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Biological and artificial evolutionary systems exhibit varying degrees of evolvability and different rates of evolution. Such quantities
can be affected by various factors. Here, we review some evolutionary mechanisms and discuss new developments in biology that
can potentially improve evolvability or accelerate evolution in artificial systems. Biological notions are discussed to the degree
they correspond to notions in Evolutionary Computation. We hope that the findings put forward here can be used to design
computational models of evolution that produce significant gains in evolvability and evolutionary speed.

1. Introduction

The field of Evolutionary Computation (EC) has seen enor-
mous progress since it was founded in the Sixties and
Seventies of the 20th century [1–11], inspired by the
evolutionary processes observed in the living world.

In EC, candidate solutions to optimization or learning
problems are represented by structures similar to gene
sequences and their phenotypic expressions. The ensemble
of such solutions is referred to as a population. Evolutionary
operators, such as mutation, recombination, and selection,
are applied to this population. Solutions gradually improve
by repeating a variation-selection cycle through numerous
iterations of the evolutionary process. Essentially a search
method, EC, often produces well-performing solutions to
complex optimization and learning problems arising from
various areas, to the point where its problem solving
capability mirrors or even exceeds that of humans [12]. Yet,
EC is not without weaknesses, and new algorithmic variants
are constantly being introduced, studied, and applied.

The fundamental idea of EC was gleaned from biology,
and more specifically, from Darwin’s theory of evolution by
natural selection [13] as embodied in the Neo-Darwinian
synthesis [14, 15]. In the past decades, however, knowledge of

natural evolution has improved profoundly in biology. This
progress has, to a large degree, not been incorporated yet into
computational models of evolution and therefore cannot be
harvested for applications. We have argued that adopting
new knowledge about natural evolution generated in areas
such as molecular genetics, cell biology, developmental
biology, and evolutionary biology would substantially benefit
EC [16, 17].

The question then arises what the most important and
revolutionary discoveries are in biology in recent times, and
how they can be sufficiently abstracted to provide material
for computational models. As the number of scientists
working in the areas mentioned above is now higher than
at any other time of the past and can be estimated to be well
over a million, it becomes nontrivial to select those aspects
of evolution that will have the most impact in computational
models. A number of books have appeared in recent years
that provide some guidance in this quest (see, e.g., [18–25]).

Here we restrict ourselves to mainly review the con-
cepts of evolvability and the speed of evolution. This is
motivated by the fact that EC approaches often suffer from
progressive slow-down of evolutionary speed. While under
some circumstances appreciated as convergence to a global
optimum, for many real-world tasks convergence and the
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corresponding slow-down of fitness improvements as well
as the reduction in the diversity of solutions is more a
predicament than an advantage. This is especially true for
difficult problems where there is no hope to find an optimal
solution, but where good solutions would already provide
a benefit in the application. As a result, the development
of systems that show continued evolutionary potential,
open-ended evolution, as it has been termed, has gained
prominence.

Open-ended evolution is a hallmark of Life. Thus, one
alternative route to explore this topic in computation is
via an Artificial Life approach [26]. And so a number of
artificial systems have been designed in the meantime with
the aim to simulate organic life in silico, such as Tierra
[27], Avida [28], and Evita [29]. In these systems, computer
code is regarded as “digital organisms” with CPU time
the “energy” resource and memory the “material” resource.
Digital organisms evolve through interactions with their
neighbors and competition for resources. Fitness is not an
explicit notion in these systems. However, this is still only
an initial step towards understanding and realizing open-
ended evolution in artificial systems, as Bedau and Brown
[30] report that the long-term capability to adaptation
seems to be missing from these systems compared to real
organisms (for an example of long-term capabilities in
simple organisms, see [31]); that is, this type of artificial
evolution lacks evolvability in the “long-term”.

In EC, the situation is even exacerbated by the existence
of an explicitly defined fitness function, often in the form
of a simple scalar. However, while it is the holy grail of
computational models of evolution to achieve continued
evolutionary potential, which has—to the best of our
knowledge—not been reached to date, progress has still
been achieved by studying more limited concepts like that
of evolvability. In a nutshell, the hope is that by relating
properties of natural evolutionary systems to mechanisms
used by Nature to achieve them, we might learn enough to
design algorithmic mechanisms that exhibit similar features.
So let us start by looking more closely at evolvability and the
rate of evolution.

1.1. Evolvability. In the process of evolution, genotypic vari-
ation explores new evolutionary material, the corresponding
phenotypic variation provides adaptive characteristics, and
stabilization operators like selection preserve improvements
over previous generations. The cooperation of these activities
is what allows evolution to work. Thus, the core mechanism
of evolution is to assemble the forces of these operations that
yield adaptive improvements implying the evolvability of an
evolutionary system. A growing number of efforts have been
dedicated to understanding [25, 32–38] and enhancing [39–
45] evolvability.

While the concept of evolvability is still very much
under discussion, we will adopt a definition that is equally
applicable to natural and artificial systems.

Definition 1. Evolvability is the capability of a system to
generate adaptive phenotypic variation and to transmit it via
an evolutionary process.

Altenberg [46] describes evolvability from the viewpoint
of EC as the ability of a genetic operator or representation
scheme to produce offspring fitter than their parents. In
biology, Kirschner and Gerhart [47] consider evolvability as
an organism’s capacity to generate heritable and selectable
phenotypic variation. An explicit comparison between evolv-
ability in biological and computational systems has been
performed by Wagner and Altenberg [45]. In their view,
evolvability must be seen as the ability of random variants
to produce occasional improvements, which would depend
critically on the plasticity of the genotype-phenotype map.
The authors emphasize “variability” determined by the
genotype-phenotype map as the propensity to vary, rather
than variation itself. Marrow [48] suggests that evolvability
means the capability to evolve, and this characteristic should
be relevant to both natural and artificial evolutionary
systems. He discusses a number of important contributions
on this topic in both biology and EC and raise some open
questions for further research.

Recently, a growing number of evolutionary biologists
and computer scientists have shown interest in this topic.
In an evolutionary system, many properties of a population
are considered related to evolvability, including facilitation
of extradimensional bypass and robustness against genotypic
variation [49, 50], redundancy, flexibility during develop-
mental processes [47], and mutation rate adaptation [51].
The notion of evolutionary capacitance has also been used in
this context ([52], and references therein).

The detection and measurement of evolvability is an
intriguing and nontrivial problem. Phenotypic fitness is
directly observable and serves as a selection criterion.
However, as a potential to generate better fitness and a
capability for adaptive evolution, evolvability is a different
type of observable, which is more difficult to observe and
to quantify. Although a formal methodology on measuring
evolvability has not yet been agreed upon in the literature,
some empirical methods have been proposed nevertheless.

Nehaniv [53] proposes the perspective of using evolu-
tionary system complexity to describe and measure evolv-
ability. He defines the exhibited evolvability as an observable
outcome generated by evolvability and measures evolvability
by the rate of increasing complexity of evolutionary entities
in an evolutionary system. Wagner proposes to simply mea-
sure the number of nonneutral 1-step mutation variations in
a biological system of particular relevance to RNA evolution
in order to quantify evolvability [54]. As one can see,
Nehaniv’s definition entailing more complex entities will in
general also lead to a larger number of nonneutral 1-step
variations and thus increase this measure of evolvability.

Another perspective on evolvability is provided by Earl
and Deem [55] who suggest that evolvability can be selected
for by variation in the environment. By observing genetic
changes in protein evolution, they find that rapid or dramatic
environmental change generates strong selection pressure
for evolvability. Thus, high evolvability can be detected
and favored by such selection pressure. For an artificial
evolutionary system Reisinger et al. concur when they
propose an indirect encoding representation to improve
evolvability [56, 57]. A gradually changing fitness function
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is designed to measure evolvability of representations and
to evolve a population that is adaptive under different
environments. Furthermore, as the pace of change of the
fitness function increases, stronger selection pressure for
evolvability is imposed.

1.2. Rate of Evolution. Related to the theme of evolvability is
that of the rate of evolution. Evolvability defines how likely a
system can generate adaptive phenotypic variations whereas
the rate of evolution describes how fast this evolutionary
process can proceed. The rate of evolution is a fascinating
topic in evolutionary biology and has caused many debates
already since Darwin’s time. Darwin himself held the view
of phyletic gradualism, hypothesizing that most evolution
occurs uniformly, gradually moulded by selective conditions.
Others were of a different opinion, and Eldredge and Gould
proposed the theory of punctuated equilibria [58]. According
to this idea, evolution occurs through bursts of innovation
followed by long periods of stasis, a major challenge to
Darwin’s orthodoxy.

Definition 2. Rate of Evolution is a quantitative measure
of the changes observable in an evolutionary system over
generational (or otherwise appropriately defined) time-
scales.

In biology, the rate of evolution has different defini-
tions and measures depending on the underlying objects
examined, for instance, gene sequences, proteins, organisms,
and so forth. In molecular biology, the rate of evolution
usually describes the rate of mutants being preserved as
advantageous, that is, those that can generate phenotypic
improvements. This is observed by looking at the fixation of
alleles in genes. Biologists use the ka/ks ratio to measure the
rate of gene sequences evolution [59–62]. It is known that
some changes to a gene sequence may lead to differences in
the amino acid sequence of an encoded protein while others
will not, due to the degenerate code employed for trans-
lation. Therefore, such a measure can be used to compare
two homologous protein-coding gene sequences of related
species. The ka/ks ratio resulting from a measurement of
the number of nonsynonymous (amino acid) substitutions
per nonsynonymous site (ka) to the number of synonymous
substitutions per synonymous site (ks) characterizes the rate
of evolution between these two sequences. Since ks measures
neutral evolution (without considering functional improve-
ments under selection pressure), the ka/ks ratio reflects
the amount of adaptive evolution against the background
amount of variation. Note that this is an approximation since
there are nonsynonymous changes in amino acid sequences
that do not change the function of the protein in which they
appear.

In case ka/ks > 1, fixation of nonsynonymous substitu-
tions is faster than that of synonymous substitutions, which
means that positive selection fixes amino acid changes faster
than silent changes. Mostly, however, one finds ka/ks < 1, the
case where deleterious substitutions are eliminated by puri-
fying selection (negative selection), and the rate of fixation
of amino acid changes is smaller than the background rate of

variation. If ka = ks, the fixation of these two types of changes
is at the same rate, a special case indicating, for example,
pseudogenes. To summarize, measuring a large ka/ks ratio
suggests that adaptation has been generated (and fixed) at a
high rate. This measurement has been widely applied in the
analysis of adaptive molecular evolution and is accepted as
a general method for measuring the rate of gene sequence
evolution in biology.

Other than at the molecular level, Worden has defined
the concept of genetic information in the phenotype (GIP)
in his work on the speed limit for evolution [63]. GIP is
meant to be a measure of the amount of genetic information
expressed in observable phenotype, and he uses the rate of
increasing GIP to describe the rate of evolution. He proposes
that GIP measurement can be applied in both biology and
EC.

As we can see from these examples, both phenotypic
effects and genotypic effects have to be taken into account
when measuring the rate of evolution.

In artificial systems used for EC, the goal of evolution
is much more specific than in nature: to find the solutions
to a given problem. The rate of evolution in EC, therefore,
usually refers to the speed of solving a specific problem,
for example, to the speed of fitness improvements or the
speed of approaching a fixed objective. The ability to define
explicit phenotypic fitness is one of the most distinguishing
features that differentiate EC from natural evolution. For the
measurement of the rate of evolution, however, it offers a
trap: to go entirely phenotypic, since in order to investigate
the performance of a computational model, the rate of
evolution is mostly measured by the speed of fitness function
improvements. Other ad hoc methods are also utilized in EC,
like the efficiency of algorithms and CPU time.

Another method, however at a deeper level than sim-
ple fitness function improvement, deserves mentioning:
Bedau and Packard [64], for instance, propose a method
for visualizing evolutionary adaptation. This method is
useful to identify and measure the capability of creating
adaptation during evolutionary processes. It is based on
calculating evolutionary activity statistics of components in
an evolutionary system, such as the numbers of particular
genes (or alleles) in each generation and the persistence
of these genes (or alleles) during evolution. During a
decade of extensive development, the notion of evolution-
ary activity has been applied to various scales of genetic
components, including alleles, allele tokens, phenotypic
equivalence classes of alleles, and whole genotypes, in
both artificial evolutionary systems and in the biosphere.
In their more recent work, these authors emphasize two
aspects for evolutionary adaptation: the extent and the
intensity of evolutionary activity [65, 66]. The extent of
evolutionary activity refers to how much of an adaptive
structure is present in an evolutionary system, while the
intensity concerns the capability of generating new adaptive
structures. The measures of cumulative evolutionary activity
and mean cumulative evolutionary activity characterize the
extent of a system’s evolutionary adaptation. On the other
hand, new activity is a measure of the intensity of a
system’s evolutionary adaptation. Evolutionary activity can
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be quantified and visualized during evolutionary adaptation.
Its derivative is the concentration of a component’s current
presence, and its second derivative can be argued to reflect
the rate of evolution at a particular time. Evolutionary
activity is also claimed to be a straightforward method for
studying evolvability [65]. The argument is that, since a
system with high evolvability can create highly adaptive vari-
ation, the quantification of evolvability can be achieved by
measuring the levels of extent and intensity of evolutionary
activity.

1.3. Observations. It has been observed both in the pale-
ontological record [67] and, more recently, through studies
of molecular evolutionary systems [68] that the rate of
evolution in biological systems is greatly varying. At times
selective sweeps pass through a population that all but
wipe out certain less advantageous alleles, while at other
times seemingly nothing happens in terms of evolutionary
changes. Thus we can legitimately speak of an acceleration
of evolution under certain conditions, and of a slow-down
under others.

In EC, on the other hand, the state of the art can be
summarized by the observation that under most conditions,
algorithms tend to show exponential decay in progress
toward an optimum with often a painfully slow convergence
for a large part of runs, or, alternatively, a premature con-
vergence of the algorithm to the detriment of the produced
solution, resulting in a stagnation of the search algorithm
before it has reached an acceptable outcome. This has been
realized to be related to the record dynamics shown in many
natural and human systems [69, 70]. Record dynamics refers
to the slow-down of records, for instance, in competition
sports events, where after some time records become more
and more difficult to break, due to the unchanging human
physiology and the limitations this physiology imposes on
achieving certain targets.

Contrast that with the world of natural evolution, where
there is always a way to beat previous opponents, and to
evolve in another direction that allows to increase fitness
in some unforeseen ways. Surely, the implicit definition of
fitness plays an important role here, as it allows enormous
flexibility in achieving function. Further, the fact that the
environment is permanently changing can be expected to be
a key contributor to the evolvability in natural environments.
Finally, the ability of living tissue (an intentionally vague
term) to assemble in a hierarchical fashion, starting from
atoms and molecules upward into ecosystems, provides
building blocks and interactions of great richness that allows
evolution to progress at different speeds, and notably to
accelerate under favorable conditions.

A number of detailed observations on the factors that
can accelerate evolution in the living world have been
made in the past. Simon [71] raises the “nearly completely
decomposable” property in multicellular organisms and
proposes it to be an important property that can lead to
faster fitness increases. In research on yeast genes, Gu et al.
[72] report rapid evolution of gene expression and regulatory
divergence after gene duplication. Gene (and segmental)
duplication events contribute substantially to genomic and

organismal evolution, since they provide abundant material
for mutation and selection to generate new gene functions
in a modular way. By studying the recent nucleotide
substitutions in human evolution, Hawks et al. [73] find
that, as a population becomes more adapted to its current
environment, the rate of adaptive evolution slows down.
However, a growing population size can provide the potential
for rapid adaptive innovation. Thus, enlarging the popula-
tion size and changing environmental conditions can both
promote the rate of adaptive evolution. Kashtan et al. [74]
confirm in a recent report that a varying environment can
speed up evolution in an artificial evolutionary system. Other
properties and techniques on the acceleration of evolution
have been also investigated in biology and computing.

This review discusses evolvability and methods for
accelerating artificial evolution by drawing ideas from com-
plex natural systems. Notions from biology are introduced
and their potential in designing new algorithms in EC is
discussed. The review is organized along the work-flow of
evolutionary algorithms. Section 2 starts with the character-
istics of populations; variation operations are investigated
in Section 3, separated into genotypic variation, phenotypic
variation, and the transformations between them. Selection
is discussed in Section 4, together with notions of fitness. The
review concludes with a summary in Section 5.

2. Population

The general idea of EC is to adopt mechanisms of evolution
from nature. In Darwin’s theory of evolution, both the
notion of variation and of natural selection are based on
natural populations. However, populations simulated in a
computer are usually simplified from their natural counter-
parts. A notable difference between natural and simulated
population systems is that no identical individuals exist
in a natural population, whereas this is allowed and most
often the case with simulated populations. Tiny variances are
considered an essential aspect of natural populations as they
lead to the large diversity in natural evolution via amplifying
effects produced by selection. Hence, more details should be
taken into account also in computational populations that
will ultimately allow a better differentiation of individuals.
Because the representation chosen for individuals and the
size parameter of a population can affect the performance
of a computational model, it is an essential step in EC to
determine these features of the simulated population.

2.1. Representation. The first step for setting up evolution
with a population is to decide on the representation of
evolutionary individuals. Each individual should be encoded
as a candidate solution to a given problem, which sub-
sequently determines the search space of the algorithm.
Therefore, choosing a representation is important because
it predicates the input to the search process that should
produce a satisfactory output. Here, we highlight a two
biological mechanisms, a protection mechanism for robust
information preservation, and a communication mechanism
for information interaction between different molecules.
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2.1.1. Robustness and Redundancy. Living systems may seem
wasteful and luxurious to computer scientists. The most
distinguishing aspects of biology compared to other natural
sciences are complexity and diversity, which are indeed of
central concern to biologists. In the face of cruel com-
petitive circumstances, organisms show great redundancy
and resilience. Redundancy exists at different levels in
natural organisms, including the genomic, transcriptomic,
and phenotypic levels, all for the benefit of the robustness
of the organism.

We adopt Wagner’s definition for robustness here.

Definition 3 (robustness). The robustness of a biological or
engineering system is its capability to continue functioning
in the face of genetic or environmental perturbations [25].

In biology, the genome of an organism is defined as
the information encoded in DNA sequences and inherited
from generation to generation. The double helix structure
of DNA sequences itself is a form of protective redundancy
of genetic information. Genomes carry genes and other
noncoding DNA sequences. A gene is a string of base pairs
grouped by a function that is embodied in a protein or
polypeptide (protein fragment). Noncoding DNA sequences,
formerly called “junk DNA”, are not expressed as proteins,
although they might be transcribed into RNA and involved
in manufacturing proteins or controlling that process. All
in all, genes are only quite small a fraction of the entire
genome [75], with more than 98% of the human genome,
for instance, being noncoding DNA sequences [76]. Fur-
thermore, even a gene sequence itself is divided into exons
and introns, where exons directly determine the protein
amino acid sequence but introns do not. Nevertheless, these
noncoding DNA sequences are not useless. Recent biological
discoveries show that they play an important role in the
regulation of gene transcription [77]. Regulation mecha-
nisms will be discussed later in Section 3.3.1. Wren et al.
[78] find that tandem-repeat polymorphisms in genes are
quite common, and that such polymorphisms can enhance
the ability of some genes to respond rapidly to fluctuating
selection pressure. The mechanism of gene duplication will
be discussed in detail in Section 3.1.1. Moreover, diploid
organisms have two copies of each chromosome, one copy
inherited from each parent. Recent research has also found
that a large number of DNA segments appear in more
than two copies. Copy Number Variations (CNVs) in human
and other mammalian genomes discovered lately account
for a substantial amount of genetic variation other than
single nucleotide polymorphisms (SNPs) [79–82]. CNVs and
SNPs are considered to substantially contribute to genotypic
variation, a phenomenon that will be discussed in detail later
in Section 3.1.1.

Further down the line toward the phenotype is the
transcriptome which describes the set of all transcribed
RNAs in cells. In the human transcriptome, the proportion of
transcribed nonprotein-coding sequences is large and shows
great complexity [83]. Substantially more DNA is transcribed
than is translated, and only a small proportion of mRNAs are
translated into proteins. The rest is called noncoding RNA or

Table 1: Mechanisms responsible for creating redundancy and
antiredundancy at the cellular level. (Adapted from Krakauer and
Plotkin [86].)

Redundancy Antiredundancy

Gene duplication
Overlapping reading
frames

Neutral codon usage
Nonconservative codon
bias

— Gene silencing

Polyploidy Haploidy

Multiple regulatory
elements for n genes

Single regulatory element
for n genes

Chaperone and heat shock
proteins

—

Checkpoint genes
promoting repair

Checkpoint genes inducing
apoptosis

Telomerase induction Loss of telomerase

Dominance Incomplete dominance

Autophagy —

mRNA surveillance —

Bulk transmission Bottlenecks in transmission

Molecular quality control —

tRNA suppressor molecules —

Modularity —

Multiple organelle copies Single organelle copies

Parallel metabolic pathways Serial metabolic pathways

Correlated gene expression
Uncorrelated gene
expression

DNA error repair Loss of error repair

ncRNA. About 98% of all transcribed sequences in humans
are of this type [84]. Although many of the functions of these
noncoding sequences are unclear, the high complexity of the
transcriptome hints at its importance in the mechanisms of
organizing gene expression in a robust way [85].

Krakauer and Plotkin [86] go further and propose the
new concept of antiredundancy. In their opinion antiredun-
dancy emerges as does redundancy in cells, and natural
organisms would be able to modify the redundancy proper-
ties of genotypes during evolution. Table 1 shows a summary
of observed mechanisms responsible for both redundancy
and antiredundancy at the cellular level. Mechanisms for
redundancy mask the phenotypic effect of mutations and
allow mutants to stay in populations, while mechanisms for
antiredundancy enhance the efficiency of local selection to
remove damaged components.

Going even further, we finally arrive at the phenotype:
redundancy at the phenotypic level lies in an organism’s
robustness against intrinsic or environmental changes. With
low robustness, a species will gradually decline and finally go
extinct due to lethal mutations because random mutations
in the genome usually cause deleterious changes with a
potential to destroy the offspring.

It seems that robustness and evolvability have a con-
tradictory relationship to each other. When a system has
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high robustness in its genome, it can be tolerant to intrinsic
or environmental changes, but that should leave it less
evolvable, as variation would be masked, and vice versa. In
recent contributions, Wagner [50, 54] resolves this apparent
contradiction. He distinguishes robustness and evolvability
as quantities at both the genotypic and the phenotypic
levels. If one considers genotype, the more robust a genetic
sequence is, the less innovation this sequence will produce.
However, robustness and evolvability are characteristics of
an entire system and if investigated at phenotypic level
show a strong correlation. A system with high phenotypic
robustness harbors a great number of “neutral” variations
that have no functional effects. These neutral variations
do not change phenotypic function during relatively static
evolutionary periods but may be able to generate adaptation
later under certain genetic or environmental changes. Thus,
a system with high phenotypic robustness simply masks
changes but provides great potential for phenotypic inno-
vation in the future, for example, if conditions change and
previously neutral changes suddenly have an effect. This is
the core of the argument that high robustness and high
evolvability are in fact correlated in nature [54], and this
has been supported in many subsequent research [87–91].
Specifically, Draghi et al. [92] go further and for first time
quantify the effects of robustness/neutrality on adaptation in
an evolving population. They suggest a complex relationship
between robustness and evolvability, which depends on the
topology of the genotype network. Their results indicate that
if the genotype space has no epistatic effects, a more robust
population will have less evolvability. With epistasis, on the
other hand, they find a nonmonotonic relationship between
robustness and evolvability, that is, evolvability is the highest
at an intermediate level of robustness.

Redundancy is wide-spread in natural organisms as an
efficient protection mechanism against internal or environ-
mental changes, whereas in EC models components that
do not seem to be immediately relevant are often consid-
ered superfluous. In recent years, however, representation
redundancy has arisen as a by-product of computational
evolution and has attracted increasing interest from EC
researchers.

Definition 4 (representations redundancy). In genetic and
evolutionary algorithms, representations are redundant if the
number of genotypes exceeds the number of phenotypes
[93].

Rothlauf and Goldberg [93] examine the effects of
redundant representations on the performance of an EC
system both theoretically and empirically and propose that
redundant representations can increase the reliability and
efficiency of EC models. Specifically in genetic programming,
representation redundancy is usually identified as introns (or
noneffective, neutral code) [1] in programs. Researchers have
investigated both the positive and negative effects of introns
[94–97], and a positive relation between neutral code and
evolvability in genetic programming has been suggested. The
important role of redundancy in evolvability has now been
realized. We might, therefore, consider designing protective

redundancy into our algorithms to make them resilient
against changes while improving adaptivity. Such capabilities
certainly complicate the algorithms but may be worthwhile
if the resulting robustness can generate higher evolvabil-
ity when applying intense pressure to produce adaptive
responses. Evolution might even be accelerated because
the system has a quick and robust reply to evolutionary
pressures. With the growth of computational power available
today ideas like these can be more easily explored than
before.

2.1.2. Molecular Interaction. Natural living systems are
remarkably diverse starting from so simple organisms as
bacteria to highly complex creatures such as primates.
This diversity is not the result of vastly different chemical
constituents of organisms. In fact, many species carry out
similar metabolic, cell division and replication processes
under similar assembly principles [98]. The differences that
distinguish species are caused by the arrangement and
distribution of basic building blocks [99] and molecular
interactions contribute significantly to these organizational
mechanisms.

Molecular interactions in a cell happen between the
same type of molecules, such as protein-protein interactions,
or between different types of molecules, such as protein-
DNA or RNA-protein interactions. Signals can also be
sent between and responded to by cells in multicellular
organisms. Molecular interactions can be triggered by energy
supply, for example, in metabolic pathways, chains of interac-
tions catalyzed by enzymes, or triggered by external stimuli,
for example, signaling pathways that enable communication
through the cell membrane [100]. Proteins are not only
a product enabling various organismal structures but also
work as control factors in various processes from the
synthesis of a cell, metabolism, gene regulation, to sexual
reproduction.

Metabolism is a key process to maintain the growth and
reproduction of cells. The metabolic network of a cell is an
elaborated set of numerous chemical reactions catalyzed by
enzymes [101]. Different types and amounts of enzymes are
produced according to different energy supplies, and these
enzymes will determine different metabolic pathways by
their catalysis. In the process of gene expression, the function
achieved can be controlled by molecular interactions. For
instance, the process of how a parsimonious bacterium
responds to food supplies during metabolism shows a simple
genetic switch mediated by molecular interactions. Since
the metabolic pathways of bacteria are much simpler than
those of multicellular organisms, the regulation of gene
expression is more easily understandable in bacteria. The
phenomenon of enzyme induction [22] describes the adapta-
tion of a bacterium to material supplies by producing varying
amounts of enzyme. What triggers this production and
how does this mechanism work? The Jacob-Monod model
(shown in Figure 1) first described the regulation mechanism
of inhibiting or repressing genes by inhibitory proteins,
called repressors in bacteria. The binding of lactose to a
repressor enables the production of RNAs by removing the
repressor from its binding sites on the gene sequence where
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No lactose
present

My landing
site is blocked!

RNA
polymerase

Repressor
No RNA made

Lac gene

(a)

Lactose
present

Now
i can’t
bind!

RNA
polymerase

Repressor

Makes RNA

Lactose

Lac gene

(b)

Figure 1: The genetic switch in the Jacob-Monod model. A specific repressor protein acts as a switch. When it binds to a DNA site near the
gene encoding beta-galactosidase, the RNA polymerase protein cannot bind nor can it synthesize RNA from the gene. The gene is turned off.
When lactose is present, it binds to the repressor and keeps it from the DNA site. The gene turns on. (Adapted from Kirschner and Gerhart
[22].)

RNA polymerase can bind. However, this is not a simple
on-off switch model. The continuity lies in the binding
duration which determines the rate of protein synthesis.
Therefore, if more sugar is absorbed during metabolism,
more protein is synthesized by RNA translation. This simple
sugar metabolism model captures the mechanism of how
a repressor affects gene function. The enzyme here works
as a trigger for the protein synthesis process under various
molecular interactions. In addition, most enzyme effects
are sensitive to ambient temperature [102], which is an
important parameter to control metabolic interactions.

Signaling and cellular responses to signals are complex.
These responses are controlled by a plethora of positive and
negative feedback loops. The presence of feedback compli-
cates the simple picture of a linear pathway but is an essential
part of the signaling process [98]. This makes signaling
pathways involving molecular or cellular communication a
network-like structure, with complex regulatory processes
at work. The cellular infrastructure of eukaryotic organisms
is only a few times larger than that of bacteria, but the
complexity of their signaling network control differs greatly,
by orders of magnitude. The linkage between various parts
of the gene expression apparatus in eukaryotic organisms
is weakened by a far less precisely defined control than
that found in prokaryotic cells [47]. For instance, geometric
requirements for binding sites are significantly relaxed in
eukaryotic gene regulation. A repressor does not have to
bind at the exact position of a target but needs only to
bind in the neighborhood. By lowering constraints for
cooperation, such a weak linkage also enables potential
interactions between different gene sequences. Signaling
between cells is possible only after a sufficiently large number
of repressors participate simultaneously. A single signal may
incur a very complex response [49]. Allosteric proteins,
which have multiple sites for interaction, also make gene
expression more flexible because they have different sites
for different functions. Regulatory decisions on which genes
are transcribed when, where, and under what circumstances

makes eukaryotic cells well conserved but enormously adap-
tive to generate new phenotypes in changing environments
[103].

Computational models have already been used to analyze
and understand complex multi-input/output and higher-
order signaling systems have been examined in bioinfor-
matics [104]. In contrast, current EC models are mostly
limited to representing evolutionary material based on the
infrastructure of natural organisms, while disregarding the
vast potential of interaction mechanisms for regulation and
signaling at both the molecular and cellular levels. The
absence of such mechanisms in EC, however, points to
significant research opportunities in this area.

2.2. Population Size. After the encoding of an individual
is determined, a population is set up. Several features of
a computational population are tightly connected to its
evolutionary capabilities, the most relevant of which is
population size itself.

In nature, different species have different population
sizes, a characteristic that plays an important role in evolu-
tion. In the living world it is common that smaller groups
constituting species evolve faster, though smaller groups have
a higher probability of becoming extinct, while species with
larger populations evolve slower and can stay unchanged for
relatively long periods. However, neither a small nor a large
population size is unconditionally beneficial in evolution.
The relation between them should be understood in different
scenarios.

The study of population genetics was formulated by
Fisher [105], Haldane [106], and Wright [107]. It focuses
on gene frequency changes in populations under the effects
of natural selection, mutation, genetic drift, and population
size fluctuation. In this field, scientists have examined
the role of population size in molecular evolution using
mathematical analysis. The rate of molecular evolution
is usually measured by the nonsynonymous to synony-
mous substitution ratio ka/ks, discussed in Section 1.2.
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Decades ago Kimura [108] proposed a strong dependency
of the rate of molecular evolution on population size.
More recently, Gillespie [109, 110] has conjectured that
there is only a very weak dependency on population size.
Somewhat in the middle between these opinions, Ohta
[111] finds population size to be related to the rate of
evolution under particular assumptions regarding mutation
types. The nearly neutral theory of molecular evolution
proposed by Kimura and Ohta [112, 113] predicts that
there is a substantial number of nearly neutral mutations
(including slightly deleterious and slightly advantageous
ones) in molecular evolution, and that these contribute
to evolution by providing potential for future phenotypic
innovation. Ohta [111] predicts that population size affects
the rate of evolution under various mutation scenarios. If
most mutations are deleterious, a smaller population can
evolve faster, because the chance of a slightly deleterious
mutant being favored by selection is greater within a smaller
population and these nearly neutral mutations bring genetic
variation and may further trigger phenotypic innovation. In
contrast, if mutations are mostly advantageous, the rate of
evolution in a larger population is greater. If most mutations
are neutral, the evolution rate is nearly independent of
population size. Since in general random mutations are more
deleterious than advantageous in natural systems, species
with a small population size usually evolve faster.

A number of studies focus on testing the relation between
population size and evolution rate by using comparisons.
Island endemic species usually have small population sizes
because they are restricted to a limited geographical region.
Woolfit and Bromham [114] study species on islands in
support of the effect of population size on the rate of
molecular evolution. They compare island endemic species
to closely related species on a nearby mainland and find
that island endemic species have a significantly higher
nonsynonymous to synonymous nucleotide substitution
ratio than their counterparts on the mainland. This result
indicates that a decrease in the population size will lead
to an increase in the rate of evolution. Wright et al. [115]
study tropical species which are generally regarded to have
a rapid molecular evolution rate due to several factors such
as latitude and climate. It is believed that tropical organisms
possess great species richness and dynamics with small but
highly diverse populations [116]. However, there are also
exceptions in that increasing population size can accelerate
evolution as well. By studying the recent rapid molecular
evolution in human genomes, Hawks et al. [73] suggest that
if a population is highly adapted to a current environment,
evolution will become stagnant. Under these circumstances a
growing population size can provide the potential for rapid
adaptive innovation. Thus, enlarging the population size
under chaotic environments can promote the rate of adaptive
evolution.

Population size is also involved in research on genome
robustness. Visser et al. [85] postulate that the population
size should be sufficiently large for selection to be effective
to evolve the robustness of a system. Small populations
have difficulty to achieve this robustness. In a different
study Krakauer and Plotkin [86] find, however, that small

populations will also favor evolving robustness by increasing
genetic drift pressure and a buffering mechanism of hiding
mutations from being reduced by selection. This hypothesis
is supported by Elena et al. [117]. Among the different
authors, there is agreement that the effect of population size,
either large or small, varies in different models.

In general, the size of populations in EC is orders of
magnitude lower than the size of populations of many
naturally occurring species, especially those of simpler
organisms like bacteria. The commonly adopted population
size in EC varies from tens to thousands, with a few
exceptions. Genetic Programming generally uses relatively
large populations, due to the more complex and nonlinear
fitness landscape than can be found in other branches of
the EC family. However, the size of GP populations run is
limited by resource constraints in the range of hundreds
of thousands. Some of these algorithms have to run on
parallel machines or on GPUs, since the evaluation of a large
population of individuals requires enormous computational
power (see, e.g., [118–120]). An order of magnitude like
that of humankind, a billion individuals, is unheard of in
EC approaches, which already points to a vast potential for
doing research on EC in the future. A whole landscape of EC
methods might emerge with populations that are large.

As a result of the use of small population sizes in the EC
community, efforts have been dedicated to the optimization
of population size [121], since a high correlation between
population size and the performance of an EC algorithm
is presumed. The challenge is that adapting population
size is problem-specific and to date it is still unclear how
to estimate the relation among various EC parameters. In
general, current work on this topic concentrates on two tasks:
(i) initializing a proper population size prior to a run, and
(ii) adjusting population size during a run. Most theoretical
work on population size initialization is based on Goldberg’s
component decomposition approach and the notion of
Building Blocks [122, 123]. With many other publications,
these contributions propose to choose the population size
according to the “hardness” of a specific problem. They
state a general principle in setting population size: the more
difficult a problem is, the more diversity is required and the
larger the population should be.

In the meantime, it has been found that even for a
specific problem the requirements for population size may
differ during different stages of evolution. As a result,
empirical methods for adjusting population size during a
run have been proposed, such as the Genetic Algorithm with
Variable Population Size (GAVaPS) proposed by Arabas et
al. [124], the parameter-less GA by Harik and Lobo [125],
the Adaptive Population size Genetic Algorithm (APGA) by
Back et al. [126], and the Population Resizing on Fitness
Improvement GA (PRoFIGA) by Eiben et al. [127]. However,
mechanisms for dynamically adjusting population size in
EC are much simpler than those found in nature, in that a
fluctuating population size still has little to do with mutation
and selection patterns in different evolutionary stages. This
relation requires further exploration as it seems to be a
promising indicator for population size adjustment during
a run.
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3. Variation

Mutation and recombination operators are a main aspect
of evolvability, since they generate the necessary variation
among individuals that later can be acted on by cumulative
selection processes. Due to the complex mapping process
from genotypic to morphological level in biology, genotypic
and phenotypic variation will be discussed separately.

3.1. Genotypic Variation. Genotypic variation generally
means changes to DNA sequences in both protein-coding
and noncoding regions in the form of point mutation and
gene rearrangement. Gene sequences are highly conserved
against lethal changes that would likely lead to destructive
consequences otherwise because a tiny mutant at the genetic
level can cause a great change in function [22]. In contrast,
changes to the regulatory or noncoding part of sequences are
considered more able to increase adaptability and plasticity
of a system. In this section, we will discuss the general form
of mutation first and then gene duplication as the most
important form of rearrangement, followed by a comparison
between point mutation and gene rearrangement.

3.1.1. Mutation. Although there can be many definitions of
mutation, we here adopt one that emphasizes the primary
difference to recombination, namely, that works with mate-
rial from just one individual organism.

Definition 5 (mutation). Mutation is the process that creates
new genetic material from the addition or multiplication
of stochasticity in various forms to some original genetic
material of an organism.

Point Mutation. Searching for the essential driving force of
evolution has been a central topic in evolutionary biology.
Since Darwin declared that natural selection is the main force
of evolution, controversies have arisen on different aspects of
this explanation. In modern biology, the two main schools
of thought are selectionism and neutralism [128]. Some
scientists argue that genotypic variation is maintained by
selection, which is the central perspective of neo-Darwinians.
Other evolutionists insist that high genotypic variation can
be explained as a result of neutral mutations. In either case,
mutation is accepted as a major mechanism to generate
genotypic variation.

Mutation can happen anywhere on a DNA sequence,
that is, in either coding or noncoding regions, and may
consequently cause functional, regulatory, or structural
changes, or no changes at all. The neutralist hypothesis is
that the majority of observed sequence variation stored in the
population is neutral. This is due to the compensating mech-
anisms of biological systems [128]. Most new mutations are
deleterious, a few are advantageous, and many are neutral.
However, most of the extant polymorphism observed in
populations is the neutral variants. Deleterious mutations
have been purged and advantageous mutations have swept
through the populations.

What triggers mutation and what is the relation between
mutation and selection? Does selection pressure indeed
generate new mutations or simply allow existing mutants
to be fixed faster than before? Research on mutation under
selection has received wide interest since Darwin’s time, but
controversies have arisen regarding the effect of selection
pressure on mutation, and different models have been
proposed in the meantime [129]. It is now believed that
it is impossible to separate any form of mutation from
the effect of selection. In order to investigate “directed”
mutation pathways Roth and Andersson [130] define adap-
tive mutations as fitter mutations that arise under selective
conditions. In subsequent work [131–133], they propose a
gene duplication-amplification model to study the mutage-
nesis stimulated by enhancement of selection. In addition,
a recent study by Weinreich et al. [134] on the effects
of Darwinian selection on random mutation argues that
environmental selection can make some multistep mutation
pathways unaccessible. By studying “five point mutations”
in a lactamase allele that can increase bacterial resistance
to an antibiotic, several mutation pathways are in principle
possible for these mutations. After calculating the different
probabilities of these pathways, their experimental results
show that under intramolecular interactions that increase
the fitness of proteins, only a small number of pathways are
really accessible. This is quite an interesting result because
mutations might be channeled by some unknown fitness-
increasing principle(s) and the resulting proteins might
be reproducible and even predictable. These feedback and
interaction mechanisms may reduce the harm that mutations
could bring to an organism. This point of view also conforms
to Kirschner and Gerhart’s definition of evolvability [47],
which they define as “the ability to reduce the potential
deleterious mutations and the ability to reduce the number of
mutations needed to produce phenotypically novel traits”. If
mutations can be channeled, fewer changes might be needed
to generate a required adaptation and, therefore, evolvability
would be improved by this reduction in cost of mutations.

In EC, mutation is regarded as an important exploratory
operator. Artificial evolutionary search should be good at
both exploring suitable genetic novelty and maintaining suc-
cessive improvements. Holland [7] discusses this principle
as the tension between “exploration” and “exploitation”. The
mutation rate is important to keep this balance, and it has
already been studied as an evolvable parameter contributing
to evolvability. Bedau et al. [51, 135] divide evolutionary
adaptation conceptually into two stages: the novelty stage,
where an evolving system enhances its adaptability against
a changing environment, and the memory stage, where the
evolving system is building up this adaptability through
incremental improvements. By providing a simple two-
dimensional model, Bedau et al. postulate that the mutation
rate should increase during the novelty stage and decrease
during the memory stage. This fluctuation of mutation rates
is able to keep the balance between evolutionary novelty
and memory and thus increases the evolvability of adaptive
systems.

However, compared to natural evolutionary systems,
genotypic variation in computational systems is somewhat
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Figure 2: Two common modes of gene duplication. (a) Unequal
crossover, which results in a recombination event in which the two
recombining sites lie at nonidentical locations in the two parental
DNA molecules. (b) Retroposition, which occurs when a message
RNA (mRNA) is retrotranscribed to complementary DNA (cDNA)
and then inserted into the genome. Squares represent exons and
bold lines represent introns. (Adapted from Zhang [139].)

arbitrary and not as adaptive. First, the fixation process
of mutations is not simulated appropriately in most EC
algorithms, because all changes to individual sequences are
mostly translated into phenotypic properties. Recovery or
repair mechanisms are usually not applied to individuals
suffering deleterious mutations, which make those individ-
uals unfavored during the selection process. Second, the
selection-driven mutation pathways found in natural systems
are an interesting direction to explore for computational
models and should be considered in future research in EC.

Gene Duplication. Gene duplication is an important mech-
anism creating new genes and new genetic subsystems.
This mechanism has been recognized to generate abundant
genetic material and contributes substantially to biological
evolution [136]. A large number of duplicate genes have
been discovered to exist in vertebrate genomes [137], and
a repeated number of whole genome duplications have
been established as key events in evolutionary history [138].
In modern biology, gene duplication and its subsequent
function-specialized divergence are widely believed to be a
major reason for functional novelty.

Gene duplication is usually generated by unequal
crossover or retroposition [139] (see Figure 2). Unequal
crossover is similar to but different from normal crossover
that occurs when two chromosomes exchange a propor-
tion of DNA at the same locus in base pair sequences.
Unequal crossover happens if this exchange occurs in

different loci, with the consequence that duplicate genes
appear in one chromosome while the other turns out to
contain pseudogenes. Retroposition happens when an mRNA
is retrotranscribed into a complementary DNA (cDNA)
and then inserted into the original genome. Besides such
gene duplication, duplication at other scales in cells has
been discovered recently [138, 140], including segmental
duplication and whole-genome duplication. Here, we
only consider gene duplication. The main products of gene
duplication are called paralogous genes, a type of homologous
genes. Homologous genes have two main categories, paralogs
and orthologs. Paralogs are results of gene duplication and
code for proteins with different functions. Orthologs are the
products of speciation events and the proteins they code for
serve similar functions.

Once a gene duplication has occurred, a complex fixation
process on the duplicate genes takes place. Purifying selection
and gene conversion are the main pressures affecting the sur-
vival of duplicate genes [141]. Most duplicate genes become
pseudogenes after one or more mutations disable them
and no promoting function is yielded. However, multiple
copies of identical genes can, after duplication, promote
functional redundancy against fatal changes. The process
of pseudogenization is reported to occur in the early stages
of a rapid evolution [142] process, with evidence of many
pseudogenes found in the human genome. Other duplicate
genes are changed by selection pressure and functional
divergence. Subfunctionalization and neofunctionalization
are the two main mechanisms of functional divergence [139].
In subfunctionalization of two gene duplicates, shown in
Figure 3, each copy adopts a different aspect of the function
of the original gene. Both copies will be stably maintained
because both aspects of the function are indispensable.
Subfunctionalization leads to functional specialization by
dividing multifunctional genes once the newly emerged
genes perform better. Alternatively, some relatively new
function can also evolve after gene duplication [143], and this
process is called neofunctionlization. This has been termed
the Dykhuizen-Hartl Effect [144] earlier, where a random
mutation is preserved in the duplicated gene by reducing
selection pressure due to functional redundancy that results
from gene duplication. Such mutations may accumulate and
induce a genetic function change depending on conditions
of the (dynamic) environment. New adaptive functions may
thus be generated and later preserved during evolution. By
possibly creating novel functions and allowing evolution
under fewer constraints, neofunctionlization is an important
consequence of gene duplication.

In brief, the mechanism of gene duplication contributes
substantially to genomic and organismal evolution. It pro-
vides abundant material for mutation and selection and
allows to specialize function or generate completely new
functions. The acceleration of protein sequence evolution
after gene duplication has recently been confirmed in
research on yeast genes by Gu et al. [72]. The authors
use an additive expression distance between duplicate genes
to measure the rate of expression divergence, and rapid
evolution of gene expression as well as regulatory divergence
after gene duplication is observed.
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Figure 3: Division of expression after gene duplication. Squares
represent genes, closed ovals represent cis-acting elements that
regulate gene transcription, and open ovals represent deactivated
cis-elements. Consider a gene that is expressed in tissues T1 and T2,
with a cis-acting regulatory element A1 controlling the expression
in T1 and A2 controlling the expression in T2. Following gene
duplication, one daughter gene might lose the A1 element whereas
the other gene might lose A2, so that each is expressed in only one
of the two tissues. (Adapted from Zhang [139].)

One key idea how gene duplication can speed up
evolution is Altenberg’s constructional selection [145, 146].
The idea is that gene duplication enriches the genome with
genes that are good at increasing fitness when duplicated.
This is a second-order effect that can be considered to
contribute to evolvability. For a more general review, see
[147].

In summary, the mechanism of gene duplication can
considerably increase evolvability of a system by reducing the
cost of mutations. In EC, the idea of using gene duplication
and deletion operators was proposed some time ago. Those
operators are in general based on the method of variable-
length genotypes and are executed with predefined dupli-
cation or deletion probability [46, 148–151]. Unfortunately,
so far only application-oriented work has appeared with
different representations [152], and a common framework
for this concept is missing. More details of gene duplication
in biology should be taken into account to benefit compu-
tational evolution. In particular, the question of how gene
duplication reduces the limitations of mutation and selection
and in the process promotes evolvability needs to be studied.
Is there a way to implement functional specialization and
innovation through gene duplication in EC?

Point Mutation versus Gene Rearrangement. A point muta-
tion occurs when a base on a DNA sequence is changed into
another base at the same locus. Gene rearrangement is a
change in the order of a DNA sequence on a chromosome.
This change can be an inversion, translocation, addition, or
deletion of genes. Earlier research focused mostly on Single
Nucleotide Polymorphisms (SNPs) in genomes due to the
enormous complexity of genetic sequence analysis, but gene
rearrangements have always been believed to contribute to

evolvability, possibly even more than simple point mutations
[153]. Recent development of technology has now facilitated
the shift in focus from a locus-based analysis to a genome-
wide assessment of genotypic variation [79, 154].

Genetic rearrangements rather than point mutations
can maintain the connective information carried by gene
sequences. Because genes form networks of functional
control, rearrangement is better able to preserve internal
structures. Genetic changes are highly constrained by gene
sequences and gene rearrangements occur far more fre-
quently than point mutations.

The ubiquity of Copy Number Variations (CNVs) has
been realized recently in mammalian genomes by different
groups of biologists, such as Sebat et al. [81], Iafrate
et al. [80], and Tuzun et al. [82]. CNV is regarded as a
predominant type of genotypic variation leading to vast
phenotypic diversity in mammalia. CNVs show that large
segments of DNA, with sizes from thousand to millions of
base pairs, can vary in copy number of genes. This variation
can lead to protein dosage differentiation in the expression
of genes, and CNV is therefore regarded as being responsible
for a significant proportion of phenotypic variation [79].
The mechanisms that create CNV have not yet been clearly
understood, but some hypotheses have been proposed in the
literature. Fredman et al. [155] and Shaw and Lupski [156]
propose that CNV might be the result of large segmental gene
duplications or nonhomologous recombination events.

Recent bioinformatics research uses statistical and com-
putational tools to analyze chromosomal evolution by a
comparison of genome-rearrangements between sequences
of related species [157]. Although the biochemical mech-
anisms of gene rearrangement are still far from being
fully understood, we believe it is time to start using such
rearrangement operations in computational models in EC.
Particularly, the recent discovery of CNVs requires attention
by computer scientists, in order to achieve similar benefits in
EC.

3.1.2. Recombination. Recombination has been considered
both as an exploratory and as a stabilizing operation in
biology and in EC. Here we emphasize the origin of the
genetic material being used for new combinations. Due to
the size of search spaces, both effects are possible.

Definition 6 (recombination). Recombination is a process
that generates combinations of existing genetic material from
a multitude of organismic sources.

Recombination is regarded as an important force shaping
genomes and phenotypes. Since some highly efficient and
accurate computational methods can be used in biology,
analysis of gene recombination has made much progress by
way of comparing aligned genome sequences. These com-
parisons facilitate a better understanding of several aspects
of genetic and evolutionary biology, notably genotypic and
phenotypic variation and genome structures [158].

Recombination exchanges genetic material between two
DNA sequences swapping strands between one or multiple
crossover points. Recombination can occur on homologous
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or nonhomologous sequences. The former is more promi-
nent in research because it is more common and efficient
in generating adaptation in nature. Generally, research on
recombination focuses on prevalent eukaryotic organisms
rather than prokaryotes, which do not have the sex property.
Unequal crossover is fairly rare and may lead to duplication
or loss of some genes (discussed in Section 3.1.1) and other
results [159]. Combination events can take place between
different gene sequences, as in intergenic recombination, or
between alleles on the same gene sequence, as in intragenic
recombination [158]. Despite various forms of recombina-
tion, their outcome is crossover at one or multiple points and
a swapping of fragments of genetic sequences.

Kondrashov [160] proposes in his deterministic mutation
hypothesis that sexual recombination can remove deleterious
genes. It is generally believed that most nonneutral muta-
tions are slightly deleterious. Kondrashov suggests that sexual
recombination can distinguish individuals with cumulative,
slightly deleterious mutations, and the ensuing selection
pressure can eventually remove those disadvantaged muta-
tions. Further, Hadany and Beker [161] strengthen this
perspective in their research on the evolution of obligatory
sex. Their model supports that sexual recombination offers
both short-term and long-term advantages to sexually
reproducing individuals and has a positive effect on the
physiological fitness of an organism.

The rate of recombination can significantly affect the rate
of adaptation. It is usually higher than the rate of mutation,
which implies that recombination introduces much less
lethality to an evolutionary population than mutation.
Instead, it advances evolution remarkably by stabilizing
adaptive traits from parents to offspring. This contributes
to evolvability in the same way as other purifying selection
does because the bounds on epistatic interactions between
loci get progressively strengthened through selection over
generations. By drawing a recombination map of the human
genome, Kong et al. [162] discovered that recombination
rates vary in different regions of the genome. This variation
is due to such functional features as gene density, other
gene properties, and frequency of sequence repetitions.
Recombination rates are also different in autosomes between
different sexes. Recombination contributes to producing
both genotypic and phenotypic variation and is able to
repair DNA double strand breaks. Sexual reproduction is an
important outcome of recombination.

In EC, recombination operations are considered an
essential search strategy. Chromosome coding is much more
flexible in computation than in nature, and thus, various
recombination techniques have been proposed and studied,
including double-parent and multiparent crossover [163],
fixed-length chromosome and variable-length chromosome
crossover [164, 165], and homologous and nonhomologous
crossover [166–168]. High recombination rates are usually
also adopted in computation because of its perceived effi-
ciency in generating beneficial genetic and phenotypic varia-
tion. Elsewhere, adaptive recombination rates are proposed
to strike a balance between exploration and exploitation
[169]. In most of these adaptive recombination rate schemes,
modification of recombination rates is based on fitness

value. Different from natural recombination mechanisms,
most adaptive recombination rate proposals simply react to
the current status of the search, in order to escape from
local optima. However, rate adaptation in biology is much
more complex and suggests other models for computation.
For instance, the rate may vary among different individ-
uals or in different modules serving subfunctions in the
genome. Such function-specific recombination rates could
also consider the method of “compartmentalization” for
modularity (Section 3.2.2). The notion of epistatic clustering
in contributing to evolution of evolvability has recently
been studied [170]. Genetic linkage patterns between dif-
ferent loci are claimed to affect recombination rates, and
the simultaneous optimization of different recombination
rates on different traits would be realized by a method
called epistatic clustering. Evolvability would be improved
through coevolution of trait clustering and recombination
mechanisms.

3.2. Phenotypic Variation. As mentioned in Section 2.1.2,
despite their vast phenotypic differences, metabolic processes
and cell structures in bacteria and humans are quite similar
[22]. What, then, makes humans so different morpho-
logically from other organisms? It is the regulation and
reuse of these structural elements in different combina-
tions that generates different complex phenotypic outcomes.
Unfortunately, the relation between genotypic variation and
phenotypic variation is still not fully clarified in current
biological opinion. Since selection acts on phenotypes rather
than on genotypes, phenotypic variation should be used to
explain the immense diversity among organisms. Here, we
discuss several aspects of phenotypic variation. We leave the
discussion of the mapping process between genotype and
phenotype that controls the direction of phenotypic changes
resulting from genotypic variation to Section 3.3.1.

3.2.1. Conservation and Relaxation. According to Kirschner
and Gerhart, evolution possesses two important features:
conservation at the molecular level and relaxation at the
anatomical and physiological level [22]. By conservation it
is meant that the genetic components of organisms tend to
maintain relatively stable structures; relaxation refers to the
less constrained phenotypic diversification of organisms. The
authors state that conservation on the genotypic level reduces
the constraints on the phenotypic level.

In Darwin’s evolutionary theory, all organisms have
evolved from the same ancestor. After primal initialization
and evolution, genetic structures of organisms are highly
conserved during the course of billions of years [101].
This can well explain why the number of human genes is
only a few times that of bacterial genomes but significant
anatomical and behavioral differences exist between them.
The surprisingly small number of genes in humans and other
complex organisms demonstrates that the great diversity
and complexity at the anatomical and physiological levels
have to rely on and organize/reuse limited genetic material.
When certain organisms need to improve their adaptivity
in order to survive in a new environment, the regulation
system only has to recombine existing mechanisms for the
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generation of adaptive functions, which requires little or
no new genetic material [47]. Not only are gene sequences
highly conserved, but also the core processes of coordination
of the genetic material are well conserved since the time they
initially emerged [22]. These conserved core processes are
used repeatedly for different purposes and functions under
different circumstances, at different times, with different
genetic material. The Baldwin Effect [171] explains that
phenotypic variation is not generated out of the blue but
through regulation of existing components in organisms:
mutation simply stabilizes and extends what has already
existed to improve somatic adaptability towards external
stimulations.

This conservation mechanism can efficiently prevent
lethal changes in genotypes and is an economic method
to increase the adaptability of organisms. New material is
not needed to adapt to changing environments, but few
modifications will suffice.

Functional innovation is heavily constrained due to
molecular interactions among various genetic components
that are involved to produce a specific trait. If the partic-
ipation of more genetic components is needed, it becomes
harder for functions to change. In fact, relatively little genetic
material is required to generate all proteins of organisms.
Under selection pressure from a changing environment,
organisms have to yield adaptive phenotypic traits to survive,
however, and the highly conserved core processes mentioned
above are used repeatedly to generate new cooperation
among the conserved genetic material, bringing about fitter
function and behavior. Relying more on the combinatorics of
components is equivalent to relaxing phenotypic variation.

The relaxation on phenotypic variation has been high-
lighted as the notion of “deconstraint” in Kirschner and
Gerhart’s [47] research on evolvability which studies the
mapping from genotype to phenotype. Enhancing pheno-
typic variability under changing environmental conditions
allows nature more evolvability. Not only can deleterious
changes be avoided, but also nonlethal genetic and pheno-
typic variation is indeed the material from which innovation
can be generated.

Turning again to EC: what is the role of conservation
and relaxation in EC? First, an economic use of genomes
or building blocks can help to conserve genetic information.
Second, it can be assumed that by reducing the constraints
on changes to a phenotype the exploratory capability of
a computational system to find better solutions can be
enhanced. How such a process can be implemented in actual
systems is presently unknown, but a worthwhile line of
inquiry.

3.2.2. Modularity. Modularity is a widespread structural
property of complex systems. It has attracted considerable
interest from studies of both natural and artificial evolution-
ary systems and is regarded as strongly related to evolvability
[45] and the acceleration of evolution [71].

Modularity exists at various levels, for example, at the
level of gene expression or embryonic development. Here we
adopt the definition of modularity proposed by Simon [172]
in his research on hierarchies in complex systems.

Definition 7 (modularity). In a complex system, modularity
refers to the property that a loose horizontal coupling exits
between the entities at the same level of this system [172].

Simon [71, 173] further defines that “a system is nearly
decomposable if it consists of a hierarchy of components, such
that, at any level of the hierarchy, the rate of interaction
within components at that level is much higher than the rates
of interactions between different components”. Although this
“Near Decomposability (ND)” is attributed to a vertical
separation while modularity describes the separable property
of components horizontally at the same level, they seem
closely related in that they both describe how a complex
system is decomposed into subsystems.

The modularity property of genotype-phenotype map-
pings has been extensively studied in gene expression. It
reduces harmful pleiotropic effects of gene expression and
can lead to adaptive phenotypic variation. Pleiotropy is a
general property of genotypic variation, expressing the fact
that one change at the genetic level can cause a multitude
of functional changes at the phenotypic level. Pleiotropy
can generate both advantageous and disadvantageous results.
Pleiotropy can sometimes generate unexpectedly improved
functions but can also be harmful or even fatal to evolution-
ary systems [174]. Since a gene can affect multiple functions,
optimizing one particular function at the phenotypic level
inevitably incurs side-effects on other functions. Bonner
[175] proposes the notion of “gene nets” by grouping
gene actions and their products into discrete units during
evolution. In general, for a given organism, the mapping
from genotype to phenotype can be divided into modules
such that the sets of genes in one module only affect the
functions in that same module. The mapping is therefore
decomposed into groups of independent “submappings”.
Bonner finds that the phenomenon of gene nets becomes
increasingly prevalent as organisms become more com-
plex. Wagner and Altenberg [45] investigate modularity
in genotype-phenotype mappings from both perspectives,
biology and EC. They interpret modularity as a means for
dividing phenotypic traits into different “compartments” to
reduce interference among different optimization modules.
With such modularity, optimization of a function in one
module has no effect on functions in other modules. As a
result, pleiotropy can be confined to a known set of functions
during evolution. Figure 4 shows a simple example of this
idea of modular separation.

Wagner and Altenberg [45] further propose that mod-
ularity results from evolutionary modifications in natural
organisms. In their view, the evolution of modularity follows
two mechanisms, dissociation and integration. Dissociation
is the suppression of pleiotropic effects by disconnecting
interactions between different modules, while integration is
realized by strengthening of pleiotropic connections among
traits in the same modules. Both mechanisms are driven by
selection pressure.

Thus, modularity can be conceptualized as an evolu-
tionary mechanism to promote evolvability. It reduces the
interdependence of disjoint components and consequently
reduces the chance of pleiotropic damage by mutation [47].
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Figure 4: Example of a modular representation. Complexes C1 =
{A, B, C, D} and C2 = {E, F, G} serve to functions F1 and F2.
Each character complex has a primary function, F1 for C1 and F2
for C2. Only weak influences exist of C1 on F2 and vice versa. The
genetic representation is modular because the pleiotropic effects of
the genes M1 = {G1, G2, G3} have primarily pleiotropic effects on
the characters in C1 and M2 = {G4, G5, G6} on the characters in
complex C2. There are more pleiotropic effects on the characters
within each complex than between them. (Adapted from Wagner
and Altenberg [45].)

It allows genotypic variation and selection to affect separate
features in a complex system and to evolve various functions
without interference [176]. Subsystems as part of an entire
system can evolve faster to optimize their local subfunc-
tions individually, by decreasing crosstalk between genetic
changes. In a study of encoding schemes in EC by Kazadi
et al. [177], a compartment is defined similar to a module
in the genotype-phenotype mapping, and such compart-
mentalization at different levels is claimed to contribute to
the acceleration of evolution. In RNA research, Manrubia
and Briones [178] propose that the increase of molecule
length and subsequent increase in functional complexity
could be mediated by modular evolution. They find that
short replicating RNA sequences with a small population
size can be assembled in a modular way and can create
complex multifunctional molecules faster than conventional
evolution of complex individuals toward multiple optima.

Modularity in general has been widely used in computer
science and engineering by subdividing complex entities into
smaller components to yield higher computational efficiency
and has similarly played a key role in EC from the outset.
In fact, it can be argued that the building block hypothesis
is at its core an argument about modularity. However,
complex genotype-phenotype maps and other mechanisms
(like growth and development) to generate modularity in
EC are relative newcomers and it is expected that studying
these mechanisms in biology will result in more sophisticated
means to produce modularity in EC. Since modularity is the
most universal property of phenotypes in natural systems,
there is ample ground to expect that the economic and
sophisticated mechanisms used by Nature through regulating

and reusing relatively simple genotypic material will be a
major force in shaping complex phenotypes also in EC.

3.2.3. Facilitated Variation. Kirschner and Gerhart [22]
emphasize that variation is much less random at the
phenotypic level of organisms than at the genotypic level,
where genetic mutations show considerable randomness.
Since phenotypic variation should be favored by selection via
modifying existing evolutionary components, they call this
variation facilitated.

Kirschner and Gerhart summarize three principles of
facilitated variation. It serves (i) to reduce lethal pleiotropic
effects, (ii) to increase phenotypic variation in light of
a given number of genetic changes, and (iii) to improve
genetic diversity in evolutionary populations (by reducing
lethality). Evolution is not so much affected by the content of
genetic and protein structures but by regulation capabilities
to organize and reuse these functional parts and to decide
the targets of such regulation. The core processes instead
are conserved being built in a special way, only to be linked
together under new circumstances like time, place, and
the number of genetic components that may participate in
generating new phenotypic variation. It is clear that only
adaptive phenotypic variation can be maintained during
evolution, and the relevant product proteins mostly will have
multiple functions for various adaptive requirements under
selection.

Variation in EC systems seems to be more random than
that in natural evolution. Despite the limitations in recogniz-
ing these phenomena in biology, we should explore methods
to reduce randomness in computational models in order to
make evolving processes more “intelligent” and to facilitate
the discovery of good solutions. Some steps have been taken
in EC literature in this light. Researchers have designed
more sophisticated techniques to improve the adaptation
of algorithms. One idea was developed for Evolutionary
Strategies first and later applied to other branches in EC
[179–182]. Further, the evolution of “smarter” operators for
EC in a higher-level evolutionary process has been examined
in metaevolution [183–186]. A more recent contribution
looking at the effect of changing environments on variation
in a computational framework has been the GA of Parter
et al. [187].

3.3. Transformation from Genotype to Phenotype. It is at
the intersection between genotypes and phenotypes where
most of the mechanisms reside that allow for facilitated
variation. A subject of much study both in natural and
artificial systems has been the genotype-phenotype map.
In recent years, epigenetic effects, long suspected to have
enormous influence on the final expression of the phenotype,
have assumed center stage in biology. Epigenetics [188] is
a rapidly developing and prominent research topic, both
in relation to the development of healthy phenotypes as
well as those who show deficiencies. This will constitute
the second part of this section. Finally, epigenetics and a
consequence of the amplified power of expression regulation
through epigenetics are the mechanisms of development
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of multicellular organisms. These are discussed in the last
subsection here, concluding the transformation of genotypes
into phenotypes.

3.3.1. Genotype-Phenotype Mapping. In EC, mapping from
genotype to phenotype is often an encoding process, espe-
cially in evolutionary algorithms and evolutionary strategies,
where the mapping mechanism is used in most cases to
directly calculate a fitness function of an individual. How-
ever, in nature, the mapping process is much more complex,
typically from highly conserved genotypic information to
greatly divergent polymorphism in phenotypes. The funda-
mental process in biological genotype-phenotype mapping
is gene expression, and the most important mechanism
in this process is regulation of gene expression, which
will be discussed next. Since research on transcriptional
regulation has discovered increasing evidence that RNA plays
an important role in gene expression, the transcriptome,
that is, the set of all transcribed RNAs, will be reviewed
then.

Regulation of Gene Expression. In biology, the core processes
(Section 3.2.1) of organisms are responsible for generating
anatomy and behavior using genetic and cell materials. These
core processes include metabolism, gene expression, and
interaction among molecules and cells [22], which are well
conserved but still under exploration. Regulation of gene
expression is the most important mechanism among the
core processes to facilitate organismal novelties in evolution.
Kirschner and Gerhart highlight the characteristics of “con-
servation” and “economy” in regulatory core processes in
[22].

Scientists have been trying to understand the process of
gene expression for decades. In 1956, Crick proposed the
Central Dogma of molecular biology, as shown in Figure 5,
which describes the transmission of genetic information
from DNA to protein. The circular arrow around DNA
symbolizes that a DNA is a template for self-replication.
The arrow from DNA to RNA indicates that an RNA is
transcribed on a DNA template, and the arrow from RNA
to protein signifies that a protein is translated on an RNA
template.

Subsequent biological research revealed that the process
of gene expression is much more complex than such a
linear flow and involves a considerable number of complex
regulation operations. The Central Dogma was challenged
by discoveries of proteins playing an important role in
regulation of gene expression and, most recently, the non-
coding RNA control of chromosome architecture proposed
by Mattick [189]. In this section, we concentrate on gene
expression regulation by proteins and will discuss RNA
effects in next section.

Recall the discussion of genome redundancy in
Section 2.1.1. Coding regions on genetic sequences that
can be expressed into proteins only occupy a small portion
of the entire genome in eukaryotic cells. This discovery
indicated that a huge number of regulatory elements exist
in genomes that participate in generating adaptation in
evolution according to changes in environments. Although
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Figure 5: Central Dogma. The Central Dogma of biology by Crick
holds that genetic information normally flows from DNA to RNA
to protein, which involves the mechanisms of gene replication,
transcription and translate.

living systems have evolved for billions of years, regulatory
core processes in various organisms have remained mostly
unchanged despite species divergence. By comparison of
related species from the same ancestors, such as humans
and chimpanzees, at both the molecular and organismal
levels King and Wilson [153] had already found in 1975
that genetic structures in these two species are almost
the same while at the organismal level, the anatomy,
physiology, behavior and ecology of these two species are
significantly different. This suggested to them that the
complex adaptive evolution is produced by a combination
and multiple utilization of similar, highly conserved
genetic components under the control of regulatory
systems.

A key step in the regulation of gene expression is
transcription. Studies there are concentrated on two primary
components: promotors and transcription factors. Promotors,
also known as cis-regulatory sequences, are responsible
for regulatory transcription. Cis-regulatory sequences are
noncoding DNA sequences which determine when and
where “their” genes are transcribed by regulating access of
polymerase to transcription start sites. Transcription factors
are proteins interacting with these cis-regulatory sequences
by binding to certain sites on DNA sequences. Readers
interested in more details are referred to Wray et al. [77].
Transcription factors act either as activators or as repressors
of gene expression. For example, if a transcription factor
A binds to a site on a DNA sequence that is responsible
for generating protein B, then this factor A is regarded as
a repressor to protein B. In addition, as a protein itself,
factor A also has its template gene sequence. If another
transcription factor C can bind to this site and represses the
generation of protein A, C acts as a repressor to A but in
turn as an activator to the expression of protein B. These
activators and repressors can work together as a network
of logic control. Promotors usually contain a number of
binding sites for transcription factors, where each site can
only be occupied by one factor at a time. These binding
sites occupy, however, only a small fraction of sequences
and are distributed unevenly. Some binding sites of different
functions can overlap. Furthermore, binding affinities of
different materials are important for regulation as well. On
the other hand, most transcription factors have numerous
target genes and use priorities in binding with any of
them [77]. This sophisticated network endows the regulation
system with high robustness and plasticity necessary for
evolution of capabilities of organisms.

Kauffman [190, 191] holds a long standing opinion
that gene regulation networks are dynamical systems and
that many phenotypic traits are encoded in the dynamical
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attractors of these systems. Dynamical attractors refer to
cyclic trajectories of the transformations of states of these
networks and their study provides clues to the behavior and
properties of gene regulatory networks. Kauffman’s point of
view—namely, that the topology of a gene regulatory net-
work largely decides cell types, cell fates, and functional states
of the cell—has been supported by a number of more recent
studies [192–195]. Meanwhile, simplifying computational
models has been proposed to study dynamical attractors.
Aldana et al. [196] model gene activities using random
Boolean networks (RBN) with varying topologies. They
report that a network with scale-free output topology and
operating close to the critical regime (neither ordered nor
chaotic) possesses the greatest robustness and evolvability
compared to networks with other topologies and acting in
different dynamical regimes. Further support comes from
[197–201], which again confirms Wagner’s argument that
high robustness and high evolvability can coexist in natural
systems (see Section 2.1.1).

Evolution of cis-regulatory sequences as noncoding
sequences is considerably different from that of protein-
coding sequences and is less understood. King and Wilson
[153] suggest that protein-coding sequences are highly
conserved during evolution since they were synthesized. It
is mutations on promoters that causes most morphological
variation. Research on the evolution of transcriptional
regulation has become mainstream in molecular biology
in recent years [77]. In particular, Roderiguez-Trelles et al.
[75] find that significant substitution rate differences exist
among different promotors, and even some neighboring
cis-regulatory promotors involved in the same regulatory
network can have different evolution rates. Moreover, Stone
and Wray [202] propose that local point mutations on
binding sites can lead to rapid evolution in gene expression,
which indicates their potential of accelerating evolution.
Wagner [203] points out that other simple changes such
as gene duplication and deletion of promotors can also
result in rapid evolution in gene regulatory networks.
By comparing genomes, Fondon and Garner [204] dis-
cover that gene-associated tandem repeat expansions and
contractions exist and give rise to rapid morphological
evolution. In their experimental research, a tandem repeat
mutation shows both elevated purity and intensive length
polymorphism among different dog breeds. Mutations on
noncoding sequences can modify regulation of the target
genes, the length of coding loci to transcribe, and the
occurrence conditions. Furthermore, they also result in
morphological variation and accelerated phenotypic evolu-
tion.

Since the mechanisms of regulation of gene expression
can well explain many phenomena in evolvability and rapid
evolution in living systems, research on artificial regulatory
networks has now started in computer science. Several
models of artificial evolution regulatory networks have been
proposed such as Banzhaf et al. [205–208], Chavoya and
Duthen [209], Mattiussi and Floreano [210], and Nehaniv
[211]. These artificial models intend to generate regulatory
behavior akin to that of natural systems. However, these
research efforts are still in their early stages, and more
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Figure 6: Eukaryotic genetic system. Expression of genes is not
with an irreversible linear flow in eukaryotes, but involves frequent
feedback and interactions among different molecules including
DNA, RNA, and protein, as the dotted lines shown here.

work on evolvability and dynamics in artificial regulatory
networks is necessary.

The Transcriptome. The transcriptome, or collection of tran-
scripts, refers to all RNAs produced in a single or a group of
cells, working as an intermediate component of gene expres-
sion. In high-level eukaryotes such as humans, most regions
of the transcriptome are not translated into protein. What
necessitates the existence of such a large number of RNAs
in the transcriptome of high-level eukaryotes? Regulatory
function is one answer to this question. Although regulation
of gene expression starts with the transcription step, these
transcribed but nontranslated sequences or noncoding RNA
sequences act as regulators for translation in gene expression
and currently attract increasing interest in biological research
[83, 212].

An RNA is not just a temporary medium between genes
and proteins as described in the Central Dogma. In high-
level eukaryotes, the information transmission from DNA
to protein is not a one-way process but involves many func-
tionalities of the transcriptome. The new perspective of gene
expression proposed by Mattick [189, 212] can be described
in Figure 6. Compared to a prokaryotic genetic system, an
eukaryotic system has a parallel control mechanism with
multiple outputs and information transfers. Rather than a
simple medium of gene expression, RNA metabolism and
interaction have been discovered playing an important role
in gene expression regulation.

Mattick [84] proposes that noncoding RNAs participate
extensively in gene expression regulation, being present in
about 98% of all transcriptional outputs in eukaryotes. In
research on the human transcriptome, Frith et al. [83] find
that noncoding RNAs play an important role in generating
phenotypic variation. Noncoding RNAs can be classified into
two categories: introns and other noncoding RNAs.

Regulation of the transcriptome shows contributions
to evolvability and rapid evolution. Introns, an important
category of noncoding RNAs, are found more susceptible
to mutations than their neighboring protein-coding exons.
Rather than having no function, as thought previously, it
was found that introns do have influence on regulation
(see, e.g., [213]). The fewer constraints imposed on introns
by selection offer flexibility to generate new functions and
rapid protein sequence evolution during the process of
regulation, especially in connection with alternative splicing.
The evolution of RNA communication networks may also
accelerate the evolution of gene expression, as observed
by Mattick [84]. These RNA communication networks,
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Figure 7: Euchromatin and Heterochromatin. Histone tails have
three types of modification including acetylation (Ac), phosphory-
lation (p), and methylation (Me). Euchromatin (a) is the loosely
packed state that most histone tails are attached by acetyl groups.
Heterochromatin (b) is the tightly packed state that most histone
tails are attached by methyl groups. (Adapted from Jenuwein and
Allis [218].)

which describe interaction among different layers of RNA
signaling, provide a sophisticated regulatory architecture,
enabling DNA-DNA, DNA-RNA, or RNA-RNA communi-
cation, DNA methylation, chromatin generation, and RNA
translation.

Compared to natural systems, the genotype-phenotype
mapping in EC is rather primitive still and a transcrip-
tome is mostly missing in algorithms. The complex RNA
parallel information transfer framework inspires various
applications. Based on what computational models have
already achieved with artificial regulatory networks, more
mechanisms should be implemented, especially the newly
discovered powerful mechanisms of transcriptome regula-
tion (see a step in this direction here [214]).

3.3.2. Epigenetic Mechanism. Epigenetics has become a new
research direction in evolutionary biology [21]. Literally,
“epi”-genetic control lies in the regulation of gene expression
without changing the DNA sequence itself; so it is “beyond
the conventional genetic” control. Epigenetic regulation
arises during the processes of organism development and cell
proliferation, triggered by intrinsic signals or environmental
stimulations [215]. Epigenetic changes are heritable in the
short term from cell generation to cell generation, and
these stable alterations do not involve mutations on DNA
sequences. Epigenetic regulation of DNA expression lies at
the heart of many complex and long-term human diseases
[216].

Previous research in genetics mostly focused on the
sequential information carried by DNA. However, DNA
sequences are coiled up in cells in intimate complexes with
the help of so-called histone proteins. A DNA sequence
wrapped with histones comprises a nucleosome. Chromatin
is the complex of nucleosomes in the nucleus of cells which
participates in the control process of gene expression. The
chromatin composition varies according to cell type and
response to internal and external signals. The different
composition of chromatin may affect expression and thus
change the produced proteins even in the absences of DNA
sequence modification [217].

The main mechanisms of epigenetic control are DNA
methylation and histone modification [215]. Modifications
to chromatin, either on the DNA sequence itself (DNA
methylation) or on its surrounding proteins (histone modi-
fication), affect gene expression and can be inherited from
cell generation to cell generation during cell division. DNA
methylation is a chemical addition to DNA sequences. Genes
with methyl marks are repressed in expression, despite their
unchanged DNA content [219]. In histone modification, the
tails of histone proteins are modified by different molecular
attachments, for examole, acetyl, phosphoryl, and methyl
groups (see Figure 7). If acetyl groups are attached to the
histone tails of a chromatin, it will be loosely packed, a
state called euchromatin. In euchromatin, DNA is readable
and can be transcribed into RNA and later translated
into proteins. In contrast, if methyl groups are attached
to histone tails, chromatin is tightly compressed, a state
called heterochromatin. In the heterochromatin state, genes
are inaccessible to the transcriptional machinery such as
RNA polymerase or to transcription factors, and genes are
prevented from being transcribed [220]. Other mechanisms
recognized to be responsible for epigenetic regulation of
gene expression include chromatin remodeling, histone
variant composition, and noncoding RNA regulation. A
discussion of these mechanisms can be found by Allis et al.
[188].

The key feature of epigenetic mechanisms is their ability
to coordinate internal and environmental signals which
can collaborate to modify protein production [215]. The
underlying interactions involve various molecules, such as
DNA, RNA, and proteins, but the extensive feedback between
these molecules is still beyond our current understanding.

We believe that epigenetics opens up a new field in
evolvability studies for both biology and EC. Sophisticated
epigenetic feedback networks suggest a new structure for
EC compared to the linear flow of computation usually
employed in the literature. For instance, in dynamic opti-
mization problems, not all genes responsible for different
subfunctions need to be expressed all the time. We anticipate
that a “controller switch” can be integrated into the genotype
allowing short-term changes, where fragments of the genome
can be turned on and off in response to external feedback.
Such a mechanism for repression of expression has barely
been used in computation. Similar multilayer adaptive
encoding schemes have been proposed, for example, the
messy Genetic Algorithm (mGA) [164] that combines short
building blocks to form variable-length chromosomes to
increasingly cover all features of a problem, or diploid Genetic
Algorithm, for example, [221] using a two-chromosome
representation to adapt phenotypic variation in dynamic
environments. However, existing work has not embedded the
organizational epigenetic control in algorithms that would
allow significant flexibility in changing environments. We
anticipate that epigenetic mechanisms will play a crucial role
in increasing the evolvability of EC algorithms.

3.3.3. Development. Evolutionary developmental biology
with the subject of the relation between evolution and devel-
opment, nick-named evo-devo, has arisen as a productive



18 Journal of Artificial Evolution and Applications

research direction which tries to unify concepts that have
been separated for a long number of years. The develop-
mental viewpoint provides crucial clues to many puzzles and
controversies that have arisen in genetics and evolutionary
biology in the past [222]. Vice versa, evolution is key to
understanding the developmental mechanisms that have
shaped multicellular life [223].

Definition 8 (development). Development is the process
by which a multicellular organism unfolds its phenotype,
starting from a fertilized single-cell stadium (the zygote), to
a mature multicellular stadium through a defined sequence
of stages that are under the control of its genome and heavily
influenced by its environment.

West-Eberhard [224] discusses the relation of develop-
ment and evolution and suggests that it is important to
reexamine major themes of evolutionary biology in the
light of development. Molecular biology has extensively
investigated evolution on the genotypic level, studying the
mechanisms of gene expression and protein formation,
the effect of mutations on genes, and other questions. It
is, however, development which produces the multicellular
phenotypes and their variation that ultimately is screened by
selection. So in order to examine the effect of a mutation on
the evolution of multicellular organisms, one has to look at
the effects of this mutation in development. Development
emphasizes the time-dimension of an organism and the
continuity of phenotypic changes in its interaction with the
environment.

A major focus of the field of evo-devo is to study the
role of phenotypic plasticity, or developmental plasticity in
evolution [225–228]. Phenotypic plasticity is the phenotypic
responsiveness of an organism to environmental input, and it
is the most universal property of the phenotype of organisms.
Organisms can alter their form, status, behavior, movement,
or other features in response to environmental stimuli. These
changes mostly will not involve any modifications of their
genome. This flexibility is a result of the development pro-
cess, with a complex mapping from genotype to phenotype.

The effect of phenotypic plasticity on the rate of evo-
lution is a subject of debate [229]. It either can accelerate
evolution since new and adaptive alternative phenotypes
are generated to match the current environment or can
also be considered to delay the rate of genetic changes
since this flexibility is able to provide adaptation to an
organism without the need to modify its genotype. The
role of phenotypic plasticity in evolution depends on which
level of evolution is studied, and under what conditions
[227].

It is, however, clear that both major properties of the phe-
notype, its plasticity and its modularity (see Section 3.2.2),
are the result of the hierarchical organization of the
development process producing the phenotype from the
genotype. These characteristics both contribute a great deal
to the evolvability of living systems [230]. Kirschner and
Gerhart [47, 231] hold the opinion that plasticity and mod-
ularity contribute to evolvability due to their advantages,
first at providing adaptation at the individual level, and

secondly at benefiting a population’s ability to diversify and
persist.

The importance of the developmental point of view
seems to be partially realized by the EC community. A
new area named generative and developmental systems has
emerged and attracted studies. Artificial or computational
embryogeny was first introduced to simulate the development
process in silico (see, e.g., [232–234]). More recently, inspired
by the complex mapping from genotype to phenotype,
computer scientists have started to allow more freedom and
scalability when representing individuals, a topic known
as indirect encoding. With an indirect encoding scheme, a
genotype does not map directly to units of structure in its
phenotype, but a growth or developmental process is allowed
in this mapping [235]. Various encoding methods have
been proposed using, for example, hierarchical grammars
[236, 237], or simulating cell chemical processes [238, 239].
Indirect encoding schemes have shown advantages over
traditional one-to-one direct encodings [240, 241]. Indirect
encoding is a first step to simulate biological development
in computational systems by allowing more freedom and
complexity in the genotype-phenotype mapping, but it is
by no means the full story of development. As evolutionary
developmental biology continues to produce new insights,
it will be imperative for the EC community to increase its
efforts to design new algorithms that are inspired by evo-
devo.

4. Selection

Although Darwin’s theory of evolution being directed pri-
marily by natural selection has been the subject of much
argument, selection is an extremely important operation
to stabilize the functional traits already generated by some
exploratory operations [128]. Selection mechanisms are
divided into two types by their effects on different stages
of evolution. First, positive selection enhances the fixation
of advantageous alleles thus improving the diversity in early
stages of evolution [139, 143]. Second, negative selection,
also known as stabilizing selection or purifying selection,
occurs at later stages of evolution when genetic diversity
decreases when such selection eliminates deleterious alleles
and only stabilizes specific traits [141]. The balance between
selection and diversity of an evolutionary population has
been a critical problem, and the dynamic pressure and some
consequences of selection are still under active investigation.
In general, selection pressure is produced by two factors, the
environment and mating competition, both of which will be
discussed next.

4.1. Environmental Selection. Environmental selection orig-
inates in the external surroundings and enforces the adap-
tivity of organisms to survive. Since Darwin environmental
selection has received extensive attention in evolutionary
biology. Natural selection is an extremely important driving
force for adaptive evolution in natural populations [242].

The first response of a living organisms to a changing
environment is somatic adaptation. A simple example of
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somatic adaptation is human temperature compensation
[22]. When the external temperature increases above normal,
humans will sweat to adapt to this new environment.
Shivering will occur if temperature falls below a normal
value. Somatic adaptation happens directly as an organismal
reaction to a changing environment and is not fixed in
morphological structures as an evolutionary change unless
some deeper adaptations caused by somatic changes can
increase the survivability of an organism. Organisms have
plenty of latent traits within their somatic adaptability;
so they have a fairly high tolerance to changes in their
environment [22]. Somatic adaptation mechanisms can only
adjust existing functions to external changes. However, if
evolution acts for a long time under environmental selection,
changes may be stabilized by mutations in the germ-line after
somatic adaptation has tested them through promotion of
survivability of the organism.

Selection can act at different levels depending on its
targets [47]. These might be individual selection, individual-
and-clade selection, or clade selection. At the individual
level, the selection process has the fewest constraints since
it directly affects phenotypic function fitness, and fewer
mutational changes are required for a new adaptive trait. An
individual can also interact with others in a clade, such as
through recombination, and survive under selective pressure
as a member in this clade. At the highest level, selection
can happen on the level of an entire clade given large
environmental impact, and the entire clade can, as a whole,
escape from extinction. Some small groups of the lineage
might go extinct, but the entire line will be able to survive
even if it might have to go through population bottlenecks.
This idea has drawn more attentions in some subsequent
works [243, 244].

Interactions between different species may also cause
environmental changes. Phillips and Shine [245] report an
interesting phenomenon on species invasion. Toxic cane
toads induced morphological changes among a species of
snakes in Australia. Generally, native natural ecosystems can
be devastated by the invasion of new species. At upon the
arrival of an invasive species, the number of native organisms
may decrease. However, as these native organisms adapt
towards the invaders, the impact of the invasion declines
and a new balance is achieved. Morphological changes
are fixed subsequently. Complex natural ecosystems possess
communities with highly frequent and dense interactions
between species as well as between species-specific functional
traits within a species.

Environmental selection is now widely accepted as con-
tributing significantly to natural evolution, and has entered
the mainstream of studies in evolvability. As a potential to
generate adaptation, evolvability is difficult to observe and
to select for. However, there is increasing research arguing
that evolvability is selectable and environmental selection
can improve the evolution of evolvability. In the real world,
the environment is changing constantly and fixes beneficial
mutations, and there is a growing acceptance that a changing
environment is a key ingredient to studying evolvability.
Selection pressure is a critical operator to control an evolu-
tionary process. Earl and Deem [55] suggest that selection

pressure is increasingly strong when the environment
becomes uncertain. Dramatic environmental changes lead to
selection for better evolvability. They consider evolvability
as a selectable trait, and facilitating environmental changes
can be a method to accelerate evolution. A recent simulation
by Kashtan et al. [74] in a biologically realistic setting also
suggests that varying environments may accelerate natural
evolution. In their work, different scenarios of temporarily
changing optima were used. Kashtan and Alon [246] report
that a goal that varies in a modular way can speed up
evolution. Other work [247] takes into account the effect of
the rate of environmental change. By observing the dynamics
of adaptive walks under scenarios of varying speeds, they
find that environments with varying rates of change have
noticeably different effects on the fixation of beneficial
mutations, the substitution time required, and the final
phenotypic variation.

In EC, selection strategies are considered affecting search
capability significantly during an evolutionary process.
Different selection strategies have been proposed and the
dynamics of selection pressure has been studied extensively
[248, 249]. Since the effects of environmental selection on
the evolution of evolvability have been recognized, further
research on the dynamics of selection is required. Moreover,
somatic adaptation might be considered when applying
selection. Group-based selection methods should also be
studied for varying selection pressure, so that a balance
between the development of a minority and of the entire
population can be dynamically achieved.

4.2. Sexual Selection. Sexual selection was proposed by
Darwin as the pressure away from the possibility of mating
failure. Two forms of sexual selection pressure are met by
mature high-level animals: the battle between male individ-
uals who fight, and the competition through mating choice
made by females. Fisher [105] proposed a runaway process,
where a male trait and female preference for it can both
evolve dramatically over time until finally checked by severe
counter-selection. In modern biology, scientists pay much
attention to these sex-based competitions that can generate
and evolve several kinds of traits in high-level organisms.
For instance, Kirkpatrick and Ravigne [250] find that some
secondary sexual characteristics among individuals of the
same sex can trigger rapid speciation.

Sexual selection happens at the interspecies level and
affects reproductive fitness of individuals. Reproductive
fitness is the probability of successfully generating offspring.
Sexual selection has two main forms: intrasexual selection
and intersexual selection. Intrasexual selection is known
as the combat between competitive male individuals, and
usually occurs in the form of a fight. Intersexual selection
is based on the choice made by the opposite sex. Male sec-
ondary sexual characteristics and female mating preferences
can affect each other and evolve cooperatively [251]. This
joint selection pressure, combined with natural selection, is
a powerful force for rapid evolution.

Recent research in biology has connected sexual selection
to the acceleration of evolution. Colegrave [252] finds that
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the rate of adaptation can be increased by sex mechanisms
because sexual selection allows a rapid adaptive response
under changing conditions by fixing beneficial mutations.
Swanson and Vacquier [253] observe that rapid evolution
emerges in reproductive proteins. This rapid evolution is
forced by three main selective factors: sperm competition,
sexual selection, and sexual conflict. Sperm competition is
quite fierce in that each sperm will compete with billions of
others to fuse with the only egg, and this competition exists
in multiple steps for the sperm. Sexual selection happens
when different eggs have varying affinities for a special allele
of a sperm-surface protein, and only the egg with the highest
affinity is most likely to bind to this sperm. Sexual conflict
means that only one egg can be fused with the sperm to avoid
polyspermy such that only one embryo is fertilized. These
types of mechanisms add considerable selection pressure to
reproductive proteins and thus trigger rapid evolution in
certain regions of these proteins.

The concept of mating choice was already applied in
EC decades ago by Miller [254, 255]. Some coevolutionary
algorithms have been proposed to simulate mechanisms
from sexual selection by constructing subgroups which can
affect each other cooperatively to evolve in parallel. As more
and more knowledge has been accumulated by biologists
on the complex process of sexual selection, especially on
the advantages that sex mechanisms contribute to the
acceleration of speciation and evolution, this knowledge
should be better incorporated in EC.

4.3. Fitness Evaluation. Fitness evaluation measures behavior
or function of individuals or species. In nature, fitness of
an individual or species is implicit and subject to natural
selection, whereas in EC, fitness is mostly based on numerical
values of an individual as solution to a given problem, and
this fitness is explicit.

Definition 9. Fitness is the measure to quantify an evolution-
ary individual/component with regard to its ability to survive
and reproduce in a certain environment.

In nature, adaptable species survive by passing different
challenges, and less fit species may become extinct during
evolution. Adaptability lies not only in the currently existing
adaptivity to the environment but also in the capability
to generate more adapted offspring. In essence, fitness of
natural organisms is implicit and is subject to natural
selection. Empirically, biologists use mathematical methods
to quantify fitness. Individual fitness usually refers to the
viability of an individual, that is, its probability to survive
[256]. Moreover, individuals having more offspring can be
considered as fitter ones since their genetic information is
more likely to be preserved. Other than at the individual
level, in classic population genetics literature [257], the geno-
type fitness quantifies the frequency changes of a genotype
in a population during transformation from one generation
to the next. Various measures have been proposed in the
biological literature (see [258, 259] for detailed reviews).

The above implicit fitness in natural organisms empha-
sizes evolvability under intricate pressures from interactions

among evolutionary components, internal or external to
these organisms during a long, continuing evolutionary
process [170]. In reality, the fitness of individuals in a
system can vary a great deal. Moreover, a large-scale quality
differentiation exists in almost every natural evolutionary
system, and these vastly diverse evolution systems exhibit
substantial evolvability. Since selection and evaluation act
directly on observable phenotypic functions but evolv-
ability only provides the potential for better functions,
selection and evaluation for evolvability are not observable
directly.

Since EC has been widely applied in many areas of
industry and academia, fitness evaluation arises as a difficult
problem because it is usually very CPU-intensive. In the
current literature, two main methods of fitness evaluation
are employed, absolute fitness and relative fitness. Absolute
fitness of each individual usually refers to its value of a
specified fitness function. Relative fitness compares different
individuals and gives a rank to each individual to produce
a record of winners. This latter method is good at sup-
pressing exceptionally good individuals, thus, helping an
evolutionary system to escape from premature convergence.
In fact, evaluating the fitness of each individual is usually
difficult for many optimization problems in the real world
because explicit fitness can be hard to define and expensive
to calculate. As a result, fitness approximation has been
proposed with differing levels of approximation, including
“problem approximation”, “functional approximation”, and
“evolutionary approximation”. Jin [260] has surveyed these
approaches. They are sensitive to training data and to varying
constraints of different models; so a common framework
would be required. Moreover, Reisinger and Miikkulainen
[56] propose an evolvable representation and an evaluation
strategy to exert indirect selection pressure on evolvability.
In their work, a systematically changing fitness function
is adopted according to a special evolvable representation
that can reflect efficiently how genetic changes restructure
phenotypic variation. Thus, evolvability can be evaluated
through the way such a systematic structure can expand in
phenotypes. These approaches might provide a good starting
point to simulate the implicit adaptive fitness evaluation
from nature, a method that has good prospects for detecting
evolvability in EC.

5. Conclusion

Since Darwin proposed his theory of natural evolution based
on heritable variation and natural selection, an enormous
research effort has been dedicated to revealing the intricacies
of the processes involved. In modern biology, a host of details
about mechanisms of evolution and factors that can affect
evolution have been revealed. Besides understanding the
history of evolution, biologists are currently paying attention
to the capability of organisms to evolve and to the evolution
of such capability in an open-ended natural evolutionary
process. Varying evolution rates among different species or
different regions of genetic material in an organism attract
researchers’ interest under the aspect of the acceleration
of evolution. Meanwhile, in artificial evolutionary systems,
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one is also working on improving the power of systems by
studying more intelligent and adaptive mechanisms.

Evolvability, as the capability to generate adaptation by
producing fitter offspring via evolutionary operations, has
received considerable interest in recent research in both
biology and EC. Substantial work has been published on this
topic in both areas, and we have tried to cover many of the
factors that contribute to evolvability in this review. After
some phenomena of rapid evolution were found in nature,
acceleration of evolution also became an hot research topic,
not the least because an increase in the speed of artificial
evolution would greatly benefit applications.

More is to come. As a result of the unrelenting progress in
biology, a lively discussion has now ensued as to what a gene
really is [261–264]. There were times when the notion of a
gene was simple. But with the advent of alternative splicing,
intron activity during regulation, iRNA, and other wonderful
intricacies [265], the simple life of geneticists seems to be
over. In this review, our perspective was much more limited
by discussing only two very narrow aspects of evolution, its
speed and the issue of evolvability. We hope that the ideas
discussed here can inspire new methods and applications of
EC.
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