
Empirical Analysis of Different Levels of Meta-Evolution

Wolfgang Mantschik, Peter Dittrich, Markus Brameier, and Wolfgang Banzhaf

Department of Computer Science
University of Dortmund

Germany
wkantsch/dittrich/brameier/banzhaf@1S11.nd.de

http://lsll-www.cs.uni-dortmund.de
Abstract-

In this contribution we analyze different levels of meta-evolution using a graph-based GP system. The system allows
to represent individuals of the search space and genetic variation operators in a coherent way as graph-programs dif-
fering only in the operator set. Seven variants of meta-evolution are tested on three real-world classification problems.
The most complex variant consists of three meh-levels where graph-programs on meta-level 1 recombine individuals
of the search space (base level), graph-programs on meta-level 2 recombine programs on meta-level 1, and programs
on meta-level3 recombine programs on meta-level2 and themselves. The emperical results shows that the use of meta
levels is advantageous.

Keywords: genetic programming, graph GP, self-adaptation of genetic operators, classification

1 Introduction

In the domain of evolutionary algorithms (EA), there is a long tradition of adaptive genetic operators. A 'common and well
established method is the self-adaptation of strategy parameter, e.g., the global frequency of operator applications [6] or adap-
tation of the mutation variance in ES [22], EP [lo], or GA [3]. In addition there are approaches which dynamically adjust the
global interpretation of the representation based on heuristics [15, 23, 261. There are also methods which allow adaptation of
crossover operators by adjusting the probability that a position is chosen as a crossover point [20,21]. This approach has also
been successfully applied to GP [2, 111.

In GP, there is also an implicit adaptation of variation by neutral variation of the genotype. This usually happens implicitly in
GP when introns appear that change e.g. the probability that a useful region is hit by recombination. There are also a variety of
methods which explicitly manipulate the genotype like ADFs [131, adaptive representations [191, automatic library generation
[11, explicitly defined introns [27], or module acquisition techniques [4, 111.

The methods of genetic programming, however, can be applied themselves as adaptions mechanisms if the variation op-
erators are represented as programs [12, 24, 251. The focus of our contribution is this meta-evolution of recombination-like
variation operators. To this end, several schemes of how adaptive operators may be adapted are analyzed empirically. The
adaptation of the adaptation operators can be achieved by adding additional evolutionary levels or by recursively applying the
variation operators onto themselves [7, 141. Here, this is operationalized by expressing genetic operators as graph programs
that may undergo their own evolution, using the same methods in a hierarchical and recursive fashion. Before describing the
seven variants of meta-evolution that we examine the following section introduces briefly our graph GP system which is based
on an approach by Teller [24, 251.

1.1 Graph GP

The representations of programs used for GP can be classified by their underlying structure into three major groups: (1) tree-
based [13], (2) linear-based [5, 161, and (3) graph-based [17, 251 representations.

In this paper we use Teller's graph-based GP. In this form of graph-based GP each program p is represented by a directed
graph of N p nodes. Each node can have up to N p outgoing edges. Each node in the program has two parts, action and
branching decision. The action part is either a constant or a function which will be executed when the node is reached during
the interpretation of the program. The environment of a program consists of an indexed memory and a stack, both of which are
used to transfer data among the nodes. An action function could therefore get its inputs from the stack and could push its output
back onto the stack. After the action of a node is executed, an outgoing edge is selected according to the branching decision.
This decision is made by a branchingfunction which determines the edge to the next node, while using the information held
on the top of the stack, in memory or in the branching constant of each node. Hence, not all nodes of a graph are necessarily
visited during an interpretation.

Each program has two special nodes, a start and a stop node. The start node is always the first node to be executed when
the interpretation of a program begins. After the stop node is reached, its action is executed and the program halts. Since the
graph structure inherently allows loops and recursion, it is possible that the stop node is never reached during the interpretation.
In order to avoid that a program runs forever it is terminated after a certain time threshold is reached. In our system the time
threshold is implemented as a fixed maximum number of nodes which can be executed during the interpretation.

0-7803-5536-9/99/$10.00 0 1 9 9 9 IEEE 2086

mailto:wkantsch/dittrich/brameier/banzhaf@1S11.nd.de
http://lsll-www.cs.uni-dortmund.de

p a n t 1

child I

parent2

child 2

\ I - I U I-
getBranchconst

Figure 1: Left: The structure of a node in a graph-based GP program and an example node. Right: Crossover-operation
example of two graph-based programs.

1.2 Recombination of Graph-based Programs

The crossover operation combines the genetic material of two parent programs by swapping certain program parts. Each node
of a parent p is label-ed by a fixed index i E { 1, . . . , N p } . The following algorithm for the recombination of graphs is applied
for recombination [24,25]:

Mark some nodes in both parents which will be exchanged.
(Here, this operation will be performed either by a random selection of nodes or by a “meta”’ operator to be explained
below.)
Label all edges external which are connecting marked nodes with unmarked nodes and all edges which are connecting
unmarked nodes with marked nodes.
Replace the nodes of a parent by the marked nodes of the other parent. A marked node with index i replaces a node with
the same index in the other parent. If the target parent p does not contain a node with index i, then the node gets a new
index Np + 1 and will be added to the parent p .
Modify all external edges in a parent so that they point to randomly selected nodes of the same parent which have not
been exchanged.

The method assures that all edges are connected in the two child graphs and that valid graphs are generated. Figure 1 shows
an example of this crossover method.

2 Variants of Meta-Evolution

To explore different variants of meta-evolution our system consists of four different levels called task level, meta-1 level, meta-2
level and meta-3 level. Each level consists of a population of graph-programs where programs on the task level should solve
the desired problem. Programs on meta levels are variation operators. The following variants are empirically investigated (Fig.
2):
Variant (a) “random”: This is the conventional GP approach, where individuals are recombined by exchanging randomly
chosen sub-components. There are demes of individuals that should solve the different classes of the classification problems.
The individuals are called task programs to distinguish them from individuals of the higher levels, explained below.
Variant (b) “meta-1 random”: In this variant a second population of GP programs exists. These individuals are called meta-1
operators and their population meta-1 level. Task programs are recombined by meta-1 operators [24]. Meta-1 operators, in
turn, are recombined by a random recombination as in variant (a).
Variant (c) “meta-1 self”: Like variant (b) but meta-1 operators are recombined by themselves.
Variant (d) “meta-2 random”: Like variant (b) but meta-1 operators are recombined by meta-2 operators. Meta-2 operators
form a third population (mefa-2 level) and are recombined by a random recombination operator.
Variant (e) “meta-2 self”: Like variant (b) but meta-1 operators are recombined by meta-2 operators. Meta-2 operators form
a third population (metu-2 level) and are recombined by themselves.

2087

(a) task random

(0 meta 3 random

(b) meta 1 random (c) meta 1 self

(d) meta 2 random

, I ,

(e) meta 2 self

. I ,

(g) meta 3 self

eta 3 Lev a-
@

Meta 1 Lev
I ,

Figure 2: The system structure of the different recombination variants. Variant (a) a conventional GP approach, variant (b)
is using the task level to recombine programs of the task level and the task level is recombined by a random recombination.
Variant (c) is like variant (b) but meta-1 operators are recombined by themselves. Variant (d) is using the meta-2 level to
recombine prograins of meta-1 level and the operators of meta-2 level are recombined by a random recombination. Variant
(e) is like variant (d) but the operators of the meta-3 level are recombined by themselves. Variant (0 is using meta-level 3 to
recombine programs on meta-2 level and the operators of meta-level 3 are recombined by a random recombination. Variant (g)
is like variant (0 but the operators on meta-3 level are recombined by themselves.

Variant (f) "meta-3 random": Like variant (d) but meta-2 operators are recombined by meta-3 operators. Meta-3 operators
form a fourth population (meta-3 level) and are recombined by a random recombination operator.
Variant (g) "meta-3 self": Like variant (b) but meta-1 operators are recombined by meta-3 operators. Meta-3 operators form
a fourth population (meta-3 level) and are recombined by themselves.

The following sections describe the structure of the evolutionary system, and the different levels in more detail.

2.1 The Task Level

The task level holds the population of task programs which should solve the desired test problem (here a classification problem).
On the task and meta-1 level, the population is subdivided into sub-populations called demes. The number of demes depends on
the number of classes, which have to be distinguished. Four demes are needed for the speaker identification problem (Sec. 3.1),
two demes for the cancer and diabetes problem, and four demes for the gene problem 3.2. The task programs of deme i are
responsible to classify the input data of class i correctly. A task program piask belonging to deme i represents a mapping
ptask : Input -+ [min, mae] where Input represents the set of input data which should be classified. The output is a number
interpreted as a confidence value. A high value value of piask(z) is interpreted such that z E Input belongs probably to class
2.

2.1.1 Variation and Selection on Task Level

The selection method on the task level is a tournament-strategy [5]. The variation method depends on the variant: Variant
(a) uses random recombination and applies random mutation of a maximum 5 nodes of the program after recombination. The
recombination rate and mutation rate is 100 %, this means that each program of the task level is recombined and mutated during
one generation. Variants (b)-(g) use recombination by randomly chosen meta-1 operators from the meta-1 level. Mutation is
only performed by an explicit mutate instruction as part of the meta- 1 operator set in meta- 1 programs.

2.2 Meta Levels

Meta-operators' should enable the GP system to find a good and suitable recombination method automatically. Therefore, a
meta-operator pmeta represents a mapping pmeta : P x P + P x P where P is the set of all programs (task programs or
meta-operators).

2.2.1 Fitness Function on Meta Levels

The goal of a meta-n operator with respect to the underlying level n - 1 population is to maximize the fitness of meta-(n - 1)
programs' . A meta-operator is tested by allowing it to actually perform a recombination of program on the underlying level. Its

' A Meta-1 operator is called "operator" by Edmonds [8] and smart operator by Teller [24]
2or task programs in case n = 1

2088

fitness value is a function of the relative fitness of the programs it recombines (parents) and the fitness of programs it produces
as descendants (children). To compute this fitness in a generation-based evolutionary algorithm the relative fitness increase a
meta-operator is able to cause on programs of the underlying level during a generation is accumulated by using measure R.
The following algorithm describes the fitness calculation for meta-1 level which is equivalent on all meta levels. The algorithm
represents a loop of one generation during which X offsprings are generated.

1. Reset counters:

2. Select two parents pfp,ai, p i t i from the task level and a meta-1 operator pmeta from the meta-1 level, randomly.
3. Create two offsprings by applying the meta-1 operator on parents:

v p E P : R(p) t 0, m (p) + 0, n (p) + 0.

4. F O R j = 1TO2DO

(a) Let n (p m e t a) + n(pmeta) + 1
(b) Let fcj = F i t t a s k (p i z :) k) and fpj = F i t t a s k (p E i) be the fitness of a child and its corresponding parent, respec-

(c) If the childs fitness fcj is better than the parents fitness fpj then let
tively.

m(pmeta) + m(pmeta) + 1.

where fmar is the maximal fitness a program can reach,
5. GOT0 2 UNTIL X task programs are created to form the next generation.
6. The fitness of a meta-1 operator is defined by

This means that a meta-1 operator is good, if the children (at least one) have a better fitness than the parents.

m(pmeta)

n(pmeta)
J'itmeta(pmeta) = - * Q(pmeta) .

2.2.2 Representation and Operator Set on Meta Levels

A meta operator recombines two given programs by marking some nodes in both parents according to step 1 of the recombina-
tion algorithm in Sec. 1.2. To perform this task the meta-operator needs the ability to examine its input programs in sufficient
detail. Therefore we provide the individuals with special action functions, with these functions the individual can examine the
input individuals.

During the execution of a meta operator the environment contains an additional element: the current node, this is the program
node the meta operator currently works with. The meta operator executes its graph-program at first on parent p g a i and then
independently on p k t L . After the meta operator has been executed, the new child programs will be created by exchanging the
marked nodes according to the algorithm in Sec. 1.2, If a parent does not have a marked node, the meta-1 operator receives
fitness 0 and a random crossover is executed.

The meta operators used for this study also mark a subset of nodes to be mutated after the recombination. So the recombi-
nation process of a meta operator is a combination of a crossover and a mutation operation. The selection method on all meta
levels is tournament selection. The variation method depends on the variant described in Sec. 2.

3 Test Problems

We use different classification problems as test problems. One test problem is a speaker identification problem, and the other
classification problems are chosen form the probenl benchmark set [18].

3.1 Speaker Identification

The speaker identification problem considered in this study is to identify one person out of a set of four persons based on speech
samples [9].

The raw sound data was sampled at 22 kHz in 16 bit format. A fast Fourier transformation has been done on a 20 msec
window, which was weighted using a Hamming window. Windows were overlapping by 50 %. A spectral vector of dimension
32 was computed out of these FFT spectral vectors by using a triangle filter. The spectral vectors for the different word groups
and speakers were received by the task programs as inputs to identify whether a given input (a word group of one speaker)
belongs to the specific class (speaker) or not. The input data for one identification task consist of two different words form each
class, i.e., the task program has to identify a speaker based on a speech sample of less than 2 seconds.

2089

3.1.1 Fitness Function

The fitness function uses the return values of a input set to determine the fitness value of an individual. The return value of an
individual is a number between min = -10000 and mux = 10000. The normalised return value is interpreted as a measure
of probability. If the return value is high and the individual is associated with class i, then the input sample is identified
as belonging to class i. By combining the identification result of programs associated with different classes it is possible to
identify the speaker for a given input.

The fitness F i t (p t a s k) of a task programptask associated with class i on the fitness cases c, is computed as

where ~ (p , e) is the return value of program p executed with input e, Ci c C is the subset of the fitness cases containing only
samples class i, and nc is the number of classes.

3.1.2 Operator Set on Task Level

On the task level programs need the ability to examine input data (spectral vectors) in sufficient detail in order to perform their
task. Therefore they use various functions which operate directly on the input vectors. These function can read the values at
a special position in the input sample, compare two values of the input data, or calculate the average or difference of some
input values. The programs have no opportunity to store a vector of the input data to compare it later to other input. In other
words, programs have to identify a speaker without the use of reference vectors. This distinguishes the method from classical
solutions for the speaker identification problem. Stack and indexed memory only store one-dimensional real values during the
execution of program. Task programs use a action function set which consists of arithmetic functions, comparison functions,
and functions to examine the input data like reading the value of a given frequency, or calculating the average value of a vector
and so on.

3.2 Pmbenl Benchmark Set

The probenl benchmark set [181 contains datasets to be used for neural network training. Probenl contains 15 data sets form
12 different domains. In this contribution we chose three classification problems out of the data set, the diabetes data set, the
cancer data set, and the gene data set.

3.2.1 Fitness Function

The fitness function uses the return values of a input set to determine the classification rate which is used as the fitness value.
The return value of an individual is a number between min = -10000 and max = 10000. The normalized return value is

interpreted as a measure of probability. If the return value is high and the individual is associated with class i, then the input
sample is identified as belonging to class i. By combining the identification result of programs associated with different classes
it is possible to identify the speaker for a given input.

The fitness F i t (P t a s k) of a task program Ptask associated with class i on the fitness cases c, is computed as

where ~ (p , e) is the return value of program p executed with input e, Ci c C is the subset of the fitness cases containing
only samples class i , and nc is the number of classes.

3.2.2 Operator Set on Task Level

On the task level programs the programs use various functions which operate directly on the input vector. Therefore the current
input vector is stored in a register set.

The programs can only read the registers and have no opportunity to store a vector of the input data for later comparison it
later to other input. Stack and indexed memory only store one-dimensional real values during the execution of program. Task
programs use a action function set which consists of arithmetic functions, comparison functions, and functions to examine the
input data.

4 Results

In this section we describe the effects of the seven variants (a) task random, (b) meta-1 random, (c) meta-1 seK (d) meta-2
random, (e) rneta-2 self, (0 meta-3 random, and (g) meta-3 self recombination.

2090 ’

For the speaker problem the task level contains 192 programs in each deme and the maximum allowed number of nodes is
set to 300 nodes. The meta-1 population contains 96 operators in each deme and the maximum number of allowed nodes is
set to 300 nodes. The meta-2 population contains 48 operators with the same structure as the meta-1 operators. The meta-3
population contains 24 operators with the same structure as the meta-2 operators. In each generation the programs are tested
with 6 randomly chosen examples from the training set (stochastic sampling).

For the other three problems the task level contains 224 programs in each deme and the maximum allowed number of nodes
is set to 300 nodes. The meta-1 population contains 112 operators in each deme and the maximum number of allowed nodes
is set to 300 nodes. The meta-2 population contains 56 operators with the same structure as the meta-1 operators. The meta-3
population contains 28 operators with the same structure as the meta-2 operators. In each generation the programs are tested
with 100 randomly chosen examples from the training set (stochastic sampling).

On the gene problem nearly all 20 runs reached 100 percent correct classification on the fitness cases in a few generations
so that they can not be used to differentiate the different meta variants.

rand
meta-1 rand
meta-1 self
meta-2rand
meta-2 self
meta-3rand
meta-3self

demeO U deme 1 U &me2 U d m e 3 ' U

213000 5300 208000 4900 215000 5300 ' 2110001 5300
218000 5500 218000 5500 228000 5500 218000, 5500
212000 5100 212000 5100 216000 53001 215000 5100
217000 5600 222000 6300 2170001 5600 217000' 5600
244000 17000 243000 17000 24 I 15(JOO 2360001 b4000)
218000 5100 217000 5100 220000 6000 217000 5200
218000 5100 218000 5100 218000 5100 218000 5100

rand
meta-1 rand
meta-1 self
meta-2 rand
meta-2 self
meta-3 rand
meta-3 self

meta-1 rand
meta-1 self
meta-2 rand
meta-2 self
meta-3 rand

demeO U deme 1 U

67.8 0.1 68.2 0.1
74.5 0.7 73.6 0.6
74 0.6 73.1 0.5

75.0 0.5 74.3 0.4
75.5 0.7 74.2 0.4
74.3 0.4 74.3 0.5
74.1 0.2 73.8 0.2

deme 0
65.9
71.1
71.2
72.2
72

72.8
72.1

71.6

71.9

U -
0.2
0.5
0.4
0.2
0.3
0.4
0.2

Table 2: Best fitness values of each deme in the last generation (100) averaged over 55 runs each and standard deviation U .

Left: Diabetes problem. Right: Cancer problem.

5 Summary and Outlook

We tested the performance of meta-recombination with different meta levels to apply GP to find a better recombination scheme.
We have shown that it is possible to create a GP system which does not use a fixed recombination operator, and that such a
system can create individuals with better fitness.

In our experiments self recombination at meta-level 1 has the smallest effect on the evolutionary process and for the
speaker identification problem it reduces performance. Self recombination at the meta-2 and meta-3 level works. All meta-
recombination variants (except meta-l self for the speaker problem) could find a recombination scheme which is better than

2091

SPEAKER - AVERAGE FITNESS
220000

200000 meta-2 self __I. _. 9 - _ - -* .'-

andom meta-1 se1

0 10 20 30 40 50 60 70 80 90 100
time [generation]

DIABETES1 - AVERAGE FITNESS
70

..........-...-..-..-..- . -. 65 . _._,___.- .--........-. T---.-------
60

50
eta-1 self eta2 self

eta-3 random
heta-3 self rand -

meta 1 rand ------
meta 1 self

meta 2 rand
meta 2 self

.......

........

2 5 L ' ' ' ' ' ' ' ' ' I
0 10 20 30 40 50 60 70 80 90 100

time [generatlon]

CANCER1 -AVERAGE FITNESS
65

60
.___ _?_.< -..._.- <.-* -... <...-...-

50 -

45 -
eta-1 self eta2 self

eta-3 random -
eta-3 self

25 :: i ,
rand -

meta 1 rand -----
meta 1 self

meta2 rand --
meta 2 self - - - -

meta 3 rand - - - .
meta 3 self

20' ' ' ' ' ' ' ' ' ' I
0 10 20 30 40 50 60 70 80 90 100

time [generation]

SPEAKER - BEST FITNESS

~ , - - - - - - " - ' - - ~ - - - - - . - - - - - ' - ~ - - ~ . ' - - - ' - ~ - - -

240000

220000

200000

180000

160000

140000

120000

..

rneta 1 self

meta 2 self - -
meta 3 self

meta 2 rand .

rneta 3 rand

0 10 20 30 40 50 60 70 80 90 100
time [generation]

DIABETES1 ~ BEST FITNESS
751 I I I I I I I I I ,
74

73

72

71

70

69

68

meta 1 rand ------
meta 1 self - --.

rneta 2 rand ---
meta 2 self - -

meta 3 rand - - - -

0 10 20 30 40 50 50 70 80 90 100
time [generation]

CANCER1 - BEST FITNESS

72

70

meta 3 rand -
meta 3 self , 60

0 20 40 60 80 100
time [generation]

Figure 3: Results for speaker problem, above (25 runs, U = 30000), cancer problem, middle (55 runs, U = 1.5), and diabetes
problem, below (55 runs, c = 3).

random recombination. The variant meta-2 self seems to have a good performance for all test problems. A third meta-level
seems not to be useful.

To say whether these are general phenomena for genetic programming more experiments have to be run on a variety of test
problems and on different representations for the task programs and meta-i operators.

ACKNOWLEDGEMENT

Support has been provided by the DFG (Deutsche Forschungsgemeinschaft), under grant Ba 10426-2 and under grant B2 in
the Sonderforschungsbereich SFB 53 1.

2092

Bibliography
[I] P. J. Angeline and J. B. Pollack. Coevolving high-level representations. In C. G. Langton, editor, Arfij?cial Life III, pages 55-71,

Reading, MA, 1994. Addison-Wesley.
[2] P.J. Angeline. Two self-adaptive crossover operations for genetic programming. In P.J. Angeline and K.E. Kinnear, Jr., editors, Advances

in Genetic Programming U, pages 89-1 10. MIT Press, Cambridge, MA, 1996.
[3] Th. Back. Self-Adaptation in Genetic Algorithms. In F. J. Varela andP. Bourgine, editors, Proceedingsof the First European Conference

on Artijicial Lqe, pages 263-271. The MIT Press, Cambridge, MA, 1992.
[4] W. Banzhaf, D. Banscherus, and P. Dittrich. Hierarchical genetic programming using local modules. In Proc. Intl. Conference on

Complex Systems, Nashua, NH, (in press), 1998.
[5] W. Banzhaf, P. Nordin, R. E. Keller, and E D. Francone. Genetic Programming - An Introduction On the Automatic Evolution of

Computer Programs and its Applications. Morgan Kaufmann, San Francisco und dpunkt verlag, Heidelberg, 1998.
[6] Lawrence Davis. Adapting operator probabilities in genetic algorithms. In J. David Schaffer, editor, Proceedingsof the 3rd International

Conference on Genetic Algorithms, pages 61-69, George Mason University, June 1989. Morgan Kaufmann.
[7] Peter Dittrich and Wolfgang Banzhaf. Self-evolution in a constructive binary string system. Artijcial Life, 4(2):203-220, 1998.
[8] B. Edmonds. Meta-genetic programming: Co-evolving the operators of variation. CPM Report 98-32, Manchester Metropolitan

University, 1998.
[9] R.A. Finan, A.T. Sapeluk, and R.I. Damper. VQ score normalisation for text-dependent and text-independent speaker recognition. In

Audio- and Video-based Biometric Person Authentication, pages 21 1-21 8. First International Conference, AVBPA'97, 1997.
[IO] D. B. Fogel, L. J. Fogel, and J. W. Atmar. Meta-evolutionary programming. In R. R. Chen, editor, Proceedings of 25th Asilomar

Conference on Signals, Systems and Computers, pages 540-545, Pacific Grove, California, 1991.
[I 11 Hitoshi Iba and Hugo de Garis. Extending genetic programming with recombinative guidance. In P.J. Angeline and K. E. Kinnear, Jr.,

editors, Advances in Genetic Programming II, chapter 4, pages 69-88. MIT Press, Cambridge, MA, 1996.
1121 W. Kantschik, P. Dittrich, M. Brameier, and W. Banzhaf. Meta-evolution in graph GP. In Second European Workshop on Genetic

Programming, Goteborg, May, (accepted), 1999.
[13] J. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
[14] John R. Koza. Spontaneous emergence of self-replicating and evolutionarily self-improving computer programs. In C. G. Langton,

editor, Artificial Life III, pages 225-262. Addison-Wesley, Reading, MA, 1994.
[I51 Keith Mathias and Darrell Whitley. Remapping hyperspaceduring genetic search: Canonical delta folding. In L. Dam1 Whitley, editor,

Proceedings of the Second Workshopon Foundations of Genetic Algorithms, pages 167-186, San Mateo, July 26- 29 1993. Morgan
Kaufmann.

[16] J. P. Nordin. A compiling genetic programming system that directly manipulates the machinecode. In Jr. K. Kinnear, editor, Advances
in Genetic Programming. Cambridge, MIT Press, 1994.

[171 Riccardo Poli. Evolution of graph-like programs with parallel distributed genetic programming. In Thomas Back, editor, Genetic
Algorithms: Proceedings of the Seventh International Conference, pages 346-353, Michigan State University, East Lansing, MI, USA,
19-23 July 1997. Morgan Kaufmann.

[181 L. Prechelt. Probenl -a set of neural network benchmark problems and benchmarkingrules. Technical report, University of Karlsruhe,
1994.

[19] J. P. Rosca and D. H. Ballard. Learning by adapting representations in genetic programming. In Proceedings ofthe 1994 IEEE World

[20] R. Rosenberg. Simulation of Genetic Populations with Biochemical Properties. PhD thesis, University of Michigan, 1967.
[21] J D Schaffer and A Morishima. An adaptive crossover distribution mechanism for genetic algorithms. In Proc of the 2nd Int. Con$ on

[22] H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1996.
[23] Craig G. Shaefer. The ARGOT strategy: adaptive representation genetic optimizer technique. In John J. Grefenstette, editor, Proceedings

of the 2nd International Conference on Genetic Algorithms and their Applications, pages 50-58, Cambridge, MA, July 1987. Lawrence
Erlbaum Associates.

I241 A. Teller. Evolving programmers: The co-evolution of intelligent recombination operators. In P. Angeline and K. Kinnear, editors,
Advances in Genetic Programming II. MIT Press, 1996.

I251 A. Teller and M. Veloso. Pado: A new learning architecture for object recognition. In Symbolic Visual Learning, pages 81 -1 16. Oxford
University Press, 1996.

[26] D. Whitley, K. Mathias, and P. Fitzhom. Delta coding: An iterative search strategy for genetic algorithms,. In Rick Belew and Lashon
Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 77-84, San Mateo, CA, 1991.
Morgan Kaufman.

[271 Annie S. Wu and Robert K. Lindsay. Empirical studies of the genetic algorithm with non-coding segments. Evolutionary Computation,
3(2), 1995.

Congress on Computational Intelligence, Orlando, Florida, USA, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

Genetic Algorithms and Their Applications, pages 3640,1987. SCHAFFER87.

2093

