2024 IEEE Congress on Evolutionary Computation (CEC) | 979-8-3503-0836-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/CEC60901.2024.10611879

Data sampling via Active Learning in Cartesian
Genetic Programming for Biomedical Data

Yuri Lavinas*, Nathan Haut! and William Punch? and Wolfgang Banzhaf' and Sylvain Cussat-Blanc*
*IRIT - CNRS UMRS5505, University of Toulouse
Email: lavinas.yuri.xp @alumni.tsukuba.ac.jp;
Email: sylvain.cussat-blanc @irit.fr
TMichigan State University, Department of Computer Science
Email: hautnath@msu.edu
Email: punch@msu.edu
Email: banzhafw @msu.edu

Abstract—In this contribution, we explore Cartesian Genetic
Programming for image analysis of biomedical data. Producing
large quantities of human-labeled biomedical data is an expensive
task. Here, we introduce a way for CGP to use a small amount of
training data, without loss in performance. To define the size of
the training data, we utilize an Active Learning method to direct
the algorithm towards informative samples. We examine how
sampling a small set of data from the CELLPOSE dataset affects
the performance of CGP. We also study the effects of restarting
CGP with Active Learning. We found that using several restarts
can lead to a more diverse set of the highest-performing solutions
with fewer active nodes while maintaining similar performance
to standard CGP.

Index Terms—cartesian genetic programming, image analysis,
image processing, data sampling

I. INTRODUCTION

As with most of the computer vision domain, the field of
biomedical image analysis has recently been revolutionized by
Neural networks and, in particular, Deep Learning approaches.
They have shown to be very efficient in many image classifi-
cation and segmentation applications such as in dermatology,
radiology and pathology [1], [2], and in some cases even
outperforming human experts in these tasks. However, Deep
Learning approaches have two main challenging drawbacks.
First, they are considered black-box approaches: the decisions
taken by Deep Neural Networks are, nowadays, hard or maybe
even impossible to explain to human experts, which is a
requirement in critical applications such as medicine. Second,
they require large amounts of annotated data. This task has to
be done by experts who are often not readily available and is
very time-consuming.

Recent work showed that Cartesian Genetic Programming
(CGP) is an effective approach to address the above-mentioned
limitation of Deep Learning [3], [4]. CGP evolves solutions
based on a set of mathematical functions that, when executed,
process given inputs to produce an expected output. The phe-
notype of these programs can be represented as graphs which
might be evolved using a (1+)\) evolutionary strategy [5].
One of the main benefits of CGP is the use of a fixed-
length integer-based genome to encode the functional graphs,
not having the bloating effect encountered in many tree GP

approaches. Therefore, small programs can be evolved which

facilitates interpretability [6]. In the specific case of image

processing, the function library contains computer vision
functions that are combined and optimized in order to build
an image processing pipeline adequate to the given task.

To evolve such solutions (or models), we require data that
is manually annotated by a human specialist. However, the
task of collecting and labeling data is expensive and requires
significant time and effort. Thus, our goal is to improve the
evolution of well-performing CGP solutions for biomedical
image processing when using only a small amount of labeled
data during evolution. Our reason is that the amount of data
is extremely limited since biological data is composed of
complex images that are costly to collect and annotate. One of
the popular approaches available to reduce the amount of data
used in Machine Learning is called Active Learning (AL) [7],
[8]. The main idea of AL is to identify samples from a larger
dataset to use during training and create models of equivalent
performance with less overhead [9].

Therefore, we argue that AL is a potential methodology to
be applied to CGP in the biomedical domain. The overall idea
is to sample the most informative data points from an initial
dataset, training on a smaller, selected dataset while achieving
similar performance with faster convergence and to avoid
overfitting by improving generality [7] with less overhead [9].
When using AL, we assume that the most expensive step in
the application is the labeling process [10].

In this contribution, we study how extracting a small set
of data samples from the CELLPOSE dataset affects the
performance of CGP in comparison with the results from CGP
using the whole dataset. Our contributions can be summarized
as follows:

(1) We introduce AL to CGP for biological image segmen-
tation to reduce the number of image points needed to
evolve efficient programs.

(2) We show that AL boosts the convergence speed of CGP.

(3) We present arguments that AL encourages CGP to reduce
the number of active nodes throughout evolution.

The paper is organized as follows: Section II introduces the
necessary background. Section III explains relevant concepts.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

(a) Image to segment.

(c) The 2 outputs are provided to the Watershed Transform to generate the mask in (b).

Fig. 1: One image from the CELLPOSE dataset, the final segmentation mask generated to this image from CGP with Active

Learning, and the graph used to segment this image.

Section IV gives the experimental setup. Section V presents
the experimental results of our analysis. Finally, Section VI
concludes the paper and discusses further research.

II. PRELIMINARIES

Most work in the area of Computer Vision tasks uses black-
box approaches, such as artificial Deep Neural Networks.
However, these models have proven to be difficult for humans
to analyze and interpret their outputs and they require a high
amount of training data [3], [11]. One way to complement
these black-box methods is to use inherently explainable
methods. Genetic Programming is of this class and among
such methods, we highlight Cartesian Genetic Programming,
an evolutionary computation algorithm that evolves easy-to-
interpret programs' [3], [4], [6], [12]-[15]. Additionally, GP
approaches require less training data because, while Deep
Neural Networks need to optimize image filters from scratch
at the pixel level, GP uses high-level mathematical functions
already designed and optimized by human engineers to per-
form specific tasks.

A. Cartesian Genetic Programming

Cartesian Genetic Programming is a Genetic Programming
variant [5] specialized in evolving graph phenotype. Such
graphs are often direct and acyclic and are indexed by Carte-
sian coordinates. Evolution defines how to connect the nodes
of the graphs and the instructions or functions of each node.

CGP has been successfully applied in multiple do-
mains [12]-[14]. Specifically, CGP has been applied in Com-
puter Vision tasks such as for controlling agents to play
ATARI games [6], and in image processing tasks, such
as biomedical image segmentation and object detection in
robotics [3], [4], [15]. The solutions in CGP are gener-
ally optimized by using the (1+)) Evolutionary Algorithm,

lin comparison to Deep Learning models, as most of GP variants.

although any other evolutionary algorithm could be used.
Initially, a population of A individuals is randomly generated
and evaluated on the problem in question. Then, evaluation is
conducted by first generating the programs from the graphs
and then measuring the performance of such programs on the
task considered. The solution with the highest performance is
maintained to the next generation step, influencing the next
A individuals created via mutation. This process is repeated
until a stop criterion is reached. For more information, refer
to [5], [6], [14].

B. Active Learning in CGP

Generally, Active Learning (AL) is used with Deep Learn-
ing, one of the most frequently used methods for processing
biomedical data [7], [16] with most of the work on AL found
in the literature focuses on finding the metric that leads the
model to the highest performance [7]. Interestingly, some
papers suggest random sampling as a strong baseline [17],
[18].

In the domain of GP, the efficacy of Active Learning
for symbolic regression tasks has been widely demonstrated
in a diverse group of research, from works that focus on
reducing the number of such evaluations [19] and on creating
smaller, balanced datasets by recursively keeping the most
‘meaningful’ exemplars [20] to studies on improving the rate
and consistency at which well-performing solutions are found
while reducing the required number of training samples [8],
[21]. For classification problems, Hamida et al. [22], [23]
showed how different sampling methods studied across the
years affect the performance of GP. Yet, we did not find works
that combine AL and GP in the biomedical domain.

C. CGP implementation

The CGP implementation we use is based on [3], [4], a
modular Cartesian Genetic Programming system to generate

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Data sampling via Active learning in CGP

Algorithm 2 Roulette selection

Initialize (1 +) CGP.
while Stopping criterion is not met do
Get new dataset S via a selection method.
Control size of S.
Evolve CGP with the dataset.
Update elite solution.
Update the fitness values associated with selected
images given the new elite.
8: If restart is true, save elite in external archive, restart
CGP and dataset S.
9: end while

A o e

our programs for Computer Vision tasks. This system intro-
duces the notion of non-evolvable nodes which are functions
not subjected to optimization of the syntactic graph. Through
this algorithm, the image processing stack optimizes the
order of functions and their parameters resulting in an image
processing algorithm similar to a human-designed one, since
they are based on established functions for image processing.
Here, we use image processing functions mostly from
OpenCV and scikit-image, which apply programs directly to
images. “Active” nodes are the subset of nodes present in the
final program, since they are connected to the output of the
program graph. Other nodes without connections to the output
are called “inactive” nodes. The outputs of the program can
be taken from any node, which is defined during evolution.
Moreover, in this implementation, the end nodes of CGP are
connected to a fixed endpoint. This endpoint is useful since
it allows CGP to have insight given by a Computer Vision
expert. We use Watershed Transform [24] as the endpoint.
Thus, our CGP has 2 outputs, corresponding to the mask and
markers necessary for the Watershed Transform endpoint.

III. DATA SAMPLING

The CGP with AL (AL-CGP) template we propose for
instantiating and designing sampling method variants is shown
in Algorithm 1. The main difference to standard CGP is that
instead of using a fixed training dataset during evolution,
our template uses a smaller dataset that is selected during
evolution, given the fitness values of the highest performing
solution on the images.

A. Sampling method

We sample the subset of images to be part of the dataset
used in evolution via a sampling method. At each step, two
images are selected: one image with low fitness, and another
with high fitness. The idea is to include (a) an image that
challenges the current elite solution and (b) another image
on which the elite solution performed well, ensuring valuable
information is preserved. By addressing both challenges and
successes, we ensure that the elite solution is exposed to
diverse images, preventing the loss of valuable information
and promoting generalizability.

1: Inputs: fitness values associated with each image.

2: Sample one image given a probability based on the fitness
values.

3: Sample another image given a probability based on the
opposite fitness values (1 — fitness).

4: Return Two images

a) Roulette sampling: Sampling is done based on
weighted probabilities given by the fitness values associated
with each image. These values change every time that an
image is evaluated, when this image is introduced to the
dataset, or if it is on the training set S. Algorithm 2 shows
the pseudocode. As said above, two images are selected each
time. Either via direct fitness values for the group (1) or the
inverse fitness values for group (2).

b) Random sampling: We use random sampling as a
baseline. Sampling is done using uniformly distributed values
to select one image at a time.

To decide when to add new images to the dataset, we
follow the work of Hamida et al. [22] and use a deterministic
sampling frequency, f. This method follows this equation
f = int((C * generation)®). Thus, AL-CGP adds images
at the generation gen, when gen mod f = 0.

B. Controlling the size of the dataset

Adding images with Active Learning might increase the
size of the dataset unreasonably. Here, we choose to control
the size of the dataset by simply removing two images from
the dataset randomly. This happens every time that the size of
the dataset is above the maximum limit size.

C. Evaluation metric - Average Precision (AP)

We follow the work in [25] that defines AP = TP/(TP +
FP + FN), where TP mean true positives, FP mean false
positives and FN mean false negatives. We use AP as our
fitness function with a threshold of 0.5 to determine the true
positives of the predicted mask.

D. Stopping criterion - Images processed

Our goal is to study the effects of sampling images from
the dataset during the evolution of CGP. Thus, we have
a different number of images processed by AL-CGP and
standard CGP, at each generation. Given the different sizes
of datasets used during evolution, we cannot use directly the
number of evaluations or generations as our stop criterion.
Thus, we use the number of images processed during evolution
as the stopping criterion. This criterion does not discriminate
if there is repetition of data points.

E. CGP function library

Table I describes the basic function library used in this work
and their related arity?. These operators are functions from the
OpenCV Python package and are fixed to all CGP variants.

2The number of parameters needed by a given function.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Description of the function library used in CGP.

Function Arity Function Arity
Max 2 Min 2
Mean 2 Add 2
Subract 2 Bitwise_not 1
Bitwise_or 2 Bitwise_and 2
Bitwise_and_mask 2 Bitwise_xor 2
sqrt 1 pow2 1
exp 1 log 1
median_blur 1 gaussian_blur 1
laplacian 1 sobel 1
robert_cross 1 canny 1
sharpen 1 gabor 1
abs_diff 1 abs_diff2 2
fluo_tophat 1 ref_diff 1
erode 1 dilate 1
open 1 close 1
morph_gradient 1 morph_tophat 1
morph_blackhat 1 fill_holes 1
remove_small_objects 1 remove_small_holes 1
threshold 1 threshold_at_1 1
distance_transform 1 distance_transform_and_thresh 1
inrange_bin 1 inrange 1

TABLE II: Parameters used.

Parameter Value
Number of nodes 30 nodes
Offspring size A 5
Inputs 2, a-tubulin and DAPI channels
Outputs 2, mask and markers
Mutation of function nodes 0.15
Mutation of outputs nodes 0.20
Images processed 60,000
Generations - CGP 1,000
Generations - AL-CGP > 1,000

Size dataset used in CGP
Size dataset used in AL-CGP

10 unique images, sampled before the run
from 2 to 10, sampled during the run
gen mod int((C * gen)®) == 0
C=2
a=05

When to add data
(AL-CGP only)

IV. EXPERIMENTAL SETUP

To verify if AL can be used to identify samples from dataset
to use during training and create efficient programs, we study
how to use AL to sample a small, yet informative set of images
samples to improve the performance of CGP. For that, we
compare variations of AL-CGP with standard CGP.

A. Parameter setting

AL-CGP builds the dataset to be used during evolution
using Active Learning and standard CGP uses a sample of 10
images randomly, the minimal amount of data found for CGP
to achieve high-performance values, see [3], while AL-CGP
builds the training dataset using the methods in Section III.
Since we want to use only a small amount of labeled data
during evolution, we limit the maximum training dataset size
to 10 images, as chosen in [3]. We run all CGP variants
with the parameters shown in Table II. For the standard
CGP parameters, we use the same values as in [3]. AL-CGP
builds the dataset for training using the deterministic sampling
frequency sampling (Section III-A) and we used the same
parameters as used by [22]. More work is needed in tuning
the parameters for the CGP variants. We run 30 independent
runs of each variant for statistical purposes.

1.0

309
$ 0.8

©07 Rt RN e e
"~ 06
©05
204
-C|0.3
g 02
< 0.1
0.0

O O O O ©O © © O ©O O ©

O O O O O O O O o o o o

© O O O O O O O © O O O

OOOLDOLOOLOOLOOLOO

O~~~ N N OMTF T IO WO O©

Images processed by the models

algorithm Random [=] Roulette

Fig. 2: Median AP values (shaded areas show the standard
deviation) of elite solutions of AL-CGP with 2 sampling
methods. Since the datasets vary in size, we show the number
of images processed. The roulette sampling leads to higher
performance at the end.

We test if using restarts to explore different areas of the
search space leads to more efficient programs, complementing
the faster convergence enhanced by AL [7]. Here, restarts are
done at different steps of evolution by clearing the training
dataset and randomly initializing solutions. Thus, we verify
impacts in the performance of multiples starts of AL-CGP: 2,
5, 10, and 20 times.

B. Performance comparison

We compare the results of the different CGP variants based
on convergence behavior and statistical analysis (Student t-
test). The convergence behavior is used to analyze the AP
performance at multiple points of the evolution to investigate
the performance of different CGP variants. For the statistical
analysis, the student t-test was used with a significance level
of o = 0.05. For fair comparison and facilitating rapid
prototyping, we use the CELLPOSE dataset [25] consisting
of 100 fluorescently labeled protein images of cultured neu-
roblastoma cells with phalloidn FITC and DAPI nuclear stain.
For fair comparisons, we follow the work in [25], where the
data is split into 89 images for training and 11 for testing.

C. Reproducibility

Relevant data and code are available at:
https://zenodo.org/records/10869851. We run the experiments
on HPC resources on the OLYMPE supercomputer, a
SEQUANA (ATOS-BULL) computing cluster with a power
of 1.365 Pflop/s Peak, equipped with Intel Skylake 6140
processors.

V. EXPERIMENTAL RESULTS

First, we validate the sampling mechanism for AL-CGP
described in Section III. Figure 2 shows the median AP
convergence results. Using our sampling mechanism has a
marginal advantage over randomly choosing images, however

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

© 0.9

[clcNololNollollolellollolo)
=l lle e le e lle e Ml
il iellelle e e lle el
oomomomomomo

© L - - al ©

a (<o} 0 w
Images processed by the models
algorithm = CGP [Roulette

$15
14
813
<12
Q 14
=10
& 9
5 8
5 7
L6
€ 5
S 4
Z 3

o O O O © © O © © o o

© O O O O © © © O O O o

©O O O O O O O O O O O o

OOOLDOLOOLDOLDOLOO

v n o

Images processed by the models

algorithm CGP [] Roulette

(a) Median convergence performance. AL-CGP is faster at the begin- (b) Mean number of active nodes. AL-CGP finds smaller programs

ning and better performing at the end.

at the beginning of evolution.

Fig. 3: Metric values (shaded areas show the standard deviation) of the elite solutions of AL-CGP versus CGP. AL-CGP uses
a dataset that changes in size, hence, we show the number of images processed to provide a fair comparison.

o
S
S

o
o S
S o5

S

LO o o < S n
Images processed by the models

0000
25000
30000

5000

0000
45000

000

5000

60000
00

10000

15000

0000
25000
30000

5000

0000
45000

0000

5000

o o < n
Images processed by the models
algorithm [/ CGP [Roulette

(b) 5 starts.

algorithm [/ CGP [Roulette

(a) 2 starts.

60000

—=
———————

o
S
S

=
S
S

00
10000

000

00
10000
15000
0000

o
S
=3
re

25000
0000
5000
0000

45000

000
5000

20
60000
0
5
2!
30000
35
0000
45000
000
5000
60000

o < S n
Images processed by the models
algorithm [/ CGP [] Roulette

(d) 20 starts.

Lﬂ @ M < S n
Images processed by the models
algorithm [/ CGP [] Roulette

(c) 10 starts.

Fig. 4: Median AP performance convergence (shaded areas show the standard deviation) of AL-CGP with different restart
periods versus CGP. The size of the datasets used by the different AL-CGP restarting strategies varies, thus we show the
number of images processed instead of generations. Most of the increments in performance are at the beginning of the search.

:‘ '.c .t .'C-'
0.8
207 .l > —
.o * .

F
o
w

AL-CGP Random CGP 2starts 5starts 10 starts 20 starts

Fig. 5: Boxplots of AP values of the elite solutions found by
different CGPs. AL-CGP performs better than CGP. Using 2
starts leads to higher median values than CGP.

this superiority does not reach statistical significance. This
small improvement with our method suggests a subtle impact
on dynamically modifying the training data based on informa-

tion from the elite (best performing) solution, as opposed to
random sampling. Given the higher performance of AL-CGP
with roulette, we move on to comment on the differences
in performance exclusively between AL-CGP with roulette
sampling versus standard CGP.

A. Convergence

Figure 3a shows the median convergence behavior AL-
CGP versus standard CGP (shaded areas show the standard
deviation). Using our sampling method, AL-CGP converges
faster than CGP to high values, but eventually, CGP achieves
a performance slightly below that of AL-CGP. We see that
using AL leads to faster convergence, but there is still a gap
to be filled at the end of the execution when compared with
the state-of-the-art Deep Learning performance with DL or
CGP [3]. That said, the efficacy of AL-CGP lies in its ability to
diminish the amount of required training data while delivering
comparable results, as shown here.

B. Number of active nodes

Figure 3b illustrates the mean number of active nodes
(shaded areas show the standard deviation) over the iterations

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

3 =
n N
B= =
©n Q
@ + =
£ = =3
H 2 =
[7] S
. 8 ©
W m Q = . ¢
(0] m S 4 S Q
° @ = g
7] o 7 2 <
m S .S 2 =
(e} ©n Q= ~
E QO O . g5
£~ o0 »n = = =
= S
5 3T S g o o =
© — n
o 0 M m
S & =5
T A g
nru. [SSEND) g ° o °
- 2 =
SOpOU BAINOE JO JAqUINN > O s £ unoy
22 P
00009 Ay m S5 —
S e
000SS » O 7 " » _xﬂﬂT
[0 - 5S04
0000sTQ 2 O = @ syl S
m 2 - = m Q :Nu wul
o005y E 3 .
o2& 83 ,s,_é.ggfm o 2B R T |
-0 =z =) = e — N m = Ul i — o
wed e B 50 =5 R —EET e o i pousan
weed 8 2 & 3 Sy 3 8 @ o i 2 SO 111
@ @ @ 8§ i £ 3 2 Q nu——— £ S Voom
ooosz & [T «» age 2 = 85 -= resne -
3 o 2] 1eudor O s ~ Q= reydol oy ~
wezg E — 2 o o 5= e
3 £ %] ysaipueTuoiSIB 9oueISH ~ Q ysaipueTuoiSIB 9oueISH ~
£ S = o frré eip o LioueR-Sueislp (3)
000sty 5 Q [=] L 2 . ok 1 <
5 = > Rue> =D} RS
00001 § @ P—" e S~
000sE L 2 LR b o & e
73] e Pueesmg uomF "
0 m m | m o 2P ok — g sepouE
DITOU-ODONOOT® o b0 2 2 9 ° . ..m Q 2 9 °
SOpOU SANIOE JO JaquinN Qo Junod 5= Junos
e o 2 = Injg ueissneBIE T
< J10qeb
| 00009 m o = © sﬁs,_wmwl_g m
< 00055 ITEG) &b ool
. g 2 50 £ .E = .# Tous e et
00005Q £ - = 1m a mEm -Snouia) Seip:
({ ooosr € 3 54 2 & Ruves”™
[0}
r e < S\ W E—
:] 0005e & S = s - Q a peourpus w._%m_sal
o c .
B) 56 m = g S Q vhl e} Sommm— 5 v P ———
2 w00 © 8 B © W T 2 = W 8 2 o ¢
2 m 7] = ng :m_mmzmmihﬁ S ..m W = S_n\:m_ﬂ.ﬂmwﬂs“ S = H
oo0se § - S .8 M BN 5 e S S N . .
T 000029 E =& SR A = P ¥ 3 o g
3£ —~ 2= s Eswzsrhﬁmm —~ G 5} usaipue Ewwmmﬁﬂa__dw“ —~ unod
wag s & 55 £ BENONCES whiiegg 2
wonr § £ @ z Q3 T
T ® o= 10725 10 sy
Soabalik oo beihia
ooomm O o e By T R & @ - i T R
e 0 = e o7 -2
g < E £ £
< unon o= unon
— B w B
o Qo Q
2]
00009 » .8 3 m
Q S
000SS m .w m m o
o
00005 £ e 2 S s}
000sr E 3 — - = g
o & S v Q O
0000y i) = .2
I R T 5 =2 —
0005€R" o 1) % = 1w P < o
oooomm 38 m ..m = fm = ‘._Su_._mlnl__lwmw m]
woszg M T 5 O R e 2
i 2
o € = gt
00002 2 [P) [P N o) apgio
a £ = = Na) ysauyy pue o) sueh e —_
st = S g S o g i) =
g3] 2 E 2 Hier
S e
0000t 5 £ == e
ooomm M © N . sdll g Sshmige oo
]
0 2 N =]
O = ~
.4 .2 8 g g °
SOpOU SANIOE JO JaquinN = .m o0 o Junos
= e

are present are used in

“add” and “subtract”

many stages of the search process. The distribution of functions varies depending on the phase.

5

Function

(e) Phase 5

Fig. 8: Functions used in AL-CGP with 5 start phases. The functions “mean”
Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Statistical analysis between AL-CGP and CGP.
We see statistically significant differences at the begining and
the end of evolution.

Images Used p-value
2,500 0.018
5,000 0.049
7,500 0.221
10,000 0.281
45,000 0.389
47,500 0.074
50,000 0.028
52,500 0.024
55,000 0.034
57,500 0.04
60,000 0.137

of the runs of CGP in comparison to AL-CGP. CGP con-
sistently finds larger programs during the search progress, but
around the first third of the process, the number of active nodes
starts to decrease, aligning with the elite solution’s perfor-
mance convergence. On the other hand, AL-CGP, continually
evolves smaller programs, suggesting that the inclusion of AL
aids CGP to generate simpler and more general programs.
Towards the end of the search, both methods converge to
programs of similar and reduced sizes. Therefore, we argue
that AL-CGP increases program interpretability, as evidenced
by the discovery of more concise programs. Overall, our
findings suggest that the AL-CGP contributes to performance
convergence, in accord with the literature, and enhances one
of the main features of genetic programming: the ability to
generate interpretable programs.

C. Statistical Analysis

The student t-test is conducted across various numbers
of processed images, and the outcomes are illustrated in
Table III. AL-CGP demonstrates statistically significant dif-
ferences compared to CG during the initial one-third of the
search progression until fewer than 7,500 images are pro-
cessed. Subsequently, there are not any statistically significant
differences among the results obtained by the CGP variants.
This pattern changes again after processing more than 47,500
images, where a statistically significant difference appears.
However, towards the conclusion of the search process, the
performance is not statistically significant. This variability
could be associated with a potential shift in how CGP pro-
cesses images during evolution.

D. Restart

Given the fast convergence of the solutions shown by AL-
CGP, we conjecture that restarting the training data and ran-
domly initializing the solutions could benefit the performance
of AL-CGP even further. We argue that restarting the search
before the end of the search progress could lead to a higher
exploration of the search space to regions that might help the
algorithm find high-performing solutions.

Figure 4 shows the convergence plots of AL-CGP when
using restart variants and Figure 5 displays the perfomance
of elite solution found by AL-CGP with restart. We select

this elite from the start phase with the highest median value
for each restarting frequency. We can see that using restarts
reduces the overall performance as the frequency increases.
That said, we can also see that the best-performing solution
is found at different phases, which suggests that the initial
solution from which evolution starts the search process im-
pacts the final solution generated. In addition, the difference
in performance between restarting halfway through the search
progress or not restarting is small, indicating that most of the
increments in performance happen during the first half of the
search and that more sophisticated restart methods might be
an interesting path to explore for enhancing the performance
of AL-CGP.

Moving to Figure 6, we can confirm that using AL results
in a CGP model with a lower number of active nodes. The
number of nodes is only similar between the restart strategies
and standard CGP at the beginning of each start phase.
Of course, the impact of this effect varies given the restart
frequency and is clearer in the early stages of the evolution.
We think that the reason for such an effect is that frequent
changes in the dataset force CGP to find more generalizing
solutions, instead of finding solutions overfitted to the images
processed.

Finally, we comment on the distribution of functions used
by the elite solutions of the different runs, just before restart-
ing. This is shown in Figures 7 and 8. We focus our analysis
on AL-CGP with 2 and 5 starting phases to reduce the amount
of information analyzed. We can see that the distribution
varies according to the phase in consideration for both restart
strategies. Some functions, especially aggregation functions,
such as “mean”, “add” and “‘subtract” are frequently present,
independently of the phase in consideration. We understand
that doing several restarts during the search can lead to a
more diverse set of elite solutions, given the distribution of
used functions.

VI. CONCLUSIONS

We studied using ideas from Active Learning in GP and we
focused on how sampling biomedical images from the avail-
able dataset affects the performance of CGP in comparison to
using the whole dataset. We found that the convergence speed,
measured by the average precision metric, considerably im-
proves until it converges at around the first third of the search
process, to similar values as standard CGP. Furthermore, we
observed that using AL reduces the number of active nodes
throughout evolution, but the effects and possible implications
of such reduction are yet to be studied. We also saw that
using restarts led to more diverse individuals, as shown by
the distribution of functions used.

Future work could utilize diverse individuals from multiple
starting points to generate an ensemble and then use disagree-
ment or uncertainty of the ensemble as a metric for selecting
new data to see if these ideas from Active Learning via such
metrics sampling could boost performance. One limitation of
our method is that it assumes that a ground truth is known for
all the images. In scenarios with a collection of unlabeled

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

images, our method can only be applied to ask an expert
to label these unlabeled data. Thus, we think that including
unsupervised learning techniques, is a possible direction to
increase the versatility and efficacy of our work in real-case
scenarios.

This work represents a new stride towards achieving a
broader objective in the construction of an interactive learning
system within the domain of biomedical image analysis. We
anticipate that the combination of CGP, along with efficient
active learning, has the potential to catalyze the development
of applications where a human expert annotates specific
images or areas of large images upon request. The images
or areas for annotation would be suggested by the learning
algorithm based on its current requirement for annotated data,
such as specific cell types, color diversity, shapes, or others.
Our goal is to foster a collaborative effort between our CGP
learner and a human expert, guiding the learning procedure
through the complexities of the images to be analyzed.

ACKNOWLEDGMENT

This work is funded by the Laboratoire d’Excellence
Toulouse Cancer TOUCAN, contract ANR11-LABX. This
work is supported by the AI Interdisciplinary Institute ANITI,
funded by the French program “Investing for the Future —
PIA3” under Grant agreement no. ANR-19-PI3A-0004.

REFERENCES

[1] A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu,
E. Topol, J. Dean, and R. Socher, “Deep learning-enabled medical
computer vision,” NPJ digital medicine, vol. 4, no. 1, p. 5, 2021.

[2] S. Deng, X. Zhang, W. Yan, E. L.-C. Chang, Y. Fan, M. Lai, and Y. Xu,
“Deep learning in digital pathology image analysis: a survey,” Frontiers
of medicine, vol. 14, pp. 470-487, 2020.

[3] K. Cortacero, B. McKenzie, S. Miiller, R. Khazen, F. Lafouresse,
G. Corsaut, N. Van Acker, F.-X. Frenois, L. Lamant, N. Meyer et al.,
“Evolutionary design of explainable algorithms for biomedical image
segmentation,” p. 7112, 2023.

[4] Y. Lavinas, K. Cortacero, and S. Cussat-Blanc, “Evolving graphs
with cartesian genetic programming with lexicase selection,” in
Proceedings of the Companion Conference on Genetic and Evolutionary
Computation, ser. GECCO °23 Companion. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1920-1924. [Online].
Available: https://doi.org/10.1145/3583133.3596402

[5] J. E. Miller, “An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach,” in Pro-
ceedings of the Ist Annual Conference on Genetic and Evolutionary
Computation - Volume 2, ser. GECCO’99. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999, p. 1135-1142.

[6] D. G. Wilson, S. Cussat-Blanc, H. Luga, and J. F. Miller, “Evolving
simple programs for playing atari games,” in Proceedings of the
Genetic and Evolutionary Computation Conference, ser. GECCO ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
229-236. [Online]. Available: https://doi.org/10.1145/3205455.3205578

[71 M. Gaillochet, C. Desrosiers, and H. Lombaert, “Active learning
for medical image segmentation with stochastic batches,” Medical
Image Analysis, vol. 90, p. 102958, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1361841523002189

[8] N. Haut, W. Banzhaf, and B. Punch, “Active learning improves
performance on symbolic regression tasks in stackgp,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion,
ser. GECCO ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 550-553. [Online]. Available: https://doi.org/10.
1145/3520304.3528941

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. A. Cohn, Z. Ghahramani, and M. 1. Jordan, “Active learning with
statistical models,” Journal of artificial intelligence research, vol. 4, pp.
129-145, 1996.

B. Settles, “Active learning literature survey,” University of Wisconsin—
Madison, Computer Sciences Technical Report 1648, 2009.

C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature machine
intelligence, vol. 1, no. 5, pp. 206-215, 2019.

A. M. Ahmad, G. M. Khan, S. A. Mahmud, and J. F. Miller, “Breast
cancer detection using cartesian genetic programming evolved artificial
neural networks,” in Proceedings of the 14th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO *12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 1031-1038.
[Online]. Available: https://doi.org/10.1145/2330163.2330307

M. Suganuma, S. Shirakawa, and T. Nagao, Designing Convolutional
Neural Network Architectures Using Cartesian Genetic Programming.
Singapore: Springer Singapore, 2020, pp. 185-208. [Online]. Available:
https://doi.org/10.1007/978-981-15-3685-4_7

J. Biau, D. Wilson, S. Cussat-Blanc, and H. Luga, “Improving image
filters with cartesian genetic programming.” in IJCCI, 2021, pp. 17-27.
S. Harding, J. Leitner, and J. Schmidhuber, Cartesian Genetic
Programming for Image Processing. New York, NY: Springer New
York, 2013, pp. 31-44. [Online]. Available: https://doi.org/10.1007/
978-1-4614-6846-2_3

V. Nath, D. Yang, B. A. Landman, D. Xu, and H. R. Roth, “Diminishing
uncertainty within the training pool: Active learning for medical image
segmentation,” IEEE Transactions on Medical Imaging, vol. 40, no. 10,
pp. 2534-2547, 2021.

A. Kirsch, J. van Amersfoort, and Y. Gal, “Batchbald: Efficient
and diverse batch acquisition for deep bayesian active learning,” in
Advances in Neural Information Processing Systems, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/

2019/1ile/95323660ed2124450caaac2c46b5ed90-Paper.pdf

A. Casanova, P. O. Pinheiro, N. Rostamzadeh, and C. J. Pal,
“Reinforced active learning for image segmentation,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=SkgCO6TNFvr

C. Gathercole and P. Ross, “Dynamic training subset selection for
supervised learning in genetic programming,” in Parallel Problem
Solving from Nature — PPSN III, Y. Davidor, H.-P. Schwefel, and
R. Miénner, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994,
pp- 312-321.

E. Vladislavleva, G. Smits, and D. den Hertog, “On the importance
of data balancing for symbolic regression,” IEEE Transactions on
Evolutionary Computation, vol. 14, no. 2, pp. 252-277, 2010.

N. Haut, B. Punch, and W. Banzhaf, “Active learning informs
symbolic regression model development in genetic programming,”
in Proceedings of the Companion Conference on Genetic and
Evolutionary Computation, ser. GECCO °23 Companion. New York,
NY, USA: Association for Computing Machinery, 2023, p. 587-590.
[Online]. Available: https://doi.org/10.1145/3583133.3590577

S. Ben Hamida, H. Hmida, A. Borgi, and M. Rukoz, “Adaptive
sampling for active learning with genetic programming,” Cognitive
Systems Research, vol. 65, pp. 23-39, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389041720300541
H. Hmida, S. B. Hamida, A. Borgi, and M. Rukoz, “Sampling methods
in genetic programming learners from large datasets: A comparative
study,” in Advances in Big Data, P. Angelov, Y. Manolopoulos, L. II-
iadis, A. Roy, and M. Vellasco, Eds. Cham: Springer International
Publishing, 2017, pp. 50-60.

S. Beucher and F. Meyer, “The morphological approach to segmentation:
the watershed transformation,” in Mathematical morphology in image
processing. CRC Press, 2018, pp. 433-481.

C. Stringer, T. Wang, M. Michaelos, and M. Pachitariu, “Cellpose: a
generalist algorithm for cellular segmentation,” Nature methods, vol. 18,
no. 1, pp. 100-106, 2021.

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:52:27 UTC from IEEE Xplore. Restrictions apply.

