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Abstract. Genetic programming-based evolutionary feature construc-
tion is a widely used technique for automatically enhancing the perfor-
mance of a regression algorithm. While it has achieved great success, a
challenging problem in feature construction is the issue of overfitting,
which has led to the development of many multi-objective methods to
control overfitting. However, for multi-objective methods, a key issue is
how to select the final model from the front with different trade-offs.
To address this challenge, in this paper, we propose a novel minimal
complexity knee point selection strategy in evolutionary multi-objective
feature construction for regression to select the final model for making
predictions. Experimental results on 58 datasets demonstrate the effec-
tiveness and competitiveness of this strategy when compared to eight
existing methods. Furthermore, an ensemble of the proposed strategy
and existing model selection strategies achieves the best performance
and outperforms four popular machine learning algorithms.

Keywords: Knee Point · Multi-criteria Decision-Making · Genetic
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1 Introduction

Evolutionary feature construction is an emerging topic that has achieved sig-
nificant success in enhancing machine learning pipelines [32]. Formally, evolu-
tionary feature construction methods aim to create a set of features Φ(X) to
improve the learning performance of a machine learning algorithm A on a dataset
(X,Y ). Among all evolutionary feature construction methods, genetic program-
ming (GP)-based feature construction is one of the most popular choices because
its variable-length, flexible representation is a natural approach for feature con-
struction. However, despite its considerable success, a significant challenge in
this area is the problem of overfitting [2].
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Since evolutionary algorithms are gradient-free optimization techniques,
many works are able to optimize non-differentiable complexity measures to strike
a balance between training accuracy and model complexity. Many works use a
multi-objective optimization framework to balance the trade-off between learning
performance and model size, VC-dimension [10], input-output distance correla-
tion [33], or Rademacher complexity [8]. This paper focuses on multi-objective
feature construction using the size of GP trees as the complexity measure because
of its simplicity. In simple terms, multi-objective feature construction considers
both training accuracy/cross-validation score and tree size in the evaluation
and selection process. Finally, a Pareto front with different levels of trade-off is
obtained for users to select the appropriate model.

However, when confronted with a front consisting of solutions with varying
trade-offs, one key issue is how to select the final model from the set of non-
dominated solutions, a problem known as multi-objective decision-making. Most
existing approaches use the model with the highest training accuracy [8], but this
model may still exhibit significant complexity as it is an extreme point in the front.

In the domain of multi-objective decision-making [7], when no explicit pref-
erence is given, a common strategy is to identify a knee point [44]. The knee
point is a point where a marginal improvement in one objective results in a sub-
stantial degradation in other objectives. Based on this definition, it is evident
that multiple knee points may exist within the front.

Existing work in multi-objective GP often selects a single knee point based
on the most significant trade-off among solutions in the front [38], which is
intuitive when domain knowledge is lacking. However, for evolutionary feature
construction, we hypothesize that among all knee points, the one with minimal
complexity may provide better generalization performance, aligning with the
philosophy of Occam’s razor [36]. This hypothesis is based on the idea that a
substantial increase in complexity required to improve training accuracy may
be indicative of overfitting. Therefore, choosing the knee point with minimal
complexity is a sensible option to avoid overfitting.

To clarify this, we present a real-world example of a front in Fig. 1 based on
the dataset “OpenML_228”, which is a case of severe overfitting when applying
some non-dominated solutions to the test set. Here, several knee points exist on
the Pareto front. However, the model at the knee point with the largest bend
angle, denoted as ‘B,’ performs poorly, with a test relative squared error (RSE)
exceeding 0.48. In contrast, the knee point with minimal complexity, denoted as
‘D’, demonstrates reasonable performance with a test RSE of approximately 0.16.
Moreover, this example shows that for knee points on the left side of knee point
‘D’, there is a gradual increase in test RSE, as indicated by the color of those
points, suggesting that overfitting may occur before reaching the complexity
level of the traditional knee point. Therefore, selecting the knee point with the
largest bend angle, as in the traditional approach, may not be ideal.

1.1 Goals

In this paper, we propose a minimal complexity knee point selection (MCKP)
strategy for selecting the final model in multi-objective GP-based feature con-
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Fig. 1. Visualization of knee points on the front. The numbers in the legend repre-
sent relative squared error (RSE) on the test set, with darker colors indicating better
performance, and yellow points represent extremely worse RSE. Both objectives are
normalized by extreme objective values in the front. Knee points are annotated by red
letters. The figure is for post-hoc analysis only and cannot be used for model selection.
(Color figure online)

struction for regression1. Firstly, our approach uses a clustering algorithm to
automatically determine the angle threshold, thereby identifying a set of angle-
based knee points. Subsequently, among all knee points, we select the one with
minimal complexity as the final model. The main objectives are summarized as
follows:

– To favor models with potentially strong generalization performance, we pro-
pose a minimal complexity selection strategy to select the final model from
the Pareto front.

– To determine a set of candidate knee points from the front, we propose a
clustering-based method to automatically determine the angle threshold for
knee points.

– To validate the effectiveness of the proposed strategy, we compare the MCKP
strategy with seven commonly used model selection strategies in the multi-
objective framework on 58 datasets.

1.2 Organization

The remainder of this paper is structured as follows: Sect. 2 reviews related work
on knee point selection and overfitting control. Section 3 introduces the details
of the proposed algorithm. Section 4 provides the experimental settings, and
Sect. 5 shows the experimental results. Section 6 includes further analysis of the
proposed strategy. Finally, we conclude the paper and outline future directions
in Sect. 7.
1 Source code: https://anonymous.4open.science/r/Knee-GP/.

https://anonymous.4open.science/r/Knee-GP/
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2 Related Work

2.1 Knee Point Selection

In real-world applications, users often need to select a single solution from the
Pareto front as the final solution, which is known as multi-objective decision-
making [6]. When no specific preference exists, a common approach is to select
the knee point, which is a point where improving one objective significantly
decreases another. However, there is no formal, clear definition of a knee point
since it depends on the specific context. In machine learning, it could mean the
decrease in complexity if the training RSE score improves by 0.1 or 0.01. Due to
this ambiguity, several knee point selection strategies exist in the field of multi-
objective optimization [30], broadly classified as trade-off information-based and
geometry property-based methods [19].

For trade-off information-based knee point selection strategies, a represen-
tative example is the utility function. Assuming there are M normalized min-
imization objectives f1, . . . , fM , the trade-off between two points xi and xj on
the Pareto front can be computed as follows [29]:

T (xi, xj) =
∑M

m=1 max [0, fm (xj) − fm (xi)]
∑M

m=1 max [0, fm (xi) − fm (xj)]

This equation calculates the ratio of gain and loss when changing objective
values. Then, the utility value of point xi is defined as the minimum trade-off
value T (xi, xj) among all possible xj on the Pareto front:

μ (xi, S) = min
xj∈S

T (xi, xj)

Thus, an individual with a high utility value for any changes is considered a knee
point [29].

Regarding geometry property-based knee point selection strategies, two rep-
resentative examples are as follows:

– Angle-based Method [11]: For a bi-objective optimization task, the angle
method calculates the angle between the line formed by the current point
x and the left point xL and the line formed by the current point x
and the right point xR. For simplicity, we can first calculate two angles

θL = arctan
f2(xL)−f2(x)

f1(x)−f1(xL)
and θR = arctan

f2(x)−f2(xR)
f1(xR)−f1(x)

, as shown in Fig. 2.
The bend angle is then defined as the difference between θL and θR, i.e.,
θ
(
x,xL,xR

)
= θL − θR. The point with the largest bend angle θ

(
x,xL,xR

)

is chosen as the knee point.
– Distance To Extreme Line [31]: The distance to extreme line method identifies

the knee point on the Pareto front by finding the point with the maximum
distance from a line L (p∗

1, p
∗
2), where L (p∗

1, p
∗
2) represents the line connecting

two extreme points p∗
1 and p∗

2 on the Pareto front.
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Fig. 2. Angle-based knee point calculation.

In the GP domain, knee point-based selection methods have been used for
determining important features [37] and important individuals for knowledge
transfer [38]. However, their application in selecting the final model based on
the trade-off between training accuracy and model complexity remains limited.
This paper explores this aspect.

2.2 Evolutionary Feature Construction

Evolutionary feature construction has been widely used to enhance learning per-
formance and can be categorized into three categories: wrapper-based, filter-
based, and embedded methods.

– Wrapper-based methods evaluate features based on a specific learning algo-
rithm, such as KNN [28] and decision trees [43]. These methods can
achieve good performance with that specific learning algorithm. However, the
wrapper-based method can sometimes lead to overfitting because it directly
optimizes accuracy or cross-validation scores on the training data.

– Filter-based methods use general metrics that are independent of any learning
algorithm to evaluate features, such as purity [22], which is inexpensive and
can generalize to different kinds of algorithms. However, these features may
not have optimal performance on a specific learning algorithm.

– Embedded methods construct features during the learning process, with sym-
bolic regression [9] being a typical example.

This paper focuses on wrapper-based methods due to their effectiveness. The
problem of overfitting in wrapper-based methods is the issue we aim to address
in this paper.

2.3 Overfitting Control for Genetic Programming

GP-based symbolic regression and feature construction methods have achieved
great success in recent years. However, a significant challenge in applying evolu-
tionary feature construction in real-world scenarios is its susceptibility to over-
fitting on limited or noisy training data [1,34]. To address this challenge, var-
ious approaches have been explored. Some incorporate metrics from statisti-
cal machine learning theory, such as Tikhonov regularization [24], VC dimen-
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sion [10], or Rademacher complexity [8], as additional optimization objec-
tives. Others adopt overfitting control techniques from other machine learn-
ing domains, including auxiliary fitness functions [4], modular architecture [39],
semantic hoist mutation [40], multi-task learning [5], feature selection [9], ensem-
ble learning [41], and random sampling [16].

Among these overfitting control techniques, multi-objective GP is widely
used in state-of-the-art symbolic regression and evolutionary feature construc-
tion algorithms [8,17]. Typically, one objective is set as the training accuracy,
and the other objective is the model size. However, a challenge arises in that
a front of models with different levels of training performance and complexity
is available at the end of evolution. When domain experts are available, they
can inspect these models and select the best one. However, in many cases where
domain experts are not available, many existing algorithms simply choose the
model with the best training accuracy [8,17], which is evidently suboptimal and
worth further investigation.

3 The Proposed Method

3.1 Algorithm Framework

Overall, this paper focuses on evolutionary feature construction based on multi-
tree GP with a linear regression model. The optimization objectives are leave-
one-out cross-validation loss and tree sizes. The evolutionary process follows
a common framework of evolutionary feature construction, which includes the
following stages:

– Population Initialization: Initially, a set of individuals is randomly initialized
using the ramped half-and-half method [3]. Each multi-tree GP individual
starts with a single randomly initialized GP tree, representing a constructed
feature. Although only one GP tree is initialized in each individual, addi-
tional GP trees can be added using genetic operators during offspring gener-
ation [20].

– Individual Evaluation: For each individual, the evaluation process first trans-
forms the training data using the features constructed by all trees within a GP
individual. Then, a linear regression model is trained on the constructed fea-
tures to calculate training errors using a leave-one-out cross-validation scheme
on the training data [42]. Along with the training error, we also compute the
tree size, which is the sum of the sizes of all GP trees within an individual.

– Parent Selection: After obtaining objective values, parents are selected using
the domination-based binary tournament selection operator in NSGA-II [12].
The general idea is that, for a pair of randomly selected individuals, the
non-dominated solution is given the first priority, and then the individual
with the better crowding distance is considered if the two individuals are
non-dominated with respect to each other.

– Offspring Generation: Offspring are generated by using random subtree
crossover and random subtree mutation on GP trees. Moreover, the random



148 H. Zhang et al.

Fig. 3. Automatic determination of the knee point threshold through clustering.

tree addition and random tree deletion operators [20] are used to enable
the construction of more than one feature. The crossover operator, mutation
operator, and addition/deletion operator are applied sequentially with their
respective probabilities.

– Environmental Selection: In this stage, non-dominated sorting with crowding
distance [12] is used to select surviving individuals from a combination of
parent and offspring individuals.

The evaluation, parent selection, offspring generation, and environmental selec-
tion are performed iteratively until the termination criterion is met, resulting
in a front of solutions with various trade-offs between model complexity and
training accuracy. Subsequently, we can use the knee point selection strategy
to identify the final model from this front. The predictions on unseen data are
bounded within the range of the training data to avoid overly large extrapola-
tions because we have seen that bounding the predictions, i.e., using decision
trees [35] and k-nearest neighbor [18] as the base learner, can provide good gen-
eralization performance.

3.2 Minimal-Complexity Knee Selection

In this paper, we first calculate the bend angle θΔ for each point x using its
adjacent points xi−1 and xi+1 in the objective space of the front. Then, we
can identify knee points based on a threshold of bend angles. However, using a
static threshold is challenging, as finding a fixed value suitable for all datasets
is difficult. Thus, as illustrated in Fig. 3, K-Means is applied to automatically
determine the threshold by clustering non-dominated solutions into k groups
based on angles, where k is a hyperparameter. The cluster corresponding to the
largest angle is chosen and denoted by Cmax, representing the cluster of knee
points. Within that cluster Cmax, the model with the minimum complexity is
selected as the final model. If the number of points is less than the required
number of clusters, then the point with the largest bend angle is selected. The
pseudo-code is presented in Algorithm 1, which primarily consists of two stages:

– Angle Calculation (Lines 2–7): The angles are calculated based on the bend
angle calculation method introduced in Sect. 2.1.

– Minimal-Complexity Knee Selection (Lines 9–15): After using clustering tech-
niques to determine the threshold for knee points, the knee point with minimal
complexity is chosen as the final model.
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Algorithm 1. Minimal Complexity Knee Selection
Input: x: Points from Pareto front, k: Number of clusters
Output: Φmin: Selected model with minimum complexity
1: Θ ← {} � Initialize angle set
2: for i = 1 to len(x) − 1 do � Iterate through points
3: θL ← arctan

(
x[i−1][1]−x[i][1]
x[i][0]−x[i−1][0]

)
� Calculate left angle

4: θR ← arctan
(

x[i][1]−x[i+1][1]
x[i+1][0]−x[i][0]

)
� Calculate right angle

5: θΔ ← θL − θR � Compute the bend angle
6: Θ ← Θ ∪ {θΔ}
7: end for
8: C ← KMeans(Θ, k) � Cluster the angles
9: θmax ← −∞

10: for Cj in C do � Find cluster with max angle
11: if 1

|Cj |
∑

θ∈Cj
θ > θmax then

12: θmax ← 1
|Cj |

∑
θ∈Cj

θ

13: Cmax ← Cj

14: end if
15: end for
16: Φmin ← argminΦ∈Cmax

Complexity(Φ) � Select features with minimum complexity
17: return Φmin

4 Experimental Settings

4.1 Datasets

The datasets consist of real-world datasets from the Penn Machine Learning
Benchmark (PMLB) [26], which is a curated list of datasets from OpenML.
Synthetic datasets are excluded because they are less prone to overfitting. After
excluding the synthetic datasets, 58 datasets remains.

4.2 Evaluation Protocol

To obtain reliable results, we conduct 30 independent runs with different random
seeds. In each run, to simulate situations where training samples are scarce, only
100 training instances are used as the training data for feature construction [25],
and the remaining data are used for testing. To further increase the difficulty,
20 random variables generated from N (0, 1) are appended to the datasets. To
eliminate magnitude differences between different datasets, RSE is used to eval-
uate the performance of a model on test data. After conducting 30 independent
runs, the signed rank test at a significance level of 0.05 was used to examine
statistical differences among algorithms.
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Table 1. Parameter settings for MCKP-GP.

Parameter Value

Maximal Population Size 100

Number of Generations 50

Crossover and Mutation Rates 0.9 and 0.1

Tree Addition Rate 0.5

Tree Deletion Rate 0.5

Initial Tree Depth 0–3

Maximum Tree Depth 10

Initial Number of Trees 1

Maximum Number of Trees 20

Elitism (Number of Individuals) 1

Functions +, −, *, AQ, Sqrt, Max, Min,
Negative, Abs, ReLU, Gaussian

4.3 Parameter Settings

The parameter settings are shown in Table 1, which are common settings for GP.
For instance, the crossover rate is set significantly higher than the mutation rate
to facilitate the exchange of building blocks. To prevent zero-division errors, we
employ the analytical quotient (AQ) [23], defined as AQ = a√

1+(b2)
for given

inputs a and b. We use ReLU and Gaussian because they have shown good
performance in neuroevolution [15]. The range for ephemeral random constants
is set to [−5τ, 5τ ], where τ represents the maximum absolute value of input
variables [35].

4.4 Baseline Algorithms

The baseline algorithms include five popular knee point selection strategies:

– Angle Knee Selection (AKS) [6]: AKS identifies the final model by selecting
the point with the maximum angle formed by it, its left neighbor, and its
right neighbor. The angle calculation method is introduced in Sect. 2.

– Four Angle Knee Selection (FAKS) [6]: FAKS is similar to AKS, but considers
the maximum angle formed by four adjacent points instead of two adjacent
points to determine the knee.

– Bended Angle Knee Selection (BAKS) [11]: BAKS is similar to AKS, but uses
the two extreme points as reference points for angle calculation, rather than
using two adjacent points.

– Utility Function Knee Selection (UFKS) [29]: UFKS selects the individual
with the highest utility value as the final model. The utility function is intro-
duced in Sect. 2.

– Distance To Extreme Line Knee Selection (DELKS) [44]: In this method, the
model with the maximum Euclidean distance from the extreme line is chosen
as the final model.
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In addition to knee point selection methods, we also compare:

– Best Training Accuracy (BTA) [8,17]: BTA selects the model with the best
training accuracy/lowest training error from the front as the final model.

– Best Harmonic Mean Rank (HMR) [14]: HMR ranks models based on the
harmonic mean of accuracy rank (ra) and model size rank (rm), using the
formula 1

r−1
a +r−1

m
. The model with the best harmonic mean rank is chosen

as the final model. This method is used for ranking models discovered by
different algorithms in the GECCO 2022 symbolic regression competition [14],
but it is also applicable for ranking models within a front.

– Standard GP (STD-GP): STD-GP is a standard GP algorithm that does not
consider model size as an additional objective.

Except for STD-GP, all model selection methods follow the same multi-objective
evolutionary process, differing only in how they select the final model from the
Pareto front.

5 Experimental Results

In this section, we validate the effectiveness of the proposed minimal complexity
knee point selection strategy by comparing it with other model selection strate-
gies. Additionally, we inspect the Pareto front and conduct parameter sensitivity
analysis to further demonstrate the effectiveness of the proposed method.

5.1 Comparison of Model Selection Strategies

In this section, we present experimental results of test RSE when employing
different model selection strategies, as detailed in Table 2. There are two points
to highlight from the results.

First, the proposed MCKP strategy significantly improves the generalization
performance of standard GP on 32 datasets and degrades it on 11 datasets, indi-
cating that MCKP effectively enhances generalization performance. Traditional
knee point selection strategies also outperform standard GP to varying degrees.
In comparison, BTA improves performance on only one dataset while worsening
it on four datasets. Thus, existing methods for selecting the best training per-
formance are not effective for controlling overfitting, and knee point selection
strategies are better options.

Second, the experimental results show that using the knee point with minimal
complexity outperforms the AKS strategy on 20 datasets and underperforms on
7 datasets. This is an interesting finding because except for MCKP, other knee
point selection strategies show similar behaviors to each other, as most of them
exhibit similar performance on more than 50 out of 58 datasets. Ideally, it would
be great to know which strategy performs well on which dataset, as instance
space analysis techniques show [21]. However, it is a very difficult task because
overfitting is not only related to the number of instances but also the noise in
data, which is an unknown property. Thus, an alternative way is to combine
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Table 2. Statistical comparison of test RSE across various model selection strategies.
(“+”, “∼”, and “−” indicate that using the method in a row performs better than,
similar to, or worse than using the method in a column.)

AKS FAKS BAKS MEDKS

MCKP 20(+)/31(∼)/7(−) 15(+)/36(∼)/7(−) 10(+)/37(∼)/11(−) 10(+)/40(∼)/8(−)
AKS — 0(+)/58(∼)/0(−) 0(+)/56(∼)/2(−) 0(+)/54(∼)/4(−)
FAKS — — 0(+)/55(∼)/3(−) 0(+)/56(∼)/2(−)
BAKS — — — 0(+)/58(∼)/0(−)
MEDKS — — — —
UFKS — — — —
HMR — — — —
BTA — — — —

UFKS HMR BTA STD-GP

MCKP 11(+)/37(∼)/10(−) 16(+)/30(∼)/12(−) 31(+)/15(∼)/12(−) 32(+)/15(∼)/11(−)
AKS 0(+)/55(∼)/3(−) 2(+)/51(∼)/5(−) 23(+)/28(∼)/7(−) 21(+)/29(∼)/8(−)
FAKS 0(+)/56(∼)/2(−) 2(+)/52(∼)/4(−) 22(+)/28(∼)/8(−) 24(+)/26(∼)/8(−)
BAKS 0(+)/58(∼)/0(−) 3(+)/52(∼)/3(−) 24(+)/29(∼)/5(−) 24(+)/27(∼)/7(−)
MEDKS 0(+)/58(∼)/0(−) 3(+)/52(∼)/3(−) 24(+)/28(∼)/6(−) 26(+)/26(∼)/6(−)
UFKS — 3(+)/52(∼)/3(−) 23(+)/29(∼)/6(−) 25(+)/27(∼)/6(−)
HMR — — 24(+)/31(∼)/3(−) 27(+)/26(∼)/5(−)
BTA — — — 1(+)/53(∼)/4(−)

models selected by two strategies and make an ensemble prediction. By doing
so, we hope the model can benefit from two models, which will be shown in
Sect. 6.

To further analyze the behavior of different selection strategies, we plot both
the evolutionary training curve and the corresponding test curve of these selec-
tion methods on four representative datasets. The training curves are shown in
Fig. 4a, and they reveal that MCKP has a significantly lower training curve com-
pared to other methods. This aligns with our assumption because MCKP favors
the simplest knee point, which has higher training error than traditional knee
points. However, as shown in Fig. 4b, other strategies may overfit on datasets
like “OpenML_228”, whereas MCKP handles overfitting well on these datasets.
Thus, in practical scenarios where domain knowledge suggests potentially severe
overfitting, considering MCKP for model selection can mitigate the risk of over-
fitting.

5.2 Visualization of Pareto Fronts

In Sect. 1, we introduced the minimal knee point selection method using an
example of the final front. Here, we provide more results on various datasets in
Fig. 5. The training error and complexity in these figures are normalized accord-
ing to the best and worst objective values achieved by non-dominated individ-
uals. These results highlight that knee points with the largest bend angles are
not good in many cases. For example, on the “OpenML_210” dataset, the tra-
ditional knee point, labeled as point “B”, has a relatively high RSE of around
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Fig. 4. Evolutionary plots of training RSE and test RSE for the selected models.

Fig. 5. Visualization of knee points on Pareto fronts. The numbers in the legend rep-
resent normalized test MSE, where lower values are better. Knee points are annotated
by red letters. The “star” point denotes the traditional knee point, and the “diamond”
point represents the minimal complexity knee point. Yellow points represent models
with extremely high test errors. (Color figure online)

1.5, whereas the knee point with minimal complexity can achieve a lower RSE
of approximately 0.3. Similar trends can also be observed in other figures, sug-
gesting that selecting the knee point with minimal complexity is a better option
in many cases.



154 H. Zhang et al.

Table 3. Statistical comparison of test RSE for different numbers of clusters.

3 5
2 9(+)/42(∼)/7(−) 15(+)/34(∼)/9(−)
3 — 2(+)/55(∼)/1(−)

Table 4. Statistical comparison of test RSE for different model selection strategies

AKS+HMR MCKP AKS HMR

MCKP+HMR 9(+)/46(∼)/3(−) 12(+)/44(∼)/2(−) 22(+)/35(∼)/1(−) 20(+)/34(∼)/4(−)

AKS+HMR — 14(+)/38(∼)/6(−) 10(+)/47(∼)/1(−) 4(+)/53(∼)/1(−)

MCKP — — 20(+)/31(∼)/7(−) 16(+)/30(∼)/12(−)

AKS — — — 2(+)/51(∼)/5(−)

5.3 Impact of the Number of Clusters

The number of clusters is a hyperparameter that needs to be set when determin-
ing the threshold of knee points. Table 3 presents the impact of different numbers
of clusters on final performance. As shown in the results, compared to using a
cluster number of 3, using a cluster number of 2 can improve performance on
nine datasets but can also degrade it on seven datasets. Using a cluster num-
ber of 5 improves performance compared to using a cluster number of 3 on one
dataset but worsens it on two datasets. In summary, using the default parameter
of 3 is a reasonable choice, although using a cluster number of 2 is good as well.

6 Further Analysis

In this section, considering the conclusions from the previous section, we first
conduct experiments to ensemble different types of knee points to achieve better
performance. Following that, we compare GP with the proposed knee point
selection strategy to several popular interpretable machine learning algorithms.

6.1 Post-Hoc Analysis of Ensemble Learning

Even though the MCKP strategy is better than other methods, like HMR, on 16
datasets, it is worth noting that MCKP is still worse than HMR on around 12
datasets. Given that MCKP and other model selection techniques have varying
advantages on different datasets, we propose using ensemble learning to enhance
performance. In this section, we focus on combining MCKP and HMR because
AKS, FAKS, BAKS, MEDKS, and UFKS have similar test RSE to HMR on most
datasets, indicating that they select similar models from the front. The experi-
mental results of RSE, presented in Table 4, demonstrate that combining MCKP
and HMR through ensemble learning performs better than using MCKP alone on
12 datasets and is worse on only 2 datasets. This indicates that ensemble learn-
ing can combine the advantages of two different model selection strategies and
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Fig. 6. Median RSE of different learn-
ing methods.

Fig. 7. Pairwise statistical comparison
of different learning methods.

achieve better performance. Moreover, we also tried to combine AKS and HMR,
but its performance is significantly worse than combining MCKP and HMR on
9 datasets, and only better on 3 datasets. These results demonstrate that it is
important to incorporate selection strategies with different behaviors to achieve
good performance. AKS and HMR have similar test RSE on 51 datasets, and
their similar behavior in model selection results in fewer improvements compared
to combining MCKP and HMR.

6.2 Comparisons with Other Machine Learning Algorithms

To further validate the effectiveness of the proposed method, we compare it with
popular machine learning algorithms, including support vector regression (SVR),
k-nearest neighbor (KNN), Ridge, and decision tree (DT) [27]. The experimen-
tal results of RSE are presented in Fig. 6, and the pairwise signed rank test
with Benjamini-Hochberg correction is shown in Fig. 7. These results indicate
that GP outperforms popular machine learning algorithms when dealing with
sample-limited and noisy datasets. Furthermore, the proposed knee point selec-
tion strategy further enhances the advantages of GP, especially the ensemble
knee point selection strategy.

7 Conclusions

In this paper, we propose a minimal complexity strategy, MCKP, to select the
final model from knee points on the front of training accuracy and model size
in order to improve the generalization performance of GP-based evolutionary
feature construction algorithms. Experimental results on 58 datasets show that
MCKP outperforms existing knee point-based model selection strategies and the
strategy that selects the model with the best training accuracy/lowest training
error in controlling severe overfitting. Given that we usually do not know which
dataset is prone to overfitting, we also propose an ensemble strategy, combining
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MCKP with traditional knee point-based model selection strategies, which yields
the best performance.

In this work, we simply ensemble different models selected by different strate-
gies to combine the advantages of these various models. Future work could delve
deeper into determining the most suitable scenario for using each selection strat-
egy. The analysis could follow a similar approach to the one employed in ana-
lyzing symbolic regression benchmarks [13].
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