energy amounts are properly balanced before
and after the reaction. Figure 1 shows a typical energy diagram for a reaction.



Energy is conserved as it proceeds from reactants (left side) to products (right
side): εk +εp,i = εo +εp,o. Since εp,o < εp,i in the example, the remaining energy
is released, returning to the pool Ek, and the reaction is exothermic. Conversely,
the corresponding reverse reaction (from right to left) is endothermic, absorbing
energy.

Parameters such as the mapping from molecule to potential energy, as well as
the mapping from reaction to activation energy, are left open to be instantiated
by the designer to a specific artificial chemistry. Section 3 will show a simple
instance of the framework, able to solve the string elongation problem.

2.1 Related Work

Related energy models aim mostly at the study of real chemistry or biology, es-
pecially the origin of life. These existing models do not seem directly appropriate
in an algorithmic chemistry context. Some are too complex (down to the quan-
tum level [8]), others too simplified or too specific (e.g. focusing on equilibrium
states [9], or on catalytic reactions [10]). Most are unable to handle construc-
tive systems: Many require the designer to specify rate and energy parameters
for each species and reaction exhaustively [11]; or assign kinetic coefficients at
random [12, 13], without considering the reactants’ composition or shape. Some
handle shape explicitly [9, 14] but not activation energy.

3 Elongation Control in an Algorithmic Chemistry

A simple string rewriting chemistry is used to illustrate the role of energy in
length control. It is a subset of [15] selected on purpose to show a very aggres-
sive elongation behavior. The chemistry consists of polymers strings s = Σ∗ of
arbitrary length over an alphabet of 4 symbols Σ = {A,M, s, n}. The first sym-
bol of a string implicitly defines the string rewriting operation applied to this
molecule as follows

AΨ + MΩ −→ ΨΩ (join)
sαβΩ −→ αΩ + βΩ (split)

nΩ −→ Ω (neutral)

where α, β are arbitrary symbols and Ψ , Ω are strings. Strings starting with A or
M are in normal form while strings starting with s or n are transient molecules
that immediately undergo as many reduction steps as necessary to reach their
normal form. For example, the following two rewriting steps are considered one
reaction step (the intermediate product sAMsAM is immediately reduced):

AsAM +MsAM −→ (sAMsAM −→)AsAM +MsAM

Strings in this chemistry tend to increase in length due to the join reaction.
Moreover, contrary to nature, mass (in number of symbols) is not conserved,
and the split operation nearly doubles the mass of the input.



3.1 Evolution Experiments

The initial population consists of C = 100 identical reaction vessels (or “cells”)
containing a manually-designed molecular organization that catalyzes its own
production: {AsssAM,MsssAM}. In the absence of resource constraints its
concentration rises exponentially.

Using a cell growth-division metaphor, cells divide whenever the number
of “membrane” molecules (here: molecules starting with symbol M) reaches a
threshold of N = 1000, in which case the following operations are carried out:
(i) A new offspring cell is generated, (ii) half of the molecules of the dividing
cell are randomly selected to move to the offspring, (iii) one of the migrated
molecules is randomly mutated, and finally, (iv) the new cell displaces one of the
already existing cells, maintaining a constant cell population. Natural selection
arises because higher production of membrane molecules leads to earlier division.
Thus the most efficient autocatalytic set is expected to survive.

We simulate three scenarios, shown below: one with no restrictions, one with
a fixed length threshold, and one with energy control.

Unbounded Growth of Unconstrained System: A significant fraction of
all mutations lead to a set of molecules with infinite closure [4] that has the
potential to reach an infinite sequence space when reacting among each other.
Consequently, without any length restriction, such a mutation may easily result
in the accumulation of ever-growing strings. The resulting exponentially rising
CPU and memory requirements prevent the simulation of such systems to be
carried out on today’s computers. We performed 20 simulations, none of which
survived 10 generations without exhausting our machine’s resources.

Low Efficiency Under Arbitrary Length Thresholds: We tried two simple
methods to prevent strings from growing infinitely: to destroy molecules longer
than a certain threshold l = 10, 20, 30, 100 (arbitrarily chosen); or to truncate
molecules longer than l. Both methods prevent elongation but have an unde-
sired side effect: After several generations, the number of A and M symbols
becomes unbalanced due to the stochastic distribution of molecules during cell
division. The initial selective advantage of producing more Ms than As goes
along with ceasing the production of As necessary for sustained replication. On
the other hand, some cells first create additional As while still producing Ms.
Consequently, the rate of reactions among As and Ms rises due to the law of
mass action. Since these reactions still generate Ms, the membrane production
rate increases, too. Such mutants quickly take over the population since their
reproductive ratio is about 500 times higher compared to the original program
(see Fig. 2(a)). However, this high productivity comes along with a lower effi-
ciency, measured as the surface to volume ratio, where the surface is the number
of membrane molecules and the volume is defined as the total number of sym-
bols in the cell. At the same time the average molecule length almost reaches
threshold l, indicating that the cells fully exploit the length restriction. A typical



representative for l = 20 is the following multiset:

{278MsssssssssssssssssAM, 241MsssssssssssssssssAA,

1974AsssssssssssssssssAM, 553AsssssssssssssssssAA}
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(a) Length truncation at 20 symbols.
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(b) Energy inflow ρE = 107 units/s.

Fig. 2. Simulation results with length restriction (left) and energy control (right). Top
to bottom: Average reproductive ratio and average efficiency, both normalized w.r.t.
the values of the initial program; and average molecule length.

Emergence of Self-Replicating Clusters Under Energy Control: Instead
of externally applying hard length restrictions, the energy framework embeds a
notion of resource awareness into the chemistry itself. Less energy slows down
reactions and hence the production of new symbols. This method turns out to
be very effective in restricting the length of evolved solutions.

We limit the total energy (kinetic plus potential energy) of the system and use
a model that, unlike in nature, allows mass to be freely converted to energy and
vice-versa: The potential energy of each molecule s is set to its length: εp(s) = |s|.
The activation energy of each reaction r is set to the difference of potential energy
between products and reactants: εa(r) = max(0, εp(Mo)− εp(Mi)), where Mo is
the product multiset and Mi is the reactant multiset. Hence, in this chemistry,
reactions that build up mass are endothermic, requiring kinetic energy, whereas
reactions that destroy symbols are exothermic. Cells receive a constant inflow of
energy needed for their growth, whereas the total energy of a displaced cell is
lost.

We started with a moderate energy injection rate of ρE = 105 units/s, which
results in linear growth. After 100 generations most of the cells still run the initial
program; no better solution could be found. Unlike before, now the system cannot
increase the reaction rate by excessively producing A molecules. Any production
of molecules decreases the temperature and makes endothermic reactions less
frequent. Thus a low energy injection rate successfully eliminates mutants with
infinite closures.



When increasing energy injection by two orders of magnitude to ρE = 107

units/s, a qualitatively different phenomenon arises: The initial program is able
to grow exponentially after each cell division because sufficient energy is avail-
able. During cell growth kinetic energy is shared by an exponentially increasing
number of molecules. This cools down the cell which gradually returns back to
linear growth. Arising mutants that contain syntactically infinite closures start
to explore the sequence space by generating longer molecules, but due to the
energy restriction the cells are limited in doing so extensively. The existence
of longer strings leads to viable mutants that incorporate these new molecules
while still being able to survive, i.e. they still have comparable reproduction ra-
tios; the average reproductive ratio remains more or less constant over the whole
simulation run (see Fig. 2(b)).
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(a) A typical cluster of molecules forming an
infinite autocatalytic set.
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(b) Histogram of molecule lengths after 100
generations.

Fig. 3. Simulation results with energy control for ρE = 107 units/s.

One of the inventions that is often observed in cells after 100 generations
is a cluster of molecules of different lengths that all react among each other,
as depicted in Fig. 3(a). These molecules are structured as repeated sequences
of the duplicate and split pattern Φ := sssAM . In Fig. 3(a), Φn represents a
string that is the n-fold concatenation of the Φ pattern. The numbers next to the
molecules denote their concentration in one of the observed vessels. The cluster
contains a lot of very short molecules (A and M), which do not contain the
necessary information to replicate themselves. However, they react with a small
number of larger molecules that contain multiple copies of the copy and split
motif. These longer molecules are maintained at a lower concentration, which
exponentially decreases with their length. Even though the cells start to produce
larger strings, the average molecule size remains constant and the population
maintains its efficiency as shown in Fig. 2(b). Finally, Fig. 3(b) shows the length
distribution of a typical simulation run after 100 generations. The cluster consists
of molecules of size 5n+1: 1, 6, 11, . . ., visible on the upper left part of Fig. 3(b).
Cells containing such clusters are prominently present in the population.

When we further increase the inflow of kinetic energy to ρE = 108 units/s, the
cells grow exponentially without energy shortage. Consequently, mutants start



to explore the sequence space more aggressively and without hindrance which
leads to the same symbolic imbalance as in the fixed length threshold cases.

4 Discussion

Our results indicate that energy control not only helps keeping reasonable re-
source bounds but also helps to improve the qualitative behavior of the chem-
istry and steer its evolution. The elongation control experiments show that string
length can be kept under control, in spite of an instruction set which is rather
aggressive in terms of elongation. The obvious but not optimal solution of a hard
length restriction is not needed. Moreover, qualitatively different phenomena are
observed according to the amount of energy injected.

A similar elongation phenomenon was described in [3], where a solution based
on multi-level selection is also applied. Our method, however, avoids counting
on hardware-dependent parameters such as CPU run time.

The experiments reveal a connection between the injected energy and the
exploratory capability of a population of cells: If the injected energy flow is too
low, the cells grow linearly and the population does not find better solutions. For
very high energy injection rates our cells exhibit unbounded growth which leads
to symbolic imbalances resulting in a very high reproductive ratio of the affected
cells. This is followed by the sudden death of the whole population. Even if the
mechanisms behind this behavior are not comparable with those that trigger
the elongation catastrophe in [3], interestingly, the resulting effect of the “rise
and fall of the fittest” is the same. There exists a range of moderate energy
injection rates for which the system is able to survive and explore sequence
space. “Clusters” of molecules emerge, which altogether form an autocatalytic
set. Even though the closure of the set is syntactically infinite, the dynamics of
the energy-aware algorithm makes reactions that form long strings more unlikely.
This nicely reflects the nature of biochemical reaction system where more and
more complex molecules evolve over time in the presence of enough energy.

5 Conclusions

The importance of energy has not been emphasized yet enough, in the context
of algorithmic chemistries aimed at performing emergent computation tasks on
traditional von Neumann computers. We attempt to fill this gap with an energy
framework allowing such algorithmic chemistries to behave thermodynamically
and kinetically similar to real chemistry, yet in a simplified form. In spite of
“copying” nature’s energy model, the framework still allows for exploration of
“life-like computations”, since the degrees of freedom to parametrize the chem-
istry still remain very large.

We illustrated the framework’s usefulness in a string elongation control task.
Even a very aggressive string rewriting chemistry can be restrained by restrict-
ing energy alone. Only then and only for a narrow range of energy injection
rates the chemistry’s state space exploration can be controlled accurately. An



interesting topic deserving further investigation is how to derive the optimum
energy injection rate automatically.

For the future we also aim at evolving programs where the quality of the
computed solution is rewarded with energy. Mass and energy conservation could
be combined in a more realistic setup. Other exploration venues include com-
putations by artificial metabolisms, as well as the evolution of chemical Carnot
cycles [16] with their ability to build up information.
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