Category: Genetic Programming
Evolution of Genetic Code on a Hard Problem

Robert E. Keller Wolfgang Banzhaf
Systems Analysis
Computer Science Department
University of Dortmund
D-44221 Dortmund, Germany
Robert.E.Keller@WEB.DE

Abstract

In most Genetic Programming (GP) ap-
proaches, the space of genotypes, that is the
search space, is identical to the space of phe-
notypes, that is the solution space. Develop-
mental approaches, like Developmental Ge-
netic Programming (DGP), distinguish be-
tween genotypes and phenotypes and use a
genotype-phenotype mapping prior to fitness
evaluation of a phenotype. To perform this
mapping, DGP uses a genetic code, that
is, a mapping from genotype components
to phenotype components. The genotype-
phenotype mapping is critical for the perfor-
mance of the underlying search process which
is why adapting the mapping to a given prob-
lem is of interest. Previous work shows, on
an easy synthetic problem, the feasibility of
code evolution to the effect of a problem-
specific self-adaptation of the mapping.The
present empirical work delivers a demonstra-
tion of this effect on a hard synthetic prob-
lem, showing the real-world potential of code
evolution which increases the occurrence of
relevant phenotypic components and reduces
the occurrence of components that represent
noise.

1 INTRODUCTION AND
OBJECTIVE

Genetic programming (Koza 1992, Banzhaf et al. 1998)
is an evolutionary algorithm that, for the purpose of
fitness evaluation, represents an evolved individual as
algorithm. Most GP approaches do not distinguish
between a genotype, that is, a point in search space,
and its phenotype, that is, a point in solution space.

Developmental approaches, however, like (Keller and
Banzhaf 1996, O’Neill and Ryan 2000, Spector and
Stoffel 1996), make a distinction between the search
space and the solution space. Thus, they employ a
genotype-to-phenotype mapping (GPM) since the be-
havior of the phenotype defines its fitness which is used
for selection of the corresponding genotype. This map-
ping is critical to the performance of the search pro-
cess: the larger the fraction of the search space that
a GPM maps onto good phenotypes, the better the
performance. In this sense, a mapping is said to be
“good” if it maps a “large” fraction of search space
onto good phenotypes, which is captured in the formal
measure of “code fitness” which is defined in (Keller
and Banzhaf 1999). That work shows, on an easy syn-
thetic problem, the effect of code evolution: genetic
codes, i.e., information that controls the genotype-
phenotype mapping and that is carried by individuals,
get adapted such that problem-relevant symbols are
increasingly being used for the assembly of phenoty-
pes, while irrelevant symbols are less often used. This
implies that the approach can adapt the mapping to
the problem, which eliminates the necessity of having a
user define a problem-specific mapping, which in itself
is often impossible when facing a new problem, since
the user does not yet understand the problem well
enough. From an abstract point of view, code evolu-
tion adapts fitness landscapes, since a certain mapping
defines that landscape. (Keller and Banzhaf 1999) also
shows that, during evolution, it is mostly better indi-
viduals who carry better codes, and it is mostly better
codes that are carried by better individuals. How-
ever, the computation of code fitness is only feasible
for small search spaces, that is, easy problems, why it
is of interest to test whether the effect of code evolu-
tion also takes place on a hard problem, which is the
objective of this work.

First, developmental genetic programming (DGP)
(Keller and Banzhaf 1996, Keller and Banzhaf 1999)

is introduced as far as needed in the context of this ar-
ticle, and the concept of a genetic code as an essential
part of a mapping is defined. Second, the principle of
the evolution of mappings as an extension to develop-
mental approaches is presented in the context of DGP.
Here, the genetic code is subjected to evolution which
implies the evolution of the mapping. Third, the ob-
jective mentioned above is being followd by investigat-
ing the progression of phenotypic-symbol frequencies
in codes during evolution. Finally, conclusions and
objectives of further work are discussed.

2 DEVELOPMENTAL GENETIC
PROGRAMMING

All subsequently described random selections of an ob-
ject from a set of objects occur under equal probability
unless mentioned otherwise.

2.1 ALGORITHM

A DGP variant uses a common generational evolu-
tionary algorithm, extended by a genotype-phenotype
mapping prior to the fitness evaluation of the individ-
uals of a generation.

2.2 GENOTYPE, PHENOTYPE, GENETIC
CODE

The output of a GP system is an algorithm in a certain
representation. This representation often is a com-
puter program, that is, a word from a formal lan-
guage. The representation complies with structural
constraints which, in the context of a programming
language, are the syntax of that language. DGP pro-
duces output compliant with the syntax defined by
an arbitrary context-free LALR(1) (look-ahead-left-
recursive, look ahead one symbol) grammar. Such
grammars define the syntax of real-world program-
ming languages like ISO-C.A phenotype is represented
by a syntactically legal symbol sequence with every
symbol being an element of either a function set F
or a terminal set 7' that both underlie a genetic-
programming approach. Thus, the solution space is
the set of all legal symbol sequences.

A codon is a contiguous bit sequence of b > 0 bits
length which encodes a symbol. In order to provide
for the encoding of all symbols, b must be chosen
such that for each symbol there is at least one codon
which encodes this and only this symbol. For instance,
with b = 3, the codon 010 may encode the symbol a,
and 23 symbols at most can be encoded. A genotype
is a fixed-size codon sequence of n > 0 codons, like

011 010 000 111 with size n = 4. By definition, the
leftmost codon is codon 0, followed by codon 1 up to
codon n — 1.

A genetic code is a codon-symbol mapping, that is,
it defines the encoding of a symbol by one or more
codons. An example is given below with codon size 3.

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
a b c d + * - /

The “symbol frequency” of a symbol in a code is the
number n of occurrences of the symbol in the code,
which means that n different codons are mapped onto
this symbol.

2.3 GENOTYPE-PHENOTYPE MAPPING

In order to map a genotype onto a phenotype, the ge-
notype gets transcribed into a raw sequence of symbols,
using a genetic code. Transcription scans a genotype,
starting at codon 0, ending at codon n — 1. The ge-
notype 101 101 000 111, for instance, is mapped onto
“xxa/” by use of the above sample code.

For the following examples, consider the syntax of
arithmetic expressions. A symbol that represents a
syntax error at a given position in a given symbol
sequence is called illegal, else legal. A genotype is
mapped either onto a legal or, in the case of “xxa/”,
illegal raw symbol sequence. An illegal raw sequence
gets repaired according to the syntax, thus yielding
a legal symbol sequence. To that end, several repair
algorithms are conceivable. A comparatively simple
mechanism is introduced here, called “deleting repair”.
Intron splicing (Watson et al. 1992), that is the re-
moval of genetic information which is not used for the
production of proteins, is the biological metaphor be-
hind this repair mechanism. Deleting repair scans a
raw sequence and deletes each illegal symbol, which is
a symbol that cannot be used for the production of
a phenotype, until it reaches the sequence end. If a
syntactic unit is left incomplete, like “a—", it deletes
backwards until the unit is complete. For instance, the
above sample raw sequence gets repaired as follows:
“«xa/ — xa/ — a/”,then a is scanned as a legal
first symbol, followed by / which is also legal. Next,
the end of the sequence is scanned, so that “a/” is
recognized as an incomplete syntactic unit. Backward
deleting sets in and deletes /, yielding the sequence
a, which is legal, and the repair algorithm terminates.
Note that deleting repair works for arbitrarily long and
complex words from any LALR(1) language.

If the entire sequence has been deleted by the repair
mechanism, like it would happen with the phenotype
“4+ 4+ ++47, the worst possible fitness value is assigned

to the genotype. This is appropriate from both a bio-
logical and a technical point of view. In nature, a
phenotype not interacting with its environment does
not have reproductive success, the latter being crudely
modeled by the concept of “fitness” in evolutionary al-
gorithms. In a fixed-generation-size EA, like the DGP
variant used for the empirical investigation described
here, an individual with no meaning is worthless but
may not be discarded due to the fixed generation size.
It could be replaced, for instance, by a meaningful ran-
dom phenotype. This step, however, can be saved by
assigning worst possible fitness so it is likely to be re-
placed by another individual during subsequent selec-
tion and reproduction.

The produced legal symbol sequence represents the
phenotype of the genotype which has been the in-
put to the repair algorithm. Therefore, theoretically,
the GPM ends with the termination of the repair
phase. Practically, however, the legal sequence must
be mapped onto a phenotype representation that can
be executed on the hardware underlying a GP system
in order to evaluate the fitness of the represented phe-
notype. This representation change is performed by
the following phases.

Following repair, editing turns the legal symbol se-
quence into an edited symbol sequence by adding stan-
dard information, e.g., a main program frame enclos-
ing the legal sequence. Finally, the last phase of the
mapping, which can be compilation of the edited sym-
bol sequence, transforms this sequence into a machine-
language program processable by the underlying hard-
ware. This program is executed in order to evaluate
the fitness of the corresponding phenotype. Alterna-
tively, interpretation of the edited symbol sequence can
be used for fitness evaluation.

2.4 CREATION, VARIATION,
REPRODUCTION, FITNESS AND
SELECTION

Creation builds a fixed-size genotype as a sequence of
n codons random-selected from the codon set. Varia-
tion is implemented by point genotype mutation where
a randomly selected bit of a genotype is inverted. The
resulting mutant is copied to the next generation. Re-
production is performed by copying a genotype to the
next generation. An ezecution probability p of a re-
production or variation operator designates that the
operator is randomly selected from the set of variation
and reproduction operators with probability p. An ex-
ecution probability is also called a rate. Fitness-based
tournament selection with tournament size two is used
in order to select an individual for subsequent repro-

duction or variation. Adjusted fitness (Koza 1992) is
used as fitness measure. Thus, all possible fitness val-
ues exist in [0, 1], and a perfect individual has fitness
value 1.

3 CODE EVOLUTION

3.1 BIOLOGICAL MOTIVATION

The mapping employed by DGP is a crude metaphor of
protein synthesis that produces proteins (phenotype)
from DNA (genotype). In molecular biology, a codon
is a triplet of nucleic acids which uniquely encodes one
amino acid, at most. An amino acid is a part of a
protein and thus corresponds to a symbol. Like natural
genotypes have evolved, the genetic code has evolved,
too, and it has been argued that selection pressure
works on code properties necessary for the evolution
of organisms (Maeshiro 1997).Since artificial evolution
gleaned from nature works for genotypes, the central
hypothesis investigated here is that artificial evolution
works for genetic codes, too, producing such codes that
support the evolution of good genotypes.

3.2 TECHNICAL MOTIVATION

In DGP, the semantics of a phenotype is defined by
its genotype, the specific code, repair mechanism and
semantics of the employed programming language. Es-
pecially, different codes mean different genotypic rep-
resentations of a phenotype and therefore different fit-
ness landscapes for a given problem. Finally, certain
landscapes differ extremely in how far they foster an
evolutionary search. Thus, it is of interest to evolve ge-
netic codes during a run such that the individuals car-
rying these codes find themselves in a beneficial land-
scape. This situation would improve the convergence
properties of the search process. A related aspect is the
identification of problem-relevant symbols in the F and
T sets. In order to investigate and analyze the effects
of code evolution, an extension to DGP has been de-
fined and implemented, which will be described next.

3.3 INDIVIDUAL GENETIC CODE

DGP may employ a global code, that is, all genotypes
are mapped onto phenotypes by use of the same code.
This corresponds to the current situation in organic
evolution, where one code, the standard genetic code,
is the basis for the protein synthesis of practically all
organisms with very few exceptions like mitochondrial
protein synthesis.

(Keller and Banzhaf 1999) introduces the algorithm of
genetic-code evolution. If evolution is expected to oc-

cur on the code level, the necessary conditions for the
evolution of any structure must be met. Thus, there
must exist a structure population, reproduction and
variation of the individuals, a fitness measure, and a
fitness-based selection of individuals. A code popula-
tion can be defined by replacing the global genetic code
by an individual code, that is, each individual carries
its own genetic code along with its genotype. During
creation, each individual receives a random code. An
instance random code is shown:

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
* / * a a d + a

Note that a code, since it is defined as an arbitrary
codon-symbol mapping, is allowed to be redundant
with respect to certain symbols., i.e., it may map more
than one codon onto the same symbol. This is not
in contradiction to the role of a code, since also a
redundant code can be used for the production of a
phenotype. Actually, redundancy is important, as the
empirical results will show.

3.4 VARIATION, REPRODUCTION,
CODE FITNESS AND SELECTION

A point code mutation of a code is defined as ran-
domly selecting a symbol of the code and replacing it
by a different symbol random-selected from the sym-
bol set. Point code mutation has a certain execution
probability. Reproduction of a code happens by repro-
ducing the individual that carries the code. The same
goes for selection.

4 EMPIRICAL ANALYSIS

The announced major objective of the present work is
to empirically test whether the effect of code evolution
takes place on a hard problem, i.e., whether the codes
are adapted in a problem-specific way that is benefi-
cial to the search process. To this end, a run series
is performed on a hard synthetic problem. Evolution
means a directed change of the structures of interest,
which are, in the present case, the genetic codes of the
individuals. In the context of the present work, the
phenomenon of interest is the change of the symbol
frequencies of the target symbols. If the effect of code
evolution takes place on a hard problem, this must
show as a shift of symbol frequencies such that the re-
sulting codes map codons on relevant symbols rather
than on other symbols.

According with the objective of the present work, a
hard problem has to be designed, and problem-relevant
as well as irrelevant symbols, which represent noise,

have to be contained in the symbol set. Note that the
objective is not to solve the problem but to observe
code evolution during the DGP runs on the problem.
There are several conditions for a problem that is hard
for an evolutionary algorithm, and one of the most
prominent ones is that the search space is by many
orders of magnitude larger than the set of individuals
generated by the algorithm during its entire run time.

The problem to be considered is a symbolic function
regression of an arithmetic random-generated function
on a real-valued parameter space.

All function parameters come from [0, 1], and the real-
valued problem function is given by

f(A,B,a,b,..,y,2) = j+z+d+j*o+exr—t—a+h—
kxu+a—k—s*xoxi—hxv—i—i—s+l—uxn+l4+r—jx*
jxoxv—j+i+ frct+r—v+n—nxv—a—qgxixh+d—i—
t+s+lxa—jrgxv—i—pxgxu—xz+et+m—kxr+k—Ix*
uxrxd*r—a+t—exx—v—p—c—o—oxukxcxh+r+e—
axu+cxlxr—rxt—nxd+pxr*xwxv—jxn—a—exb+a.

Accordingly, the terminal set used by the system for all
of its runs is given as {4, B,a,b, ..,y, 2z}, and the four
parameters A, B,y,z do not occur in the expression
that defines the problem function, that is, they repre-
sent noise in the problem context. In order to provide
for noise in the context of the function set, too, this
set shall be given as {+, —, %, /}. As the division func-
tion / does not occur in the expression that defines the
problem function, it represents noise. As only 5 sym-
bols, — i.e., about 15% —, of all 32 symbols represent
noise, identifying those by random is unlikely.

Due to the resulting real-valued 28-dimensional pa-
rameter space, a fitness case consists of 28 real-valued
input values and one real output value. Let the train-
ing set consist of 100 random-generated fitness cases.
A population size of 1,000 individuals is chosen for all
runs, and 30 runs shall be performed, each lasting for
exactly 200 generations. That is, there is no run ter-
mination when a perfect individual is found so that
phenomena of interest can be measured further until
a time-out occurs after the evolution of the 200th gen-
eration.

As there are 32 target symbols, the size of the codons
must be set to five, at least, in order to have codes
that can accomodate all symbols, and for the run se-
ries, the size is fixed at five. As 2% = 32, the space
of all possible genetic codes contains 3232 elements, or
approximately 1.5 10*® codes, including 32! or about
2.6 * 10%% codes with no redundancy. Genotype size
400 is chosen, i.e., 400 codons make up an individ-
ual genotype, while the length of the problem func-

tion, measured in target symbols, is about 200. This
over-sizing of the genotype size strongly enlarges the
search space, making the problem at hand very hard.
As the codon size equals five and the genotype size
equals 400, the search space contains 24°0*% individu-
als, or 10902, and as the single-bit-flip operator is the
only genotypic variation operator, this corresponds to
a 2000-dimensional search space. According to the ex-
perimental parameters, 6 * 10% individuals are evalu-
ated during the run series, so that the problem search
space as well as the space of all codes are significantly
larger than the set of search trials, that is, individuals,
generated by the approach.

The execution probabilities are 0.85 for genotype re-
production, 0.12 for point genotype mutation, and 0.03
for point code mutation. Note that the point code mu-
tation rate is only 25 percent of the genotype point
mutation rate. This has been set to allow the ap-
proach to evolve the slower changing codes by use of
several different individuals that carry the same code,
like genotypes are evolved by use of several different,
usually static, fitness cases. We hypothesize that these
differing time scales are needed by the approach to dis-
tinguish between genotypes and codes.

The codes of the individuals of an initial generation
are randomly created, so that each of the 32 symbol
frequencies is about one in generation 0.

5 RESULTS AND DISCUSSION

Subsequently, “mean” refers to a value averaged over
)

all runs, while “average” designates a value averaged

over all individuals of a given generation.

Top down, figure 1 shows the progression of the mean
best fitness and the mean average fitness.

Both curves rise, indicating convergence of the search
process, which is relevant to the hypothesized principle
of code evolution that is given below.

The following four figures together illustrate the pro-
gression of the mean symbol frequencies for all 32 sym-
bols, while each figure, for reasons of legibility, displays
information for eight symbols only.

As for the interpretation of figures 2 to 5, the fre-
quency value F' for a symbol S in generation G says
that, over all runs, S occurs, on average, F' times in
a genetic code of an individual from G. As there are
32 positions in each code, F' theoretically comes from
[0, ..,32], while practically the extreme values of the
range will not be reached due to point code mutation.
A value below one indicates the rareness of S in most
codes of the generation, while a value above one sig-

fitness progression

0.018 \ : ——— ‘ ‘
mean best-fitness ———

0.016 mean avg-fitness -~ g

0.014 <

0.012
0.01
0.008
0.006
0004 |~
0002 £

fitness

0 20 40 60 80 100 120 140 160 180 200
generations

Figure 1: Top down, the curves show the progression
of the mean best fitness and mean average fitness.

symbol frequency progression, part 1

frequency

0 20 40 60 80 100 120 140 160 180 200
generations

Figure 2: Progression of the mean symbol frequency
in the code population.

nals redundancy of S, that is, on average, more than
one codon of a genotype gets mapped onto S, or, put
differently, S gets more often used for the build-up of
a phenotype. Note that, due to the random creation
of the codes for generation 0, all curves in all figures
approximately begin in (0, 1), since there are 32 codes
and 32 positions in each code.

A general impression to be gained from all figures is
that, after an initial phase of strong oscillation of the
frequencies, the frequency distribution stabilizes. This
phenomenon is typical for learning processes in the
field of evolutionary algorithms, where after an initial
exploratory phase a phase of exploitation sets in. It
can be observed for fitness progressions, where well-
performing individuals are of interest, and it can also
be oberved for the presented symbol-frequency distri-
butions, where a beneficial genotype-phenotype map-

symbol frequency progression, part 2

frequency

O L L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200
generations

Figure 3: Progression of the mean symbol frequency
in the code population.

symbol frequency progression, part 3

frequency

O L L L L L L L L L
0O 20 40 60 80 100 120 140 160 180 200
generations

Figure 4: Progression of the mean symbol frequency
in the code population.

ping is of interest.

Specifically, the figures show a classification of the
symbols with respect to their relevance for the solving
of the problem, as will be argued next. Due to ini-
tial oscillation, more reliable results are to be gained
from late generations, which is why the frequencies of
the final 200th generation shall be considered. In or-
der to accomodate for variance of the mean average
frequency values, symbols with a frequency of 0.8 or
lower shall be designated as clearly under-represented
in number in the genetic codes. As levels of statistical
significance mostly come from [0.9, ..,0.99], 0.8 repre-
sents a safe upper threshold for insignificance.

These symbols are A,B,b,c,f,g,h,j,n,q,8,w,y,/,
which implies that four of five, that is, 80%, of
the noise-representing symbols A, B,y, z,/ are under-

symbol frequency progression, part 4

18
16 "
14
1.2
1
0.8 b
06 |
04
02 |]
o

frequency

0O 20 40 60 80 100 120 140 160 180 200
generations

Figure 5: Progression of the mean symbol frequency

in the code population. Note that the arithmetic-

operator frequencies stabilize very fast and stay very
stable. This is not an artefact.

represented, while 63% of the problem-relevant sym-
bols, that is, 17 of 27 symbols, are represented with a
frequency of one and higher.

The frequency of a symbol in a code heavily influences
the frequency of the occurrence of the symbol in the
phenotype onto which a genotype carrying the code
is mapped. Thus, if non-noise symbols do and noise
symbols do not become elements of the phenotype, this
situation increases the likelihood that the phenotype
has an above-average fitness. Therefore, the presented
result represents the objective of the present work, as
it verifies that the effect of code evolution also takes
place on a hard problem in a way beneficial to the
search process.

As for the principle of code evolution, we hypothesize
that,for a certain problem, some individual code W,
through a point code mutation, becomes better than
another individual code L. Thus, W has a higher prob-
ability than L that its carrying individual has a geno-
type together with which W yields a good phenotype.
Therefore, since selection on individuals is selection
on codes, W has a higher probability than L of being
propagated over time by reproduction and being sub-
jected to code mutation. If such a mutation results
in even higher code fitness, then the argument that
worked for W works for W’s mutant, and so forth.

6 CONCLUSIONS

It has been shown empirically that the effect of code
evolution works on a hard problem, that is, genetic

codes carried by individuals get adapted such that,
during run time, problem-relevant phenotypic symbols
are increasingly being used while irrelevant symbols
are less often used.

7 FUTURE RESEARCH

Several hypotheses must be investigated, among them
the claim that DGP with code evolution outperforms
non-developmental approaches on hard problems. We
argue especially that there is a high potential in code
evolution for the application to data-mining problems,
since, in this domain, a “good” composition of a sym-
bol set is typically unknown since the functional re-
lations between the variables are unknown due to the
very nature of data-mining problems. We hypothesize
that code evolution, through generation of redundant
codes, enhances the learning of significant functional
relations by biasing for problem-specific key data and
filtering out of noise. Last not least, the hypothesized
principle of code evolution, that is, the co-operative
co-evolution of individuals and codes, shall be investi-
gated.

References

Banzhaf, Wolfgang, Peter Nordin, Robert E. Keller
and Frank D. Francone (1998). Genetic Program-
ming — An Introduction; On the Automatic Evolu-
tion of Computer Programs and its Applications.
Morgan Kaufmann, dpunkt.verlag.

Keller, Robert E. and Wolfgang Banzhaf (1996). Gene-
tic programming using genotype-phenotype map-
ping from linear genomes into linear phenoty-
pes. In: Genetic Programming 1996: Proceedings
of the First Annual Conference (John R. Koza,
David E. Goldberg, David B. Fogel and Rick L.
Riolo, Eds.). MIT Press, Cambridge, MA. Stan-
ford University, CA. pp. 116-122.

Keller, Robert E. and Wolfgang Banzhaf (1999). The
evolution of genetic code in genetic programming.
In: GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13-
17, 1999, Orlando, Florida USA (W. Banzhaf,
J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela and R.E. Smith, Eds.). Morgan Kauf-
mann. San Francisco, CA.

Koza, John R. (1992). Genetic Programming: On the
Programming of Computers by Natural Selection.
MIT Press, Cambridge, MA.

Maeshiro, Tetsuya (1997). Structure of Genetic Code
and its Evolution. PhD thesis. School of Infor-
mation Science, Japan Adv. Inst. of Science and
Technology. Japan.

O’Neill, M. and C. Ryan (2000). Crossover in gram-
matical evolution: A smooth operator?. In: Ge-
netic Programming (Riccardo Poli et al., Ed.).
Number 1802 In: LNCS. Springer.

Spector, Lee and Kilian Stoffel (1996). Ontoge-
netic programming. In: Genetic Programming
1996: Proceedings of the First Annual Conference
(John R. Koza, David E. Goldberg, David B. Fo-
gel and Rick L. Riolo, Eds.). MIT Press, Cam-
bridge, MA.. Stanford University, CA. pp. 394-
399.

Watson, James D., Nancy H. Hopkins, Jeffrey W.
Roberts, Joan A. Steitz and Alan M. Weiner
(1992). Molecular Biology of the Gene. Benjamin
Cummings. Menlo Park, CA.

