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Abstract- 

In this contribution we analyze different levels of meta-evolution using a graph-based GP system. The system allows 
to represent individuals of the search space and genetic variation operators in a coherent way as graph-programs dif- 
fering only in the operator set. Seven variants of meta-evolution are tested on three real-world classification problems. 
The most complex variant consists of three meh-levels where graph-programs on meta-level 1 recombine individuals 
of the search space (base level), graph-programs on meta-level 2 recombine programs on meta-level 1, and programs 
on meta-level3 recombine programs on meta-level2 and themselves. The emperical results shows that the use of meta 
levels is advantageous. 
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1 Introduction 

In the domain of evolutionary algorithms (EA), there is a long tradition of adaptive genetic operators. A 'common and well 
established method is the self-adaptation of strategy parameter, e.g., the global frequency of operator applications [6] or adap- 
tation of the mutation variance in ES [22], EP [lo], or GA [3]. In addition there are approaches which dynamically adjust the 
global interpretation of the representation based on heuristics [ 15, 23, 261. There are also methods which allow adaptation of 
crossover operators by adjusting the probability that a position is chosen as a crossover point [20,21]. This approach has also 
been successfully applied to GP [2, 111. 

In GP, there is also an implicit adaptation of variation by neutral variation of the genotype. This usually happens implicitly in 
GP when introns appear that change e.g. the probability that a useful region is hit by recombination. There are also a variety of 
methods which explicitly manipulate the genotype like ADFs [ 131, adaptive representations [ 191, automatic library generation 
[ 11, explicitly defined introns [27], or module acquisition techniques [4, 111. 

The methods of genetic programming, however, can be applied themselves as adaptions mechanisms if the variation op- 
erators are represented as programs [12, 24, 251. The focus of our contribution is this meta-evolution of recombination-like 
variation operators. To this end, several schemes of how adaptive operators may be adapted are analyzed empirically. The 
adaptation of the adaptation operators can be achieved by adding additional evolutionary levels or by recursively applying the 
variation operators onto themselves [7, 141. Here, this is operationalized by expressing genetic operators as graph programs 
that may undergo their own evolution, using the same methods in a hierarchical and recursive fashion. Before describing the 
seven variants of meta-evolution that we examine the following section introduces briefly our graph GP system which is based 
on an approach by Teller [24, 251. 

1.1 Graph GP 

The representations of programs used for GP can be classified by their underlying structure into three major groups: (1) tree- 
based [13], (2) linear-based [5, 161, and (3) graph-based [17, 251 representations. 

In this paper we use Teller's graph-based GP. In this form of graph-based GP each program p is represented by a directed 
graph of N p  nodes. Each node can have up to N p  outgoing edges. Each node in the program has two parts, action and 
branching decision. The action part is either a constant or a function which will be executed when the node is reached during 
the interpretation of the program. The environment of a program consists of an indexed memory and a stack, both of which are 
used to transfer data among the nodes. An action function could therefore get its inputs from the stack and could push its output 
back onto the stack. After the action of a node is executed, an outgoing edge is selected according to the branching decision. 
This decision is made by a branchingfunction which determines the edge to the next node, while using the information held 
on the top of the stack, in memory or in the branching constant of each node. Hence, not all nodes of a graph are necessarily 
visited during an interpretation. 

Each program has two special nodes, a start and a stop node. The start node is always the first node to be executed when 
the interpretation of a program begins. After the stop node is reached, its action is executed and the program halts. Since the 
graph structure inherently allows loops and recursion, it is possible that the stop node is never reached during the interpretation. 
In order to avoid that a program runs forever it is terminated after a certain time threshold is reached. In our system the time 
threshold is implemented as a fixed maximum number of nodes which can be executed during the interpretation. 
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Figure 1: Left: The structure of a node in a graph-based GP program and an example node. Right: Crossover-operation 
example of two graph-based programs. 

1.2 Recombination of Graph-based Programs 

The crossover operation combines the genetic material of two parent programs by swapping certain program parts. Each node 
of a parent p is label-ed by a fixed index i E { 1, . . . , N p } .  The following algorithm for the recombination of graphs is applied 
for recombination [24,25]: 

Mark some nodes in both parents which will be exchanged. 
(Here, this operation will be performed either by a random selection of nodes or by a “meta”’ operator to be explained 
below.) 
Label all edges external which are connecting marked nodes with unmarked nodes and all edges which are connecting 
unmarked nodes with marked nodes. 
Replace the nodes of a parent by the marked nodes of the other parent. A marked node with index i replaces a node with 
the same index in the other parent. If the target parent p does not contain a node with index i, then the node gets a new 
index Np + 1 and will be added to the parent p .  
Modify all external edges in a parent so that they point to randomly selected nodes of the same parent which have not 
been exchanged. 

The method assures that all edges are connected in the two child graphs and that valid graphs are generated. Figure 1 shows 
an example of this crossover method. 

2 Variants of Meta-Evolution 

To explore different variants of meta-evolution our system consists of four different levels called task level, meta-1 level, meta-2 
level and meta-3 level. Each level consists of a population of graph-programs where programs on the task level should solve 
the desired problem. Programs on meta levels are variation operators. The following variants are empirically investigated (Fig. 
2): 
Variant (a) “random”: This is the conventional GP approach, where individuals are recombined by exchanging randomly 
chosen sub-components. There are demes of individuals that should solve the different classes of the classification problems. 
The individuals are called task programs to distinguish them from individuals of the higher levels, explained below. 
Variant (b) “meta-1 random”: In this variant a second population of GP programs exists. These individuals are called meta-1 
operators and their population meta-1 level. Task programs are recombined by meta-1 operators [24]. Meta-1 operators, in 
turn, are recombined by a random recombination as in variant (a). 
Variant (c) “meta-1 self”: Like variant (b) but meta-1 operators are recombined by themselves. 
Variant (d) “meta-2 random”: Like variant (b) but meta-1 operators are recombined by meta-2 operators. Meta-2 operators 
form a third population (mefa-2 level) and are recombined by a random recombination operator. 
Variant (e) “meta-2 self”: Like variant (b) but meta-1 operators are recombined by meta-2 operators. Meta-2 operators form 
a third population (metu-2 level) and are recombined by themselves. 
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Figure 2: The system structure of the different recombination variants. Variant (a) a conventional GP approach, variant (b) 
is using the task level to recombine programs of the task level and the task level is recombined by a random recombination. 
Variant (c) is like variant (b) but meta-1 operators are recombined by themselves. Variant (d) is using the meta-2 level to 
recombine prograins of meta-1 level and the operators of meta-2 level are recombined by a random recombination. Variant 
(e) is like variant (d) but the operators of the meta-3 level are recombined by themselves. Variant (0 is using meta-level 3 to 
recombine programs on meta-2 level and the operators of meta-level 3 are recombined by a random recombination. Variant (g) 
is like variant (0 but the operators on meta-3 level are recombined by themselves. 

Variant (f) "meta-3 random": Like variant (d) but meta-2 operators are recombined by meta-3 operators. Meta-3 operators 
form a fourth population (meta-3 level) and are recombined by a random recombination operator. 
Variant (g) "meta-3 self": Like variant (b) but meta-1 operators are recombined by meta-3 operators. Meta-3 operators form 
a fourth population (meta-3 level) and are recombined by themselves. 

The following sections describe the structure of the evolutionary system, and the different levels in more detail. 

2.1 The Task Level 

The task level holds the population of task programs which should solve the desired test problem (here a classification problem). 
On the task and meta-1 level, the population is subdivided into sub-populations called demes. The number of demes depends on 
the number of classes, which have to be distinguished. Four demes are needed for the speaker identification problem (Sec. 3.1), 
two demes for the cancer and diabetes problem, and four demes for the gene problem 3.2. The task programs of deme i are 
responsible to classify the input data of class i correctly. A task program piask belonging to deme i represents a mapping 
ptask : Input -+ [min, mae] where Input represents the set of input data which should be classified. The output is a number 
interpreted as a confidence value. A high value value of piask(z) is interpreted such that z E Input belongs probably to class 
2. 

2.1.1 Variation and Selection on Task Level 

The selection method on the task level is a tournament-strategy [5]. The variation method depends on the variant: Variant 
(a) uses random recombination and applies random mutation of a maximum 5 nodes of the program after recombination. The 
recombination rate and mutation rate is 100 %, this means that each program of the task level is recombined and mutated during 
one generation. Variants (b)-(g) use recombination by randomly chosen meta-1 operators from the meta-1 level. Mutation is 
only performed by an explicit mutate instruction as part of the meta- 1 operator set in meta- 1 programs. 

2.2 Meta Levels 

Meta-operators' should enable the GP system to find a good and suitable recombination method automatically. Therefore, a 
meta-operator pmeta represents a mapping pmeta : P x P + P x P where P is the set of all programs (task programs or 
meta-operators). 

2.2.1 Fitness Function on Meta Levels 

The goal of a meta-n operator with respect to the underlying level n - 1 population is to maximize the fitness of meta-(n - 1) 
programs' . A meta-operator is tested by allowing it to actually perform a recombination of program on the underlying level. Its 

' A Meta-1 operator is called "operator" by Edmonds [8 ]  and smart operator by Teller [24] 
2or task programs in case n = 1 
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fitness value is a function of the relative fitness of the programs it recombines (parents) and the fitness of programs it produces 
as descendants (children). To compute this fitness in a generation-based evolutionary algorithm the relative fitness increase a 
meta-operator is able to cause on programs of the underlying level during a generation is accumulated by using measure R. 
The following algorithm describes the fitness calculation for meta-1 level which is equivalent on all meta levels. The algorithm 
represents a loop of one generation during which X offsprings are generated. 

1. Reset counters: 

2. Select two parents pfp,ai, p i t i  from the task level and a meta-1 operator pmeta from the meta-1 level, randomly. 
3. Create two offsprings by applying the meta-1 operator on parents: 

v p  E P : R(p) t 0, m ( p )  + 0, n ( p )  + 0. 

4. F O R j =  1TO2DO 

(a) Let n ( p m e t a )  + n(pmeta)  + 1 
(b) Let fcj = F i t t a s k ( p i z : ) k )  and fpj = F i t t a s k ( p E i )  be the fitness of a child and its corresponding parent, respec- 

(c) If the childs fitness fcj is better than the parents fitness fpj then let 
tively. 

m(pmeta) + m(pmeta) + 1. 

where fmar is the maximal fitness a program can reach, 
5. GOT0 2 UNTIL X task programs are created to form the next generation. 
6. The fitness of a meta-1 operator is defined by 

This means that a meta-1 operator is good, if the children (at least one) have a better fitness than the parents. 

m(pmeta )  

n(pmeta ) 
J'itmeta(pmeta) = - * Q(pmeta ) .  

2.2.2 Representation and Operator Set on Meta Levels 

A meta operator recombines two given programs by marking some nodes in both parents according to step 1 of the recombina- 
tion algorithm in Sec. 1.2. To perform this task the meta-operator needs the ability to examine its input programs in sufficient 
detail. Therefore we provide the individuals with special action functions, with these functions the individual can examine the 
input individuals. 

During the execution of a meta operator the environment contains an additional element: the current node, this is the program 
node the meta operator currently works with. The meta operator executes its graph-program at first on parent p g a i  and then 
independently on p k t L .  After the meta operator has been executed, the new child programs will be created by exchanging the 
marked nodes according to the algorithm in Sec. 1.2, If a parent does not have a marked node, the meta-1 operator receives 
fitness 0 and a random crossover is executed. 

The meta operators used for this study also mark a subset of nodes to be mutated after the recombination. So the recombi- 
nation process of a meta operator is a combination of a crossover and a mutation operation. The selection method on all meta 
levels is tournament selection. The variation method depends on the variant described in Sec. 2. 

3 Test Problems 

We use different classification problems as test problems. One test problem is a speaker identification problem, and the other 
classification problems are chosen form the probenl benchmark set [18]. 

3.1 Speaker Identification 

The speaker identification problem considered in this study is to identify one person out of a set of four persons based on speech 
samples [9]. 

The raw sound data was sampled at 22 kHz in 16 bit format. A fast Fourier transformation has been done on a 20 msec 
window, which was weighted using a Hamming window. Windows were overlapping by 50 %. A spectral vector of dimension 
32 was computed out of these FFT spectral vectors by using a triangle filter. The spectral vectors for the different word groups 
and speakers were received by the task programs as inputs to identify whether a given input (a word group of one speaker) 
belongs to the specific class (speaker) or not. The input data for one identification task consist of two different words form each 
class, i.e., the task program has to identify a speaker based on a speech sample of less than 2 seconds. 
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3.1.1 Fitness Function 

The fitness function uses the return values of a input set to determine the fitness value of an individual. The return value of an 
individual is a number between min = -10000 and mux = 10000. The normalised return value is interpreted as a measure 
of probability. If the return value is high and the individual is associated with class i, then the input sample is identified 
as belonging to class i. By combining the identification result of programs associated with different classes it is possible to 
identify the speaker for a given input. 

The fitness F i t ( p t a s k )  of a task programptask associated with class i on the fitness cases c, is computed as 

where ~ ( p ,  e)  is the return value of program p executed with input e, Ci c C is the subset of the fitness cases containing only 
samples class i, and nc is the number of classes. 

3.1.2 Operator Set on Task Level 

On the task level programs need the ability to examine input data (spectral vectors) in sufficient detail in order to perform their 
task. Therefore they use various functions which operate directly on the input vectors. These function can read the values at 
a special position in the input sample, compare two values of the input data, or calculate the average or difference of some 
input values. The programs have no opportunity to store a vector of the input data to compare it later to other input. In other 
words, programs have to identify a speaker without the use of reference vectors. This distinguishes the method from classical 
solutions for the speaker identification problem. Stack and indexed memory only store one-dimensional real values during the 
execution of program. Task programs use a action function set which consists of arithmetic functions, comparison functions, 
and functions to examine the input data like reading the value of a given frequency, or calculating the average value of a vector 
and so on. 

3.2 Pmbenl Benchmark Set 

The probenl benchmark set [ 181 contains datasets to be used for neural network training. Probenl contains 15 data sets form 
12 different domains. In this contribution we chose three classification problems out of the data set, the diabetes data set, the 
cancer data set, and the gene data set. 

3.2.1 Fitness Function 

The fitness function uses the return values of a input set to determine the classification rate which is used as the fitness value. 
The return value of an individual is a number between min = -10000 and max = 10000. The normalized return value is 

interpreted as a measure of probability. If the return value is high and the individual is associated with class i, then the input 
sample is identified as belonging to class i. By combining the identification result of programs associated with different classes 
it is possible to identify the speaker for a given input. 

The fitness F i t ( P t a s k )  of a task program Ptask  associated with class i on the fitness cases c, is computed as 

where ~ ( p ,  e) is the return value of program p executed with input e, Ci c C is the subset of the fitness cases containing 
only samples class i ,  and nc is the number of classes. 

3.2.2 Operator Set on Task Level 

On the task level programs the programs use various functions which operate directly on the input vector. Therefore the current 
input vector is stored in a register set. 

The programs can only read the registers and have no opportunity to store a vector of the input data for later comparison it 
later to other input. Stack and indexed memory only store one-dimensional real values during the execution of program. Task 
programs use a action function set which consists of arithmetic functions, comparison functions, and functions to examine the 
input data. 

4 Results 

In this section we describe the effects of the seven variants (a) task random, (b) meta-1 random, (c) meta-1 seK (d) meta-2 
random, (e) rneta-2 self, (0 meta-3 random, and (g) meta-3 self recombination. 
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For the speaker problem the task level contains 192 programs in each deme and the maximum allowed number of nodes is 
set to 300 nodes. The meta-1 population contains 96 operators in each deme and the maximum number of allowed nodes is 
set to 300 nodes. The meta-2 population contains 48 operators with the same structure as the meta-1 operators. The meta-3 
population contains 24 operators with the same structure as the meta-2 operators. In each generation the programs are tested 
with 6 randomly chosen examples from the training set (stochastic sampling). 

For the other three problems the task level contains 224 programs in each deme and the maximum allowed number of nodes 
is set to 300 nodes. The meta-1 population contains 112 operators in each deme and the maximum number of allowed nodes 
is set to 300 nodes. The meta-2 population contains 56 operators with the same structure as the meta-1 operators. The meta-3 
population contains 28 operators with the same structure as the meta-2 operators. In each generation the programs are tested 
with 100 randomly chosen examples from the training set (stochastic sampling). 

On the gene problem nearly all 20 runs reached 100 percent correct classification on the fitness cases in a few generations 
so that they can not be used to differentiate the different meta variants. 

rand 
meta-1 rand 
meta-1 self 
meta-2rand 
meta-2 self 
meta-3rand 
meta-3self 

demeO U deme 1 U &me2 U d m e 3  ' U 

213000 5300 208000 4900 215000 5300 ' 2110001 5300 
218000 5500 218000 5500 228000 5500 218000, 5500 
212000 5100 212000 5100 216000 53001 215000 5100 
217000 5600 222000 6300 2170001 5600 217000' 5600 
244000 17000 243000 17000 24 I 15(JOO 2360001 b4000) 
218000 5100 217000 5100 220000 6000 217000 5200 
218000 5100 218000 5100 218000 5100 218000 5100 

rand 
meta-1 rand 
meta-1 self 
meta-2 rand 
meta-2 self 
meta-3 rand 
meta-3 self 

meta-1 rand 
meta-1 self 
meta-2 rand 
meta-2 self 
meta-3 rand 

demeO U deme 1 U 

67.8 0.1 68.2 0.1 
74.5 0.7 73.6 0.6 
74 0.6 73.1 0.5 

75.0 0.5 74.3 0.4 
75.5 0.7 74.2 0.4 
74.3 0.4 74.3 0.5 
74.1 0.2 73.8 0.2 

deme 0 
65.9 
71.1 
71.2 
72.2 
72 

72.8 
72.1 

71.6 

71.9 

U - 
0.2 
0.5 
0.4 
0.2 
0.3 
0.4 
0.2 

Table 2: Best fitness values of each deme in the last generation (100) averaged over 55 runs each and standard deviation U .  

Left: Diabetes problem. Right: Cancer problem. 

5 Summary and Outlook 

We tested the performance of meta-recombination with different meta levels to apply GP to find a better recombination scheme. 
We have shown that it is possible to create a GP system which does not use a fixed recombination operator, and that such a 
system can create individuals with better fitness. 

In our experiments self recombination at meta-level 1 has the smallest effect on the evolutionary process and for the 
speaker identification problem it reduces performance. Self recombination at the meta-2 and meta-3 level works. All meta- 
recombination variants (except meta-l self for the speaker problem) could find a recombination scheme which is better than 
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Figure 3: Results for speaker problem, above (25 runs, U = 30000), cancer problem, middle (55 runs, U = 1.5), and diabetes 
problem, below (55 runs, c = 3). 

random recombination. The variant meta-2 self seems to have a good performance for all test problems. A third meta-level 
seems not to be useful. 

To say whether these are general phenomena for genetic programming more experiments have to be run on a variety of test 
problems and on different representations for the task programs and meta-i operators. 
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