
On the Effectiveness of Crossover
Operators in Cartesian Genetic

Programming

Mark Kocherovsky(B) , Marzieh Kianinejad , Illya Bakurov ,
and Wolfgang Banzhaf

Department of Computer Science and BEACON Center for the Study of Evolution in
Action, Michigan State University, East Lansing, MI 48824, USA

kocherov@msu.edu

https://banzhaf-lab.github.io/

Abstract. This study investigates the effectiveness of Cartesian Genetic
Programming by analyzing numerous indicators of evolutionary dynam-
ics when using different crossover operators and the canonical mutation-
only (1 + 4) strategy. Specifically, we examine a traditional crossover
operator which is based on the random selection of parental genes; Sub-
graph Crossover, where points in the range of active nodes are consid-
ered; and the recently-proposed Deep Neural Crossover (DNC) approach
which utilizes a transformer network to learn correlations between genes
and predict potentially beneficial crossover points. The performance of
these different crossovers is evaluated on 11 standard and one real-world
regression problem.

Keywords: Cartesian Genetic Programming · Crossover · Neural
Crossover · Crossover Effects · Reinforcement Learning

1 Introduction

Introduced by Miller in the late 1990 s [28,30], Cartesian Genetic Program-
ming (CGP) is one of several Genetic Programming (GP) paradigms currently
heavily used and under investigation in the field. This paradigm relies on a
directed acyclic graph (DAG) representation, which allows the reuse of inter-
mediate results and multiple outputs. Since its introduction, it was observed
that traditional crossover operators were detrimental to search in CGP and the
scientific community mostly avoids their usage [29]. Nevertheless, there were sev-
eral attempts to design an effective crossover for CGP that could consistently
outperform the canonical (1 + λ) strategy [8–10,19–22,36,38], where there is no
crossover, and only one parent is selected to be mutated several times. Despite
numerous efforts, the scientific community shares the assumption that standard
crossover is simply too destructive for CGP, and as we will see in Sect. 5, certain
other assumptions. In summary, the literature skirts around the main question:
why is crossover so destructive in CGP in the first place?
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
B. Xue et al. (Eds.): EuroGP 2025, LNCS 15609, pp. 68–84, 2025.
https://doi.org/10.1007/978-3-031-89991-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-89991-1_5&domain=pdf
http://orcid.org/0000-0002-7313-2325
http://orcid.org/0000-0001-6318-479X
http://orcid.org/0000-0002-6458-942X
http://orcid.org/0000-0002-6382-3245
https://doi.org/10.1007/978-3-031-89991-1_5


On the Effectiveness of Crossover Operators 69

In an attempt to understand why traditional crossover is so destructive in
CGP, the authors of [24] compared the performance of different crossover oper-
ators in CGP and Linear Genetic Programming (LGP). The latter is a GP
paradigm that represents and executes solutions as a sequence of instructions,
akin to a low-level programming language, where each instruction specifies an
operation and the memory registers/locations [7]. Although it was shown that
CGP and LGP can be mutually convertible [7], allowing direct comparison
between their DAGs [40], crossover in LGP is frequently found to benefit search.
In [24], this was linked to a more drastic node connectivity disruption in CGP
when the genetic operators are applied, which results in children being far more
genetically different from their parents than in LGP.

Previous research about the crossover in CGP relied upon methods that
perform random selection of parental genes. For example, n-point crossover
randomly selects n crossover points and swaps segments in between. Uniform
Crossover swaps parent genes at each index with uniform probability. The real-
valued crossover [9] performs a randomly weighted average of the two parents.
Subgraph Crossover [19,21] essentially performs a one-point crossover between
active function nodes of the two parents, aiming at recombining the subgraphs
with semantic value.

In this work, we seek to deepen the community’s understanding of crossover
destructiveness in CGP following [24]. In particular, we adapt and utilize a
recently proposed Deep Neural Crossover (DNC) [35] to CGP for the first time
and compare it to the aforementioned crossover methods. DNC contains an
encoder-decoder neural network trained in real-time to learn structural corre-
lations between parent genes in order to select crossover points that maximize
offspring fitness. DNC was originally developed for Genetic Algorithms (GAs) to
guide the probability of swapping genes in Uniform Crossover (making it, effec-
tively, non-uniform), and was shown to outperform traditional operators sub-
stantially. Additionally, we include the Real-Valued Crossover proposed in [9]
to investigate the suitability of a floating-point representation of CGP chromo-
somes. We also analyze whether allowing a variable-length representation for
CGP, akin to LGP, helps to improve the program search. Finally, we try to
shed light on how different crossover methods influence evolutionary dynamics
beyond commonly used learning curves, phenotypic diversity, and the propor-
tion of active nodes. Here we also observe the relationships between the parent-
child similarity, the fitness landscape properties of individuals, and the spatio-
temporal distribution of crossover and mutation events over parent genotypes
categorized by offspring fitness (i.e., whether worse, near-equal, or improved fit-
ness was observed).

We find that (i) DNC does not allow CGP to synthesize better programs than
mutation-only CGP, (ii) Cui et al.’s [10] results that CGP nodes are positionally
dependent, i.e. the probability of whether a node will be active depends on the
node’s position, are confirmed, (iii), traditional crossover operators fail because
they assume that nodes close to each other are semantically related, which is
not true in CGP.



70 M. Kocherovsky et al.

The remainder of the paper is structured as follows: Sect. 2 introduces the
established CGP methods and the literature on CGP crossover. Section 3 dis-
cusses our experimental methods, whose results are shown in Sect. 4. Finally, in
Sect. 5, we discuss the implications of our results and provide future directions
for investigation.

2 Background

2.1 CGP

The basis of a Cartesian program is an instruction that is commonly referred to as
a node. Each node has a structure of nm ∈ N = [om am,1 am,2], which determines
the operator and operand nodes, assuming an arity of 2. Note the lack of memory:
Each node takes its input directly from the result of the execution of earlier
nodes. However, nodes that are neighbors in the genotype (i.e. neighbors in the
chromosome) are not necessarily functionally related due to the DAG structure:
Each node can connect to any preceding node, regardless of its physical position
in the genotype, and some nodes may not contribute to the final output at all
(acting as introns), referred to as inactive nodes. Thus, a program p is defined
as p ∈ P = {n0, n1, n2, ..., nβ} ∪ [o0, o1, o2, ..., on], where each output node takes
a single operand, and can be an input or program node. CGP programs are
necessarily of constant size, determined by parameter β. In CGP, each node is
typically concatenated to form a one-dimensional vector. However, for ease of
use, each program is represented as a two-dimensional matrix, except during
crossover, where the matrix is flattened into a one-dimensional vector and then
reshaped into a matrix once the operator is finished.

2.2 Crossover in CGP

Even though they are not commonly used, several existing crossover methods
can be applied to CGP, each representing different assumptions about the con-
nectivity in a DAG. Initially, CGP researchers and practitioners adapted GA-like
crossover operators, such as n-Point Crossover [31]. Here, different values of n
allow a different treatment of gene order and positional dependence in the chro-
mosomes. For a small n, the operator swaps a few consecutive gene segments,
allowing neighboring genes to remain together in the offspring. This assumes
that genes closer to each other in the genome have some functional relationship
and should be passed together to preserve it. However, as n increases, the rela-
tionships and positional dependence progressively fade. In an extreme case, such
as Uniform Crossover, each gene is treated as having no positional or relational
dependence on neighboring genes, discarding any notion of order or connectivity.
Because CGP’s DAG structure allows each node to connect with any preceding
node, crossover operators that assume neighboring genes have functional rela-
tionships can disrupt essential dependencies. In contrast, operators that com-
pletely disregard positional relationships can amplify these destructive effects,
although they introduce greater genetic diversity.



On the Effectiveness of Crossover Operators 71

Clegg et al. [9] adapted the Real Valued Crossover for CGP, frequently used
in GA literature for solving continuous optimization problems. This crossover
essentially performs a randomly-weighted average of the two parent genes. Given
that traditional CGP uses an integer-based representation, the authors proposed
an algorithm for converting it into a [0–1] range of floating-points. The real-
valued CGP crossover was assessed on two symbolic regression problems (Koza2
and Koza3) and was found to outperform the mutation-alone strategy only on
one problem. Nevertheless, it was found to achieve faster convergence in earlier
iterations, which led the authors to adapt the crossover rate over generations.
The adaptive variant turned out to outperform the mutation-alone strategy.
However, a later study examined real-valued crossover on three additional classes
of problems and found no advantage in using it [39].

In [8], Cai et al. highlight other challenges of traditional CGP representation
and its destructive effects on recombination. They argue that a node’s location in
the CGP chromosome can influence whether it contributes to the final solution.
They also note that node position does not correlate with behavior, as identical
positions across chromosomes do not imply the same functionality and the same
functionality can be observed across different positions. As a result, position-
based gene exchanges, typical in traditional crossovers, often disrupt useful sub-
structures. To circumvent this limitation, the authors proposed a more flexible
representation where gene location does not influence phenotype, demonstrating
superior performance on the even-3 parity problem using the 2-point crossover.

Goldman and Punch [13] observed that the probability of a given node being
active varies significantly by position, with a bias toward nodes near the input,
which receive more connections due to the DAG structure in CGP, where each
node can only connect to preceding nodes to avoid cycles. Two strategies were
proposed to mitigate this bias. DAG mutates connections to every other node in
the genome, as long as the new connection does not create a cycle; Reorder
shuffles active nodes through the chromosome in a way that phenotype does
not change. Both strategies increased the amount of active nodes and achieved
faster convergence with a smaller genotype. Although Goldman and Punch [13]
studied CGP(1+λ) with point mutation, it is reasonable to argue that crossover
under-performance can also be attributed to positional bias. To this end, the
authors of [10] examined whether the reorder strategy could improve its perfor-
mance. They compared two standard CGP(1+λ) variants against four crossover
operators with the reorder strategy on four boolean benchmarks and concluded
that crossover with reordering benefits search. In three out of four problems, the
crossover was found to outperform CGP(1+λ), and Uniform Crossover generally
benefits the most.

In 2017, Kalkreuth et al. introduced Subgraph Crossover [21], which
exchanges active subgraphs between parents by selecting crossover points within
active nodes, focusing recombination on genome segments that impact offspring
fitness. Later, Kalkreuth [19] evaluated Subgraph Crossover with large genotypes
and small population sizes on symbolic regression and Boolean problems, finding
that it generally outperformed mutation-only approaches with faster convergence
and better final fitness in regression tasks. He concluded that medium (50) and



72 M. Kocherovsky et al.

large (250) population sizes perform best, while larger genotypes offered no sig-
nificant advantage. In [18], Husa and Kalkreuth presented the block crossover,
which was inspired by the Subgraph Crossover and the cone-based module cre-
ation proposed in [22], which enables CGP to evolve and reuse modules (sub-
components of the program). The method essentially swaps blocks of consecutive
active nodes between two parents. The authors assessed the performance of the
block, Subgraph, One-Point, and real-valued crossover, and compared them with
mutation-only strategies on a subset of problems taken from [21]. Testing block,
Subgraph, One-Point, and real-valued crossovers against mutation-only strate-
gies, they found (1 + λ) mutation was the best overall, possibly due to the lack
of crossover parameter tuning, such as crossover rate.

Preserving gene structures that remain unchanged across generations can be
beneficial, as they likely confer a fitness advantage. In biological systems, this
concept appears during meiosis, where Homologous Crossover conserves similar
sequences while exchanging non-similar parts, promoting genetic diversity [17].
Homologous Crossover has long been explored in GP [6] using both trees [32]
and linear representations [12]. Recently, a Homologous Crossover was proposed
for CGP in [38], where multiple sequence alignment (MSA) is used to interleave
gaps between the sequences so that they achieve the same length and have the
maximum possible similarity. After allowing initial generations to stabilize on
some meaningful, high-fitness building blocks, MSA identifies intact/conserved
sequences without any gaps that appear consistently across multiple genomes.
A single representation is then extracted for commonly conserved and non-
conserved genes, acting as a footprint of areas of stability and variability in the
population’s genetic pool. During crossover, two individuals with the highest
fitness values that align well with this footprint are selected as parents. In their
work, Uniform Crossover is used. The new crossover was explored in the context
of neural architecture search (NAS) for image classification, and the results were
compared with those found in the literature using human-designed architectures
and other types of NAS. The comparison included CGP(1 + λ) strategy from a
related study [37], where similar CGP hyper-parameters were used. While the
accuracy of CGP with the new Homologous Crossover was found to be about 2%
above that reported in [37], the evolved network was also found to be slightly
more complex. Thus, it is not obvious whether the proposed crossover effectively
improves CGP search.

3 Methods

3.1 Problems

We tested each method by evolving models to find eleven univariate functions
over 10,000 generations. We chose known optimization problems by virtue of
being complex enough to be challenging for the GP to find, as well as to match
the literature [20,24]. At each run, we randomly sampled 20 points for simpler
problems and 40 for more complex ones from the respective domain. For more
details, including functional forms, see Table 1. Also, we assessed the methods
on a real-world problem, the Diabetes dataset [11]. A 70–30% train-test split



On the Effectiveness of Crossover Operators 73

was used and models were trained for 3,000 generations. Note that over time,
only training fitness was collected, and testing fitness was collected at the end.

Table 2 shows our notation and basic hyperparameters, and Table 3 shows
our hyperparameters for the DNC [35].

Table 1. Problems tested; each model was given a set of random points within the
given domain. *: problem too complex to be written out here, see the reference. Mostly
reproduced from [24].

Problem Function Domain Points

Koza-1 x4 + x3 + x2 + x [−1, 1] 20

Koza-2 x5 − 2x3 + x [−1, 1] 20

Koza-3 x6 − 2x4 + x2 [−1, 1] 20

Nguyen-4 x6 + x5 + x4 + x3 + x2 + x [−1, 1] 20

Nguyen-5 sin(x2) cos(x) − 1 [−1, 1] 20

Nguyen-6 sin(x) + sin(x + x2) [−1, 1] 20

Nguyen-7 ln(x + 1) + ln(x2 + 1) [0, 2] 20

Ackley [2] −20 exp(−0.2x2) − exp(cos 2πx) + 20 + exp 1 [−32.768, 32.768] 40

Rastrigin [33] 10 + x2 − 10 cos 2πx [−5.12, 5.12] 40

Levy [25] * [−10, 10] 40

Griewank [14] x2/4000 − cos x + 1 [−600, 600] 40

Diabetes [11] * See [11] 442 (70/30% Split)

Table 2. Evolutionary parameters to demonstrate the effects of crossover. Mostly
reproduced from [24].

Notation Crossover Mutation

CGP(1+4) None (Canonical) μ = 100% (x4)

CGP-1x(40+40) One-Point (50%) μ = 2.50%

CGP-2x(40+40) Two-Point (50%) μ = 2.50%

CGP-VL1x(40+40) One-Point | Variable-Length (50%) μ = 2.50%

CGP-VL2x(40+40) Two-Point | Variable Length (50%) μ = 2.50%

CGP-Ux(40+40) Uniform (50%) μ = 2.50%

CGP-SGx(40+40) Subgraph (50%) μ = 2.50%

CGP-DNC(40+40) Uniform Deep Neural Crossover (50%) μ = 2.50%

CGP-DNC-1x(40+40) One-Point Deep Neural Crossover (50%) μ = 2.50%

CGP-RV(40+40) Real-Valued (50%) μ = 2.50%

3.2 Deep Neural Crossover (DNC)

Previous research about the crossover in CGP relied upon methods that select
parental genes at random. In recent years, conceptually novel evolutionary oper-
ators have been proposed that leverage deep learning (DL) capabilities to process



74 M. Kocherovsky et al.

Table 3. Neural Network Hyperparameters for DNC [34]

Hyperparameter Value

Embedding Dimension 64

Sequence Length 193

Number of Embeddings 75

Running Mean Decay 0.95

Sample Size for Training 820 pairs of parents

Learning Rate 1e−4

Greedy ε 0.2

Number of Parents 2

sequence data, like genes, to identify complex relationships. NeuroCrossover [26]
utilizes Dual-Aspect Collaborative Transformer architecture [27], coupled with
online reinforcement learning (RL), which was shown to be able to optimize the
selection of points for order and 2-point crossover applied for routing and packing
problem-solving. Specifically, the attention modules learn embedded representa-
tions of the parent genomes using what the authors call Cross Information Syn-
ergistic Attention (CISA), where each parent embedding is learned separately
but can be cross-referenced by the other to find common features. Once the
encoder and decoder are trained, the network can then work on finding children
with better fitness than the parents, outputting relevant crossover points.

Later, Shem-Tov and Elyasaf extended NeuroCrossover by proposing to
learn a probability distribution of exchanging each gene, akin to Uniform
Crossover [35]. Their method, called Deep Neural Crossover (DNC), is motivated
by the assumptions that distinguish One-Point and Uniform Crossover (previ-
ously discussed in Sect. 2.2). However, there are more differences. Although DNC
also learns through policy-based online reinforcement learning, a different neural
architecture based on an LSTM Pointer Network is employed. The latter uses a
set of softmax modules with attention to produce the probability of selecting a
gene from each parent. In addition, the authors use what they call an ε−greedy
method to randomly perform actions with the probability ε. Moreover, DNC
can operate in a multiple-parent setting, which is different from the two-parent
approach in [26]. Diagrams of the encoding and decoding network are shown in
Fig. 1.

There are some minor differences between the baseline DNC code and ours.
First, where DNC produces a single child from each pairing, we produce two chil-
dren to match the other forms of crossover we measure. For the same reason, we
use a two-parent setting rather than the multi-parent option provided. Second,
minor structural alterations are made to accommodate the CGP structures we
were already using: we enabled ourselves to plug in our fitness function, mutation
operator, and data recording methods. The ANN methods were untouched as
DNC is genome-agnostic. In addition, we also test these strategies with fixed par-



On the Effectiveness of Crossover Operators 75

ents: in short, each starting set of parents in each replicate are identical instead
of randomly initialized each time; and we tested different neural network learning
rates. In our work, we test both Uniform and One-Point DNC (as in [26]).

3.3 Other Design Details

We also tested the One-Point and Two-Point crossovers with variable-length
individuals, which uses a mutation operator close to LGP, in that it can add and
remove instructions as well as perform point mutation; and crossover between
nodes, not genes. All methods except DNC used forced diversity, making sure
each parent returned by the selection operator has a unique genotype [3,5]. DNC
is excluded as we did not want to tamper with the authors’ existing selection
method, which is standard tournament selection. For selection, the CGP(1 + 4)
strategy uses elite selection, DNC uses the tournament selection as in [35], and
the others use tournament selection with elitism following [24]. All trials were
run using the MSU High-Powered Computing Cluster [1]. Point mutation is used
at a gene level.

Fig. 1. Encoder and Decoder architecture in DNC. Each parent is converted into an
embedding. Embedded child genomes are generated and converted back into a typical
genomic representation [35].

In each run and for each generation, we record several metrics in relation
to the evolutionary dynamics. These are the fitness and number of active nodes
of the best-performing individuals, the change in fitness between the best par-
ent and child, and parent-offspring similarity as stated by [4] (Similarity). We
also count the amount of deleterious, near-neutral, or beneficial crossover and
mutation events at each generation (Crossover and Mutation Impact); for deter-
mining the impact category, the percent difference of the parent and child fit-
ness was measured, and labeled as deleterious if %Δf > 0.001, beneficial if
%Δf < −0.001, and near-neutral otherwise. Finally, we measure the distri-
bution of crossover indices over each generation categorized by impact. These
metrics are briefly summarized in Table 4.

For our fitness function, we use the Pearson correlation as suggested in [15,
23], which focuses selection on expressions that are close in shape to the training



76 M. Kocherovsky et al.

Table 4. Summary of Metrics Recorded.

Metric Description

Best Fitness Smallest fitness at the end of evolution

Best Fitness per Generation Smallest fitness during each generation

Semantic Diversity Standard Deviation of population semantics (fitnesses) in each generation

Instructions Number of active instructions in the best model after evolution

Program Size per Generation Number of active nodes in the best program in each generation

Similarity Similarity score (using alignment [4]) between parents and their best child

Xover Density Distribution Temporal frequency of indices used as crossover points categorized by impact direction

Mutation Density Distribution Temporal frequency of indices mutated categorized by impact direction

target, instead of merely requiring that aggregate error is small, as can happen
using RMSE simply because the scale of model output is close to targets, despite
the quality of fit being poor. To minimize the fitness measure, we use 1 − r2,
where r is the Pearson Correlation.

4 Results

4.1 Median Performance

For each replicate, we saved the fitness of the best model in the population.
Median fitness values of the best models for each crossover method for each
problem are shown in Table 5 and in more detail, together with the full Mann-
Whitney significance tables, in the supplementary material https://github.com/
MarkKocherovsky/cgp crossover. From Table 5, we can conclude that Canon-
ical CGP is the best performer for most of the problems considered, except
being significantly worse at the Levy problem, not significantly different from
other results for the Ackley problem, and being insignificantly worse than Sub-
graph on Nguyen 6. However, One-Point-Variable-Length, Uniform, and One-
Point Crossovers show competitive performance on several problems, with Two-
Point-Variable-Length and Subgraph also performing well in some cases. The
Real-Valued and Deep Neural Crossovers perform significantly worse. On the
Diabetes problem, both Variable-Length crossovers perform significantly better
than the other methods, and DNC performs significantly worse.

4.2 Temporal Plots

For our assessment of the metrics discussed in Table 4, we have chosen to limit our
figures in this paper to Koza 3 and Rastrigin because of the details in each plot.
Both problems are difficult to solve and are therefore adequate representatives
of the evolutionary dynamics. Full plots are available at https://github.com/
MarkKocherovsky/cgp crossover.

Figure 2a shows the median fitness of the best individuals in the population
at each generation. For the paper, we will look at our two example problems
starting at generation 100, as the most interesting development occurs between
500—2000 generations into evolution: Canonical CGP, which starts with much

https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover
https://github.com/MarkKocherovsky/cgp_crossover


On the Effectiveness of Crossover Operators 77

Table 5. Median fitness values of the best models for each crossover method in each
problem after 50 runs. The best value is shown in the deepest green and in bold, and
the worst in the deepest red.

Koza 1 Koza 2 Koza 3 Nguyen 4 Nguyen 5 Nguyen 6

CGP(1+4) 6.76E-04 5.11E-03 9.91E-03 8.91E-04 2.84E-04 5.06E-04

CGP-1x 1.12E-03 1.67E-02 4.18E-02 1.33E-03 1.11E-03 8.76E-04

CGP-DNC 1.70E-03 2.03E-02 1.17E-01 2.02E-03 1.35E-03 9.71E-04

CGP-DNC-1x 1.48E-03 2.73E-02 8.30E-02 1.93E-03 1.51E-03 9.78E-04

CGP-1xVL 1.26E-03 6.60E-03 2.74E-02 1.58E-03 2.36E-04 5.68E-04

CGP-2xVL 1.93E-03 8.94E-03 1.98E-02 2.05E-03 6.78E-04 1.01E-03

CGP-2x 1.12E-03 1.71E-02 4.89E-02 1.30E-03 1.04E-03 8.80E-04

CGP-RVx 3.62E-03 1.00E-01 3.38E-01 9.48E-03 2.77E-03 2.10E-03

CGP-SGx 1.21E-03 2.31E-02 4.16E-02 1.63E-03 1.09E-04 8.45E-04

CGP-Ux 9.34E-04 1.19E-02 1.75E-02 1.55E-03 7.55E-04 4.99E-04

Nguyen 7 Ackley 1D Rastrigin 1D Levy 1D Griewank 1D Diabetes

CGP(1+4) 8.89E-06 2.92E-02 3.61E-01 1.61E-01 6.00E-04 5.09E-01

CGP-1x 1.53E-05 2.78E-02 4.01E-01 9.78E-02 6.25E-04 5.22E-01

CGP-DNC 2.59E-05 3.39E-02 4.16E-01 1.91E-01 6.39E-04 5.34E-01

CGP-DNC-1x 4.47E-05 3.38E-02 4.11E-01 1.94E-01 6.45E-04 5.38E-01

CGP-1xVL 1.33E-05 2.70E-02 4.10E-01 1.02E-01 6.31E-04 4.87E-01

CGP-2xVL 1.81E-05 2.88E-02 4.24E-01 1.06E-01 6.19E-04 4.92E-01

CGP-2x 1.28E-05 2.85E-02 4.10E-01 1.04E-01 6.30E-04 5.25E-01

CGP-RVx 5.43E-04 3.16E-02 4.41E-01 1.07E-01 6.39E-04 5.24E-01

CGP-SGx 1.02E-04 2.77E-02 4.14E-01 1.06E-01 6.37E-04 5.09E-01

CGP-Ux 1.30E-05 2.68E-02 4.01E-01 1.01E-01 6.12E-04 5.18E-01

worse models on average, likely due to its small population size (as it is a (1+4)
ES), overtakes all crossover methods rather early in the evolutionary process.
Even though each method shows improvement of fitness over time, crossover
clearly stunts the rate of improvement. In Fig. 2b, we show the median amount
of active nodes for the elite model in each replicate over time. Canonical CGP
produces more complex models, which may correspond to its high performance,
but some competitive crossovers, namely Uniform Crossover in Koza 3 and Two-
Point crossover in Rastrigin, evidently produce less complex models, indicating
a complicated solution landscape.

At the population level, we measured semantic diversity, defined as the stan-
dard deviation of fitnesses in the population. This is shown in Fig. 2c. We can
see that the greatest diversity comes from the Variable-Length group, closely
followed by Subgraph and Canonical CGP. Though the high diversity of the lat-
ter is likely caused by its small population, the former two, as we will see, have
high amounts of deleterious events when compared to the other methods, so the
higher diversity is reasonable. Figure 2d shows the median similarity between



78 M. Kocherovsky et al.

Fig. 2. (a): Median fitness of the elite model in the population starting at generation
100, with markers indicating every 500 generations. The error ribbons fill in the area
between the first and third quartiles. Full plots are available in the supplementary
material. (b): Median amount of active nodes in the elite model at each generation.
CGP canonical tends to be the most complex by the end of evolution. (c): Median
Semantic Diversity of the Population at each generation. One-Point-Variable-Length,
Subgraph, and Canonical CGP have the most diverse populations. (d): Median simi-
larity of the best parent and child in each couple at each generation. Canonical CGP
produces the most similar children from each parent, as expected.



On the Effectiveness of Crossover Operators 79

Fig. 3. Density of crossover points over time for Koza 3, grouped by algorithm and
effectiveness. The data is condensed into points containing 100 generations and, except
for Subgraph and One-Point-Variable-Length,three genes, thus each pixel represents a
single node. This decision was made to keep events visible.

the best parent and the best child for each pair of parents, where Canonical
CGP, Two-Point methods, and One-Point DNC produce more similar children
by the end of evolution.



80 M. Kocherovsky et al.

To check whether there are any patterns in the crossover events themselves,
Fig. 3 shows the density of crossover points over time for each crossover method
and their effectiveness. The effectiveness of an operation is determined by finding
the percent change between the best parent in the couple and the best of that
couple’s offspring. The operation is then deleterious if Δf < −0.001%, benefi-
cial if Δf > 0.001%, and near-neutral otherwise, if −0.001% < Δf < 0.001%.
First, it is immediately clear that for most cases the overwhelming majority of
events are near-neutral, and for the most part, those events are nearly uniformly
spread across the genome at all times, which makes sense given the use of a
uniform random number generator. It is also obvious that deleterious and bene-
ficial operations are very common at the start of evolution (within the first hun-
dred generations) and from there become increasingly uncommon. Two crossover
methods stray from this pattern. Variable-Length methods are more likely to
have deleterious than they are to have neutral operations, and operations are
more likely closer to the front of the genome. Both observations make sense
given that the genome in this case can change size, thus it is more likely to be
smaller and more likely to have events at smaller indices, which would make
its evolution less stable. Subgraph Crossover, on the other hand, does not have
such capabilities: always having a fixed length genome and a randomly selected
crossover point (within constraints), the distribution should be uniform, yet we
see crossover events being much more common closer to the front of the genome.
Since crossover points are restricted to active nodes, this seems to confirm Cui
et al.’s observations that an instruction closer to the front of the genome is more
likely to be active than those at the back [10].

Finally, we collect similar density distributions for mutation operations. How-
ever, since we are not testing different mutation operators, the results are rela-
tively uniform across problems and crossover methods: operations are more likely
to be deleterious or beneficial if performed near the front of the genome, and
more likely to be neutral if performed towards the back.

5 Discussion

Our results indicate that Deep Neural Crossover does not seem to be an effec-
tive crossover operator for Cartesian Genetic Programming; DNC and Real-
Value Crossover perform significantly worse than Canonical CGP(1+4) and
other crossover methods, particularly Two-Point-Variable-Length and Uniform
Crossovers. Subgraph Crossover, on the other hand, performs competitively in
some scenarios, even when problems are more complex. We posit that the CGP
genome does not contain any patterns that can be found with lightweight neu-
ral networks. As intimated in Sect. 1, previous literature has largely established
constraints on selection and existing crossover methods instead of new ones. We
argue that these new constraints assume both the semantic equivalence of genes
in CGP regardless of position and that nodes closer to each other are likely to be
connected. Following [8] and [10], it is most likely that a node’s semantics also
rely on its position in the graph. Even if the phenotype is kept intact, moving a



On the Effectiveness of Crossover Operators 81

gene from one position to another may have a more dramatic effect on fitness
than previously recognized. This might occur because the Cartesian representa-
tion lacks a grounding mechanism such as the internal calculation registers in
LGP [24].

From here we can posit that the literature operates on each node without
considering the context of its connected nodes. A single instruction can be simul-
taneously dependent on other instructions and itself a dependency for other
nodes. A crossover method that does not take into account the interdependence
of nodes is therefore unlikely to succeed. This may be why Subgraph Crossover
is competitive, as it tries to preserve relationships between active nodes. In this
vein, we suggest an exploration of the relationship between positional bias and
semantics following [10], which used the REORDER operator introduced in Gold-
man and Punch (2013) [13] to mitigate positional bias in relation to active nodes.
We also propose to develop a method that focuses on the semantics (output) of
each node rather than simply the genotype and fitness of the phenotype. Positive
results have already been published for a semantic mutation operator in a 1 + λ
framework [16].

5.1 Summary of Contributions

To summarize, we return to our question from Sect. 1: why is crossover so
destructive in CGP in the first place? We believe, following [13] and [10], that
the problem lies in the assumptions of traditional crossover. Standard n-Point
Crossover assumes that genes that are closer to each other are more likely to be
positionally related, which in CGP is not the case. We also confirm the findings
of Cui et al., namely that the activity of a node is negatively correlated with its
position in the genome.

From a theoretical perspective, it would be prudent to run further experi-
ments designed to test the dynamics of positional bias. Regardless of whether
this is intuitive, the knowledge of how and why we observe positional bias is
still rather vague at this time. It would also be interesting to put into practice
a contextual perspective of CGP nodes and design a crossover operator around
the semantics and interconnectivity of individual nodes, .i.e. using a phenotypic
perspective on the crossover operator.

Acknowledgments. We would like to thank the Institute for Cyber-Enabled
Research at Michigan State University and the John R. Koza Endowment fund admin-
istered at MSU.

Disclosure of Interests. The authors declare no conflicts of interest.



82 M. Kocherovsky et al.

References

1. Hardware | institute for cyber-enabled research. https://icer.msu.edu/hpcc/
hardware (2024)

2. Ackley, D.: A Connectionist Machine for Genetic Hillclimbing, vol. 28. Springer
(2012)

3. Alfaro-Cid, E., Merelo, J., De Vega, F.F., Esparcia-Alcázar, A.I., Sharman, K.:
Bloat control operators and diversity in genetic programming: a comparative study.
Evol. Comput. 18(2), 305–332 (2010)

4. Aygün, E., Ecer, D.: Python-alignment (2017). https://github.com/eseraygun/
python-alignment

5. Banzhaf, W., Bakurov, I.: On the nature of the phenotype in tree genetic program-
ming. In: Handl, J., Li, X., Wagner, M., Garza-Fabre, M., et al. (eds.) Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO 2024), Mel-
bourne, Australia, pp. 868–877. ACM Press (2024)

6. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An
Introduction—On the Automatic Evolution of Computer Programs and its Appli-
cations. Morgan Kaufmann Publishers Inc. (1998)

7. Brameier, M., Banzhaf, W.: Linear Genetic Programming, pp. 36–37. Springer
(2007)

8. Cai, X., Smith, S.L., Tyrrell, A.M.: Positional independence and recombination
in Cartesian Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M.,
Gustafson, S., et al. (eds.) European Conference on Genetic Programming, pp.
351–360. Springer (2006)

9. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for Cartesian
Genetic Programming. In: Thierens, D., Beyer, H.G., Branke, J., et al. (eds.) Pro-
ceedings of the 9th Annual Conference on Genetic and Evolutionary Computation,
pp. 1580–1587. ACM Press (2007)

10. Cui, H., Margraf, A., Heider, M., Hähner, J.: Towards understanding crossover
for Cartesian Genetic Programming. In: van Stein, N., Marcelloni, F., Lam, H.K.,
Cottrell, M., et al. (eds.) Proceedings of the 15th International Joint Conference
on Computational Intelligence (IJCCI 2023), pp. 308–314. SCITEPRESS (2023)

11. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann.
Stat. 32(2), 407–451 (2004)

12. Francone, F.D., Conrads, M., Banzhaf, W., Nordin, P.: Homologous crossover in
genetic programming. In: Banzhaf, W., Daida, J.M. (eds.) Proceedings of the 1st
Annual Conference on Genetic and Evolutionary Computation, GECCO 1999, vol.
2, pp. 1021-1026. Morgan Kaufmann Publishers Inc., San Francisco (1999)

13. Goldman, B.W., Punch, W.F.: Length bias and search limitations in Cartesian
Genetic Programming. In: Silva, S., Esparcia-Alcazar, A.I., Lopez-Ibanez, M.,
Mostaghim, S., et al. (eds.) Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, pp. 933–940 (2013)

14. Griewank, A.O.: Generalized descent for global optimization. J. Optim. Theory
Appl. 34, 11–39 (1981)

15. Haut, N., Banzhaf, W., Punch, B.: Correlation versus RMSE loss functions in
symbolic regression tasks. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W.
(eds.) Genetic Programming Theory and Practice XIX, pp. 31–55. Springer (2023)

16. Hodan, D., Mrazek, V., Vasicek, Z.: Semantically-oriented mutation operator in
Cartesian Genetic Programming for evolutionary circuit design. In: Coello Coello,
C.A., Aguirre, A.H., Uribe, J.C., Fabre, M.G. (eds.) Proceedings of the 2020
Genetic and Evolutionary Computation Conference, pp. 940–948 (2020)

https://icer.msu.edu/hpcc/hardware
https://icer.msu.edu/hpcc/hardware
https://icer.msu.edu/hpcc/hardware
https://icer.msu.edu/hpcc/hardware
https://icer.msu.edu/hpcc/hardware
https://icer.msu.edu/hpcc/hardware
https://github.com/eseraygun/python-alignment
https://github.com/eseraygun/python-alignment
https://github.com/eseraygun/python-alignment
https://github.com/eseraygun/python-alignment
https://github.com/eseraygun/python-alignment
https://github.com/eseraygun/python-alignment


On the Effectiveness of Crossover Operators 83

17. Hunter, N.: Meiotic recombination: The Essence of Heredity. Cold Spring Harb.
Perspect. Biol. 7 12 (2015). https://api.semanticscholar.org/CorpusID:33542130

18. Husa, J., Kalkreuth, R.: A comparative study on crossover in Cartesian Genetic
Programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garćıa-
Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 203–219. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-77553-1 13

19. Kalkreuth, R.: A comprehensive study on subgraph crossover in Cartesian Genetic
Programming. In: Merelo Guervós, J.J., Garibaldi, J., Wagner, C., et al. (eds.)
Proceedings of the 12th International Joint Conference on Computational Intelli-
gence (IJCCI 2020) - Volume 1: ECTA, pp. 59–70. INSTICC, SciTePress (2020).
https://doi.org/10.5220/0010110700590070

20. Kalkreuth, R.: Reconsideration and extension of Cartesian Genetic Programming.
Ph.D. thesis, Technical University of Dortmund, Germany (2021)

21. Kalkreuth, R., Rudolph, G., Droschinsky, A.: A new subgraph crossover for carte-
sian genetic programming. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk,
E., Garćıa-Sánchez, P. (eds.) Genetic Programming, pp. 294–310. Springer, Cham
(2017)

22. Kaufmann, P., Platzner, M.: Advanced techniques for the creation and propaga-
tion of modules in Cartesian Genetic Programming. In: Keijzer, M., Antoniol, G.,
Congdon, C.B., Deb, K., et al. (eds.) Proceedings of the 10th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO 2008, pp. 1219–1226.
Association for Computing Machinery, New York (2008). https://doi.org/10.1145/
1389095.1389334

23. Keijzer, M.: Scaled symbolic regression. Genet. Program Evolvable Mach. 5(3),
259–269 (2004)

24. Kocherovsky, M., Banzhaf, W.: Crossover destructiveness in cartesian versus Linear
Genetic Programming. In: Fáıña, A., Risi, S., Medvet, E., Stoy, K., et al. (eds.)
ALIFE 2024: Proceedings of the 2024 Artificial Life Conference, p. 20. Artificial
Life Conference Proceedings, The International Society for Artificial Life (2024).
https://doi.org/10.1162/isal a 00735

25. Laguna, M., Marti, R.: Experimental testing of advanced scatter search designs for
global optimization of multimodal functions. J. Glob. Optim. 33, 235–255 (2005)

26. Liu, H., Zong, Z., Li, Y., Jin, D.: NeuroCrossover: An Intelligent genetic locus
selection scheme for genetic algorithm using reinforcement learning. Appl. Soft
Comput. 146, 110680 (2023)

27. Ma, Y., et al.: Learning to iteratively solve routing problems with dual-aspect col-
laborative transformer. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S.,
et al. (eds.) Proceedings of the 35th International Conference on Neural Informa-
tion Processing Systems, NIPS 2021, Curran Associates Inc., Red Hook (2024)

28. Miller, J.F., et al.: An empirical study of the efficiency of learning Boolean functions
using a cartesian genetic programming approach. In: Banzhaf, W., Daida, J.M.,
Eiben, A.E., Garzon, M.H., Honavar, V. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1135–1142. Morgan Kaufmann (1999)

29. Miller, J.F.: Cartesian genetic programming: Its Status and Future. Genet. Pro-
gram Evolvable Mach. 21(1–2), 129–168 (2020)

30. Miller, J.F., Harding, S.L.: Cartesian genetic programming. In: Keijzer, M., Anto-
niol, G., Bates Congdon, C., Deb, K., et al. (eds.) Proceedings of the 10th Annual
Conference Companion on Genetic and Evolutionary Computation, pp. 2701–2726.
ACM Press (2008)

https://api.semanticscholar.org/CorpusID:33542130
https://api.semanticscholar.org/CorpusID:33542130
https://api.semanticscholar.org/CorpusID:33542130
https://api.semanticscholar.org/CorpusID:33542130
https://api.semanticscholar.org/CorpusID:33542130
https://api.semanticscholar.org/CorpusID:33542130
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.1007/978-3-319-77553-1_13
https://doi.org/10.5220/0010110700590070
https://doi.org/10.5220/0010110700590070
https://doi.org/10.5220/0010110700590070
https://doi.org/10.5220/0010110700590070
https://doi.org/10.5220/0010110700590070
https://doi.org/10.5220/0010110700590070
https://doi.org/10.1145/1389095.1389334
https://doi.org/10.1145/1389095.1389334
https://doi.org/10.1145/1389095.1389334
https://doi.org/10.1145/1389095.1389334
https://doi.org/10.1145/1389095.1389334
https://doi.org/10.1145/1389095.1389334
https://doi.org/10.1145/1389095.1389334
https://doi.org/10.1162/isal_a_00735
https://doi.org/10.1162/isal_a_00735
https://doi.org/10.1162/isal_a_00735
https://doi.org/10.1162/isal_a_00735
https://doi.org/10.1162/isal_a_00735
https://doi.org/10.1162/isal_a_00735


84 M. Kocherovsky et al.

31. Oltean, M., Groşan, C., Oltean, M.: Encoding multiple solutions in a Linear
Genetic Programming chromosome. In: Bubak, M., Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) International Conference on Computational Science, pp. 1281–
1288. Springer (2004)

32. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point
crossover and point mutation. Evol. Comput. 6(3), 231–252 (1998). https://doi.
org/10.1162/evco.1998.6.3.231

33. Rudolph, G.: Globale optimierung mit parallelen Evolutionsstrategien. Ph.D. the-
sis, Department of Computer Science, University of Dortmund (1990)

34. Shem-Tov, E., Elyasaf, A.: Deep neural crossover: A multi-parent operator that
leverages gene correlations. In: Handl, J., Li, X., Wagner, M., Garza-Fabre, M.,
et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1045–1053 (2024)

35. Shem-Tov, E., Sipper, M., Elyasaf, A.: Deep learning-based operators for evolu-
tionary algorithms. In: Winkler, S.M., Banzhaf, W., Hu, T., Lalejini, A. (eds.)
Genetic Programming Theory and Practice XXI. Springer (2025)

36. da Silva, J.E., Bernardino, H.S.: Cartesian genetic programming with crossover
for designing combinational logic circuits. In: 2018 7th Brazilian Conference on
Intelligent Systems (BRACIS), pp. 145–150. IEEE Press (2018)

37. Suganuma, M., Shirakawa, S., Nagao, T.: Designing convolutional neural network
architectures using cartesian genetic programming, pp. 185–208. Springer, Singa-
pore (2020). https://doi.org/10.1007/978-981-15-3685-4 7

38. Torabi, A., Sharifi, A., Teshnehlab, M.: Using cartesian genetic programming app-
roach with new crossover technique to design convolutional neural networks. Neural
Process. Lett. 55(5), 5451–5471 (2023)

39. Turner, A.J.: Improving crossover techniques in a genetic program. Master’s thesis,
Department of Electronics, University of York (2012)

40. Wilson, G., Banzhaf, W.: A comparison of Cartesian Genetic Programming and
Linear Genetic Programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Espar-
cia Alcázar, A.I., et al. (eds.) Genetic Programming: Proceedings of the 11th Euro-
pean Conference, EuroGP 2008, Naples, Italy, pp. 182–193. Springer (2008)

https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1162/evco.1998.6.3.231
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7
https://doi.org/10.1007/978-981-15-3685-4_7

	On the Effectiveness of Crossover Operators in Cartesian Genetic Programming
	1 Introduction
	2 Background
	2.1 CGP
	2.2 Crossover in CGP

	3 Methods
	3.1 Problems
	3.2 Deep Neural Crossover (DNC)
	3.3 Other Design Details

	4 Results
	4.1 Median Performance
	4.2 Temporal Plots

	5 Discussion
	5.1 Summary of Contributions

	References


