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6.1 Introduction

Computerized image processing has been studied intensively for many years [32].
Because of the inherent complexity of the problem, stochastic optimization algo-
rithms, including evolutionary algorithms, have been applied to improve existing
image processing methods and develop new algorithms [4].

Section 6.2 deals with the automatic design of low-level image filters, ones com-
parable in quality to conventional filters. Moreover, when the evolved filters are
constructed as single-purpose circuits in a field-programmable gate array (FPGA),
the implementation cost is usually lower than the cost of conventional solutions. We
will describe the basic approach to filter evolution and its extensions, such as the
use of a bank of evolved filters, and filtering using extended kernels.

Evolutionary design of more advanced image operators such as dilation/erosion
filters is presented in Sect. 6.3. As these filters are composed of relatively com-
plex elementary functions (sine, square root etc.), they are primarily intended for
advanced image processing software tools.

An image classification task will be described in Sect. 6.4, where CGP graphs are
used to define transformations in the case of a medical image problem. We will show
that CGP image transformations may be used to significantly improve classification
accuracy with respect to a collection of predefined image features.

6.2 Evolutionary Design of Image Filters for FPGAs

Image preprocessing (which includes image filtering, edge detection, histogram
equalization, brightness and contrast adjustment, and other operations on images)
is the first stage of many image processing applications. The quality of preprocess-
ing significantly influences the accuracy, reliability, robustness and performance of
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subsequent image processing steps such as segmentation, classification and recog-
nition. In order to perform the required preprocessing (such as image filtering, edge
detection) a problem-specific filter has to be created. Traditionally, engineers use a
library of predefined filters and operators and manually tune promising variants of
these filters for a given application. In the process of tuning, various properties of
the filters might be optimized, in particular their coefficients and structure [3, 7, 24].
There are other important parameters to be optimized, such as the area, delay and
power consumption, when the goal is to implement the filter as a digital circuit.

Historically, linear filters have been the most popular filters for image process-
ing. Their popularity is due to the existence of robust mathematical models which
can be used for their analysis and design. However, there exist many areas in which
nonlinear filters provide significantly better results [6]. The advantage of nonlin-
ear filters lies in their ability to preserve edges and suppress noise without loss of
detail. As there is no suitable general theory for the design of nonlinear operators,
evolutionary design techniques have been utilized to accomplish this task in recent
years.

The first utilization of CGP for image filter design was due to Sekanina [26]. It
was shown later that CGP can automatically design image filters that are competitive
with filters designed conventionally in terms of filtering quality and the cost of im-
plementation on a chip. In this section, we will briefly survey how CGP can be used
to evolve human-competitive image filters and edge detectors. In order to compare
the results produced by CGP, we will briefly describe the most popular conventional
methods that are utilized to suppress selected types of nonlinear noise. We will take
into account greyscale images only; however, the concept can be naturally extended
to colour images.

6.2.1 Sliding-Window Function

Software and hardware implementations of image filters operate mostly in the spa-
tial domain. As spatial filters operate with pixel values in the neighbourhood of the
centre pixel (this neighbourhood is called the window or kernel), it is necessary
to implement a local neighbourhood function (sometimes referred to as sliding-
window function). This function is applied separately to all pixel locations. This
function is also invariable for all locations (i.e. spatially invariant). Figure 6.1 shows
the concept of the sliding window function and the utilization of CGP for the evo-
lutionary design of such a function.
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Fig. 6.1 Candidate local neighborhood function represented in CGP.

6.2.2 Types of Noise

Impulse noise is a frequently encountered type of noise. In most cases, impulse noise
is caused by malfunctioning pixels in camera sensors, faulty memory locations in
hardware or errors in data transmission. We distinguish two common types of im-
pulse noise: the salt-and-pepper noise (also referred to as intensity spikes or speckle)
and random-valued shot noise. For images corrupted by salt-and-pepper noise (see
Fig 6.2a), the noisy pixels can take only the maximum or minimum value. In the
case of the random-valued shot noise, the noisy pixels have an arbitrary value. Im-
pulse noise cab be characterized by one parameter the noise intensity p, which gives
the ratio of the number of corrupted pixels to the total number of pixels.

Impulse burst noise typically occurs in remote sensing images such as satellite
images (see Fig. 6.2b). The main reason for the occurrence of bursts is interfer-
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ence in the frequency-modulated carrying signal caused by signals from other data
sources. This interference can occur several times during the transmission of a single
image and corrupt several image pixels in one or more neighbouring rows. Impulse
burst noise is a specific kind of noise which is difficult to filter out even if a non-
linear filter is used. We will show in Sect. 6.2.8.3 that median filters are capable of
suppressing impulse burst noise but, at the same time, they usually damage image
detail too heavily.

Fig. 6.2 Types of noise: (a) salt-and-pepper noise (5%), (b) impulse burst noise (5%).

6.2.3 Conventional Filters

Traditionally, impulse noise is suppressed by a median filter, the most popular non-
linear filter. In this case the output of the local neighbourhood function is calcu-
lated from the median value of the kernel. However, the standard median filter gives
poor performance for images corrupted by impulse noise of high intensity. A sim-
ple median filter utilizing a 3× 3- or 5× 5-pixel window is sufficient only when
the noise intensity is less than approximately 10–20%. Various approaches have
been proposed, to overcome this deficiency, including switching median filters [43],
weighted median filters [2], weighted order-statistic filters [22] and adaptive me-
dian filters [15] (see e.g. [25] for a detailed survey of these methods). In addition
to median filters, some other algorithms exist (e.g. [23]). Almost all filters of this
type have already been implemented in hardware (see [40] for a survey of hardware
implementations).

The adaptive median filter provides significantly better results than do standard
median filters, especially for images corrupted by a high noise intensity [15]. The
adaptive median filter operates with a kernel of Smax × Smax pixels. Let Sxy denote
the processed (i.e. central) pixel. The kernel is processed by a set of sorting net-
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works with 3× 3,5× 5, . . . ,Smax × Smax inputs. Each sorting network provides the
minimum, maximum and median value of its window. The output value generated
by the adaptive median filter is calculated on the basis of comparison of the outputs
of the sorting networks as described in [15]. Figure 6.3 compares the results of ap-
plying some conventional filters to suppress 40% salt-and-pepper noise. Reasonable
results can be obtained with an adaptive median filter; however, the implementation
cost is too high for FPGAs (see Table 6.3).

Fig. 6.3 Images obtained by using conventional filters. (a) Original image. (b) Noisy image with
40% salt-and-pepper noise (peak signal-to-noise ratio (PSNR) 9.364 dB). (c) Filtered by median
filter with a kernel size 3× 3 (PSNR 18.293 dB). (d) Filtered by median filter with a kernel size
5× 5 (PSNR 24.102 dB). (e) Filtered by adaptive median filter with a kernel size of up to 5× 5
(PSNR 26.906 dB). (f) Filtered by adaptive median filter with a kernel size up to 7× 7 (PSNR
27.315 dB).

In addition to various median-based filters, specific filters have been developed
for impulse burst noise, such as training-based optimized soft morphological filters
and variational approaches [6, 23, 19, 18]. Unfortunately, they are not suitable for
hardware implementation.
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6.2.4 Edge Detectors

Edge detection can be considered as image filtering too. The Sobel operator, which
performs a 2D spatial-gradient measurement on an image, is one of the most popular
edge detectors [32]. It utilizes two convolution kernels, which are defined as
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By applying these two kernels, we can calculate the new pixel value as

NewPixelValue = c+ |p|+ |q|,

where c is a suitable constant, (e.g. c = 128).

6.2.5 Basic Approach to Filter Evolution

Every image filter operating with a 3×3-pixel kernel can be considered as a function
(a digital circuit in the case of a hardware implementation) of nine eight-bit inputs
and a single eight-bit output, which processes greyscale (eight-bits/pixel) images.
As Fig. 6.1 shows, every pixel value of the filtered image is calculated using the
corresponding pixel and its eight neighbours in the processed image.

A candidate filter was represented using nc×nr nodes, where the typical grid size
was nc = 8, nr = 4. The settings of the other CGP parameters were ni = 9, no = 1,
l = 1, na = 2 and λ = 8. Each node represented a two-input function which receives
two eight-bit values and produces an eight-bit output. An eight-bit node output was
utilized to ensure a straightforward connectivity of the nodes in the hardware imple-
mentation. Table 6.1 lists the functions that were confirmed as useful for this task
[27]. We note that these functions are also suitable for hardware implementation
(i.e. there are no complex functions, such as multiplication or division).

Table 6.1 List of functions implemented in each programmable node

Code Function Description Code Function Description
0 255 Constant 8 x � 1 Right shift by 1
1 x Identity 9 x � 2 Right shift by 2
2 255− x Inversion 10 swap(x,y) Swap nibbles
3 x∨ y Bitwise OR 11 x+ y + (addition)
4 x̄∨ y Bitwise x̄ OR y 12 x+S y + with saturation
5 x∧ y Bitwise AND 13 (x+ y) � 1 Average
6 x∧ y Bitwise NAND 14 max(x,y) Maximum
7 x⊕ y Bitwise XOR 15 min(x,y) Minimum
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CGP uses a single genetic operator – mutation – which modified 5% of the chro-
mosome. Slany and Sekanina have analyzed various genetic operators for this task;
however, the mutation-only search was confirmed to be the most successful [31].
The initial population was randomly generated. The evolution was usually termi-
nated when a predefined number of generations was exhausted.

In order to evolve an image filter capable of removing a given type of noise, an
original uncorrupted (training) image was needed to determine the fitness values
of the candidate filters. The goal of CGP was to minimize the difference between
the original image and the filtered image. The generality of the evolved filters (i.e.
whether the filters could operate sufficiently well also for other images containing
the same type of noise) was tested by means of a test (validation) set. The quality of
filtering had to be expressed numerically. The peak signal-to-noise ratio (PSNR) is
usually used in image processing for this purposes. The PSNR is defined was

PSNR = 10log10
2552

(1/MN)∑i, j(v(i, j)−w(i, j))2 , (6.1)

where N×M is the size of the image, v denotes the filtered image and w denotes the
original image. Note that the higher the PSNR value the better the filter. However,
computing the PSNR value is expensive, especially for hardware accelerators (see
Sect. 7.3. Hence in most cases the fitness function was based on calculating the
mean difference per pixel (MDPP)

MDPP =
1

MN

M

∑
i=1

N

∑
j=1

|v(i, j)−w(i, j)|, (6.2)

and the goal of evolution was to minimize the MDPP value.

6.2.6 Bank of Evolved Filters

In order to create a salt-and-pepper noise filter which could provide similar filtering
quality to the adaptive median filter and which would also suitable for hardware
implementation, a bank of evolved filters (or, simply, a filter bank) was proposed in
[36, 39]. A filter bank combines several simple image filters that have been designed
by the basic approach using 3×3-pixel kernel. As Fig. 6.4 shows, the procedure has
three steps: (1) reduction of the dynamic range of the noise, (2) processing using a
bank of n filters and (3) deterministic selection of the result.

Step 1. It has been shown that evolved filters have problems with a high dynamic
range of corrupted pixels (0–255). A straightforward solution to this problem is to
create a component which inverts all pixels with the value 255, i.e. all spikes are
transformed to have a uniform value. This operation is performed by the first stage
of the filter bank.
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Fig. 6.4 Removal of salt-and-pepper noise using a filter bank.

Step 2. The Preprocessed image then enters a bank composed of n filters that
operate in parallel. Because the evolutionary design of salt-and-pepper noise filters
can be repeated many times, it is possible to obtain various different but similarly
performing implementations of the filter. The bank of filters is then made up from
the best-performing filters that have been evolved. In the present work, all these
filters were designed by CGP using the same type of noise and training image and
with the same aim – to remove 40% salt-and-pepper noise using 3×3-pixel kernel.

Step 3. Finally, the outputs from banks 1, . . . ,n have to be combined together. One
possible solution is to use the n-input median function. Another type of aggregation
function was proposed in [30].

6.2.7 Extended Kernel

Because of the nature of impulse burst noise, it is necessary to utilize a kernel
larger than 3× 3 pixels. Unfortunately, the image filter design method described
in Sect. 6.2.5 is not scalable to larger filtering windows (e.g. if the number of inputs
is increased to 25). In order to simultaneously support larger filtering windows and
leave the problem reasonably difficult for evolution, CGP was extended by means
of a selector that determined the pixels of a filtering window that would be used in
evolved nine-input filters [35] (see Fig. 6.5). The selector was encoded as a string
consisting of S bits, joined to the chromosome. If the bit of the selector string corre-
sponding to a given pixel of the filter window had a logic value of 1, then the pixel
was selected; otherwise, the pixel was not used as an input to the filtering logic. A
special mutation operator was also developed for mutation of the selector [35].

6.2.8 Experimental Results

The applicability and performance of the CGP-based design method has been inves-
tigated in several papers dealing with evolution of filters (for Gaussian noise [26],
impulse noise of lower intensity [29], salt-and-pepper noise of high intensity [36],
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Fig. 6.5 The concept of filtering using a 5×5 filter kernel followed by a selector.

and impulse burst noise [35]), edge detectors [27] and edge detectors combined with
impulse noise removal [38]. Extensive testing was carried out to analyze the optimal
choice of the population size, mutation rate, size of the CGP array, size of the train-
ing image [28], set of node functions [27], pseudo-random number generator [38]
and search algorithm [37]. We will briefly summarize the most important results
for the basic method for a bank of evolved filters and for filtering with an extended
kernel.

6.2.8.1 Filter Evolution Using a 3 × 3-Pixel Kernel

Table 6.2 summarizes the results that were obtained for the best filter for Gaus-
sian noise, salt-and-pepper noise (5% intensity), random-valued shot noise and edge
detection according to [28]. In these experiments, 500 independent runs (50,000
generations in each run) were performed for all noise types using a 256 × 256
pixel training image (the Lena image), a population size of 4, a mutation rate of 10
bits/chromosome and 4×8 programmable nodes. The third column of Table 6.2 in-
dicates the generation in which the best filter was discovered. The last column gives
the results for conventional filters. The MDPP is the mean difference per pixel (see
Eqn. 6.2).

Table 6.2 Parameters of the best filters evolved using the Lena image

Problem Best Generations Avg. Std. Avg. Conventional
MDPP MDPP dev. generations

Salt-and-pepper 5% 0.31 49808 0.95 0.51 29388 2.95 (median)
Random shot 5% 1.11 40616 1.65 0.31 26781 2.98 (median)
Gaussian noise 6.36 27179 6.73 0.24 31032 6.43 (mean)
Edge detection 1.16 49608 1.73 0.41 35074 –
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Fig. 6.6 Original images (a, b, c), images with salt-and-pepper noise (d, e, f), images filtered using
an evolved filter (g, h, i) and images filtered using a median filter (j, k, l). The evolved filter was
trained via the Lena image (a, d).
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The evolved filters were applied to other images to check whether the discovered
filtering algorithms were general enough. The images in Fig. 6.6 demonstrate that
the visual quality of the filtered images was sufficient and that the evolved filters
worked correctly for the class of images considered. We can see from Fig. 6.6 that
the median filter does not preserve details in the images and tends, in fact, to smudge
the images. On the other hand, the evolved filters are good at preserving details. The
performance and cost of this type of filter will be compared further with those of
other filters in Sect. 6.2.8.2.

The following C program represents an implementation of the best-evolved edge
detector, created according to Fig. 6.7. Note that kernel denotes the nine inputs
of the image filter. Figure 6.8 compares the effect of the Sobel edge detector and an
evolved edge detector on one of the validation images.

uint8 filter(uint8 kernel[9]) {
uint i14,i17,i19,i22,i27,i29;

i14 = min((kernel[1] + kernel[7]) >> 1, kernel[7]);
i17 = i14 ˆ kernel[7];
i19 = min(i14 + (255 - kernel[1]), 255);
i22 = 255 - i19;
i27 = min(i22, (i17 + i19) >> 1);
i29 = min(i22 + i27, 255);
return (i27 + i29) & 0xff;

}

Fig. 6.7 The best edge detector from [37]. The node functions are numbered according to Table 6.1.
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Fig. 6.8 Input image (a), and application of the Sobel edge detector (b) versus an evolved edge
detector (c).

6.2.8.2 Bank of Evolved Filters

In order to construct a bank of filters, various filter implementations were evolved
using the method described in Sect. 6.2.5. A 128× 128-pixel training image, par-
tially corrupted by 40% salt-and-pepper noise, was used in the fitness function. CGP
operated with an eight-member population and 5% mutation. A single run was ter-
minated after 200,000 generations. Three of the evolved filters were utilized in the
bank filter and applied to suppress the 40% salt-and-pepper noise. The difference
between the output of the filter bank and that of the adaptive median filter is almost
invisible in Fig. 6.9.

Fig. 6.9 Comparison of images filtered using an adaptive median filter with a kernel size of up to
7×7 (a, b, c) and using a three-bank filter (d, e, f).
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An FPGA platform was used for comparison of the implementation cost of me-
dian filters, adaptive median filters, evolved simple filters and filter banks [36]. The
FPGA implementation was obtained in such a way that the CGP chromosome was
transformed to VHDL code, which was then synthesized for a particular FPGA.
Registers were automatically inserted in suitable places in order to allow the filter
to be pipelined. The results of the synthesis (including the number of configurable
logic blocks (CLBs)) are given for the relatively large Virtex II Pro XC2vp50-7
FPGA, which contains 23,616 slices (configurable elements of the FPGA), in Ta-
ble 6.3. We can see that the filter bank requires a considerably smaller area on the
chip than do the adaptive median filters, whose implementation was based on area-
demanding sorting networks. One of the evolved filter banks is now protected using
a utility model (a form of patent) by the Czech Industrial Property Office [30].

Table 6.3 Results of synthesis for various filters

Filter Kernel size CLBs Max. frequency
Median filter 3×3 268 305 MHz
Median filter 5×5 1506 305 MHz
Median-column 5×1 69 310 MHz
Adaptive median 5×5 2024 303 MHz
Adaptive median 7×7 6567 298 MHz
FIB3 3×3 72 281 MHz
FIB5 5×5 108 242 MHz
single evolved 3×3 200 318 MHz
Three-bank filter 3×3 843 305 MHz

Figure 6.10 compares the results obtained from evolved filters (a single filter,
and a three-bank filter) with conventional solutions (median filters (MFs) and adap-
tive median filters (AMFs)) using 25 images corrupted by salt-and-pepper noise of
various intensities. We can observe that a single filter evolved using a 3× 3-pixel
kernel represents a better solution than the median filter if the noise intensity is low.
For noise of high intensity, the bank of evolved filters is a better solution than the
adaptive median filters. Nevertheless, neither the filter bank nor the adaptive me-
dian filters achieve the quality of the ‘best SW algorithm’ [5]. But that solution is
not suitable for hardware implementation, as it does not utilize the concept of a local
filtering window.



194 L. Sekanina, S. L. Harding, W. Banzhaf and T. Kowaliw

Fig. 6.10 Comparison of standard image filters (MFs, AMFs) and evolved filters (a single filter, and
a three-bank filter) for salt-and-pepper noise of various intensities. The filtering quality is given as
the mean PSNR value calculated for 25 images. The implementation cost is given in FPGA slices.

6.2.8.3 Impulse Burst Noise

An extended version of CGP was utilized for the evolution of impulse burst noise
filters with a 5×5-pixel filtering window [35]. In fact, CGP was used to evolve nine-
input filters, whose inputs were identified using a selector. The CGP parameters
were initialized as follows: nc ×nr = 6×6; population size = 8; mutation rate = 5%;
number of generations = 50,000; and number of independent runs = 150. The initial
population was generated randomly.

In order to evaluate the quality of filtering for the selected approaches, the mean
value of PSNR was calculated for 15 test images with selected noise levels (Fig.
6.11). We compared evolved filters (FIB3 and FIB5), standard median filters, adap-
tive median filters and the three-bank filter.

Figure 6.12 shows one of the filters (denoted by FIB5) evolved with a 5 × 5
filtering window. Table 6.3 gives the implementation cost of the evolved filters for
various existing approaches. The FIB5 filter occupies 108 slices and can operate at
242 MHz. We can observe that the evolved filters are relatively small but perform
well.

Fig. 6.11 Mean PSNR calculated using 15 images for different levels of impulse burst noise inten-
sity.
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Figure 6.11 shows the filtering capabilities of various filters for an image cor-
rupted by 5% impulse burst noise. The results demonstrate that the evolved filter
FIB5 provides the best results in most cases, especially for higher noise intensities.
It is interesting that the best filter discovered by CGP (see Fig. 6.12) utilizes only
the pixels of the central column of the filter window. These pixels are clearly the
most important ones for suppressing this type of noise.

Fig. 6.12 The structure of the best evolved filter, FIB5 for impulse burst noise. The node functions
are encoded as follows: (1), identity; (2), inversion; (4), minimum; (8), addition with saturation;
(9), average; (10), if (x > 127) then y else x; and (11), the absolute value of the difference.

Fig. 6.13 One of the validation images corrupted by 5% impulse burst noise and filtered by various
filters.
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The experiments were conducted on a cluster consisting of 100 PCs (Pentium IV,
2.4 GHz, 1 GB RAM) using the Sun Grid Engine (SGE) which enables up to 100
independent experiments to be run in parallel. The evolution time of a single run
was approximately 6 hours, until the CGP algorithm reached 50,000 generations.

6.2.9 Summary

The experimental results clearly demonstrate that CGP can automatically produce
image filters that are competitive with conventional filters in terms of filtering qual-
ity. We observed that the images filtered by evolved filters exhibited more detail
(and thus a higher visual quality) than images filtered by conventional filters (e.g.
median filters). The implementation cost in an FPGA is also encouraging.

We will see in Sect. 7.3.2 that image filter design can be significantly accelerated
when CGP is implemented using suitable hardware.

6.3 Evolving Advanced Image Filters

Using CGP, it is possible to evolve many types of advanced image filters. In previous
work by Harding and Banzhaf [10, 11, 9, 12], the use of CGP to evolve a number
of different common image filters was discussed. The task was framed as that of
reverse-engineering some image filters such as the Sobel edge detection filter and
the or dilation/erosion filter. By reverse engineering, we mean finding a mapping
between an image and the output of a filter applied to it. The technique found may
not be the same as that used by the process, but it produces similar results.

The approach used was similar to that described previously in this chapter, where
kernel-based programs were evolved. An evolved CGP program takes a pixel and its
neighbourhood, performs a calculation and returns a new value for the centre pixel.
This set-up is illustrated in Fig. 6.14. The program is applied to each pixel in the
image.
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Fig. 6.14 In this example, the evolved program has nine inputs – these correspond to a section of
an image. The output of the program determines the new colour of the centre pixel. Note that one
node has no connections to its output. This means that this node is redundant, and will not be used
during the computation.

Running an evolved program on a large number of pixels is a computationally
intensive exercise. In Sect. 8.6, a methodology for accelerating this using graphics
processing units (GPUs) is discussed. Here, we limit the discussion to the basic
approach and to the evolved filters obtained.

Fig. 6.15 The training and validation image set. All images were presented simultaneously to the
GPU. The first column of images was used to compute the validation fitness, and the remaining
12 for the training fitness. Each image is 256 × 256 pixels, with the entire set containing 1024 ×
1024 pixels.
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6.3.1 Fitness Function

The fitness function used was in many ways typical of those used in image pro-
cessing. The quality of an evolved filter was the average error of the pixel values
between the generated image and a target image.

With the acceleration in evaluation offered by a GPU, we were able to test indi-
viduals on a number of different images. Figure 6.15 shows the 16 different images
used in the fitness evaluation. These were largely taken from the USC-SIPI image
repository. To improve the quality of the results, 12 images were used for fitness
evaluation, and four for a validation score. This allowed increased confidence that
the evolved filters would generalize well.

Each image used was an eight-bit greyscale image, measuring 256 × 256 pixels.
The target images (i.e. the images after processing by a filter) were generated

using the open source image-processing program GIMP [8].
The GPU implementation of the fitness function is discussed later, in Sect. 8.6.

6.3.2 Changes to the Standard CGP Genotype

The genotype and processing of the CGP genotype had a number of differences
compared with the classical CGP implementation.

First, relative addresses were used instead of directly accessing connections. This
approach is discussed in detail in Chap. 4.

In addition to the function type and connection information, each node also
encoded a parameter as a floating-point number. This parameter was used by the
evolved programs to encode a constant. The function set shown in Table 6.4 indi-
cates where and how this parameter was used.

Another feature of the fitness function used here was that it allowed the image to
be passed through the evolved filter a number of times. In addition to the encoded
program, the genotype also contained an ‘iteration counter’ that specified how many
times the filter should be applied to each pixel.

6.3.3 Evolutionary Algorithm, Parameters and Function Set

The algorithm used here was a simple evolutionary algorithm. The population had
a size of 25. The mutation rate was set to be 5%, i.e. each gene in the genotype was
mutated with probability 0.05. Crossover was not used. The iteration counter was
also mutated with a 5% probability. The counter was mutated by adding a random
number in the range −2 to 2. The counter was bounded between 1 and 5. Selec-
tion was done using a tournament selection of size 3. The five best individuals were
promoted to the next generation without modification. The CGP graph was initial-
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Table 6.4 CGP function set, defined on two inputs x and y and on the parameter c of the node

Function Description

ITERATION Returns the current iteration index
ADD Adds the two inputs
SUB Subtracts the second input from the first

MULT Multiplies the two inputs
DIV Divides the first input by the second,

returning 1 if y is very close to zero
ADD CONST Adds a constant (the node’s parameter) to the first input

MULT CONST Multiplies the first input by a constant (the node’s parameter)
SUB CONST Subtracts a constant (the node’s parameter) from the first input
DIV CONST Divides the first input by a constant (the node’s parameter)

SQRT Returns the square root of the first input
POW Raises the first input to the power of the second input,

returning 1 if the value is undefined.
SQUARE Squares the first input

COS Returns the cosine of the first input
SIN Returns the sine of the first input
NOP No operation – returns the first input

CONST Returns a constant (the node’s parameter)
ABS Returns the absolute value of the first input
MIN Returns the smaller of the two inputs
MAX Returns the larger of the two inputs
CEIL Rounds up the first input

FLOOR Rounds down the first input
FRAC Returns the fractional part of the number, x−�x�
LOG2 Log (base 2) of the first input

RECIPRICAL Returns 1/first input

RSQRT Returns 1/
√

first input

ized to contain 100 nodes (it is important to note that not all nodes were used in the
generated program). Evolution was allowed to run for 50,000 evaluations.

Table 6.4 shows the available functions. These functions operate upon single-
precision floating-point numbers. The function set was determined by mapping all
the appropriate GPU programming API calls in the Microsoft Accelerator toolkit to
functions.

6.3.4 Results

The results for evolving each filter are summarized in Table 6.5. In the following,
the best validation result is shown, alongside the output of the target filter obtained
from GIMP. Examples of the evolved programs are included to illustrate the types
of operations that evolution found to replicate the target filters. Owing to space
constraints, it is not possible to include such an analysis for every filter type. For the
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implementation of the original filters, there is extensive coverage in the literature
and also in the source code for GIMP.

Results for the GPU acceleration can be found in Chap. 8.

Table 6.5 Results for each evolved filter. ‘Best error’ is the lowest error seen when testing against
the validation images. ‘Avg Validation Error’ is the average of the best validation error. ‘Avg.
validation evaluations’ is the average number of evaluations required to find the best validation
error. ‘Avg. training error’ is the average of the lowest error found on the training images. ‘Avg.
training evaluations’ is the average number of evaluations required to find the best training fitness.
Each experiment was repeated for 20 trials

Filter Best error Avg. validation Avg. validation Avg. training Avg. training
error evaluations error evaluations

Dilate 0.57 0.71 2,422 0.67 3,919
Dilate2 5.84 6.51 11,361 6.10 39,603
Emboss 3.86 8.33 15,517 7.41 34,878
Erode 0.56 0.78 3,892 0.73 4,066
Erode2 5.70 6.72 26,747 6.64 40,559
Motion 2.08 2.32 29,464 2.24 43,722
Neon 1.32 2.69 15,836 2.41 35,146
Sobel 8.41 22.26 26,385 20.12 45,744
Sobel2 1.70 3.82 19,979 3.55 39,155
Unsharp 5.85 5.91 301 5.61 37,102

6.3.4.1 Dilation and Erosion

Figure 6.16 shows the result of evolving the Dilate filter. In Dilate2 (Fig. 6.17), the
filter is applied twice. Figure 6.18 shows the result of evolving the Erode filter. In
Erode2 (Fig. 6.19), the filter is applied twice.

It is possible to analyse the evolved programs to determine how the filters work.
For the erosion filter, the best evolved program contained eight operations and re-
quired five iterations to run. The evolved expression is

OUTPUT = MAX(LOG2(I8),MIN(I8 +(MIN(I3, I7)−MAX(I7, I8)),FLOOR(I1))),

where I1 to I9 are the input pixels, with I1 being in the top left of the kernel and I9

in the lower right.
The best dilation program contained four instructions, and again required five

iterations. The evolved program is

OUTPUT = MAX(MAX(I9,MAX(I1, I5)),MAX(I3, I7)).

In contrast, the best evolved programs for applying erosion and dilation twice both
contained 17 instructions (and again required five iterations). It is unclear why these
programs should need to be so much more complicated.
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6.3.4.2 Emboss, Sobel and Neon

The Emboss, Sobel and Neon filters are various types of edge detectors. It was
chosen to evolve these three different types, as the outputs are very different. Emboss
is a directional filter, whereas Sobel and Neon are not. It was found that all three
types of filters could be accurately evolved.

Figure 6.20 shows the result of evolving the Emboss filter. When visually com-
pared, the evolved Emboss filter is very similar to that used by GIMP (for this and
the other sample images here, the most representative and visually useful subimage
has been used). The evolved program for this filter contains 20 nodes:

Output = ABS(MIN(−0.3857,

POW(SQRT(I2/((I8 +RSQRT(I5))−0.863)), I8))+
CEIL(MIN(((I3 − I9)+(I1 − I7))
−129.65,FRAC(I5)))).

(6.3)

Figure 6.21 shows the result of evolving the Neon filter.
GIMP has two versions of the Sobel filter. Figure 6.22 shows the result of evolv-

ing the normalized Sobel filter. In the case of Sobel2 (Fig. 6.23), the target was
the output of the standard Sobel filter. The standard Sobel filter achieved poor error
rates; however, the visual comparison is very good. It would appear that the evolved
output is scaled differently, and hence the pixel intensities are different. If the two
images are normalized, the error is reduced. However, the fitness function does not
normalize automatically, but leaves this task to evolution.

The evolved Sobel filter is quite complicated:

A = I7 − I3

B = I9 −MAX(I1,LOG2(A))
OUTPUT = 2.0∗ (MIN(MAX(ABS(B)+FRAC(1)+ABS(2.0∗A),

MAX(FLOOR(LOG2(A)),2.0∗B)),
(CEIL(FRAC(I5))∗−0.760)+127.24)).

The best evolved program for Sobel2 is considerably shorter:

Output = MAX(ABS((I9 − I1)∗0.590),
POW(I3 − I7,SQRT(0.774))/−2.245).

Again, both programs required five iterations. This suggests there is some bias in
the algorithm towards increasing the number of iterations to the maximum allowed.
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6.3.4.3 Motion Blur

Figure 6.24 shows the result of evolving the Motion filter. The output of the evolved
filter did not match the desired target very accurately. But although there is a degree
of blurring, it is not as pronounced as in the target image. Motion blur is a relatively
subtle effect, and as the target and input images are quite similar, it is likely that
evolution will become trapped in a local minimum.

6.3.4.4 Unsharp

Figure 6.25 shows the result of evolving the Unsharp filter. Unsharp was the most
difficult filter to evolve. It is suspected that this is due to the Gaussian blur that
needs to be applied as part of the procedure. It is difficult to see how, with the
current function set, such an operation could be evolved. In future work, this issue
will need to be rectified.

Fig. 6.16 Dilate: evolved filter, GIMP filter and difference image.

Fig. 6.17 Dilate2: evolved filter, GIMP filter and difference image.
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Fig. 6.18 Erode: evolved filter, GIMP filter and difference image.

Fig. 6.19 Erode2: evolved filter, GIMP filter and difference image.

Fig. 6.20 Emboss: evolved filter, GIMP filter and difference image.

Fig. 6.21 Neon blur: evolved filter, GIMP filter and difference image.
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Fig. 6.22 Sobel: evolved filter, GIMP filter and difference image.

Fig. 6.23 Sobel2: evolved filter, GIMP filter and difference image.

Fig. 6.24 Motion blur filter: evolved filter, GIMP filter and difference image.

Fig. 6.25 Unsharp blur filter: evolved filter, GIMP filter and difference image.
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6.4 The Automated Design of Features for Image Classification

In this section, we discuss the application of CGP to the automated discovery of
features in an image classification task. We attempt to evolve transformations on
the space of images, in the hope that particular transforms which emphasize distin-
guishing characteristics may be found. A set of moments describing the transformed
image are extracted, and used for classification.

We have applied our work to the recognition of cells in a medical image database.
Specifically, we attempted to recognize nuclear inclusions which indicate the pres-
ence (or absence) of OPMD, a form of muscular dystrophy. Recognition of these
inclusions is a difficult task, usually requiring expert training of a human operator.

6.4.1 Motivation

Image classification (recognition) typically uses a set of features to reduce the di-
mensionality of the pattern space. A great deal of effort is spent on the design, se-
lection and weighting of features. Often, practitioners begin with a set of ‘standard’
(generally applicable) features, and then use some machine-learning technique to
find the most appropriate choices; these features often involve statistical moments,
or entropy- or histogram-based measures (as in [17]). Domain-specific measures can
be used as well, such as the cell-nucleus-specific measures used in the construction
of the Wisconsin Breast Cancer Database [33].

The advantage of domain-specific features is, of course, potential increased rel-
evance to the problem domain at hand, ideally increasing the efficacy of an image-
processing system. The downside is the attention that the assembly of domain-
specific features requires, where human operators – possibly domain experts – are
often required for research, exploration and optimization.

The capacity to extract database-specific features automatically is enticing: one
can conceivably have both application without expert intervention and the increased
performance associated with database specificity. There are several existing tech-
niques for the automated discovery of learned features. Common techniques include
linear discriminant techniques and principal-component-analysis-based techniques,
and there are also others [13]. There also exist several related genetic-programming-
based applications in image processing, such as the automated detection of points
of interest in an image [42], and the classification of image textures [21].

Our technique has followed similar motivation, but with some key differences:
(a) we make nearly no assumptions regarding the distribution of class data; (b) our
technique is specifically oriented towards image recognition, thus emphasizing local
neighbourhoods of pixels in two dimensions; and (c) the results of our technique are
easily analysed, both visually and analytically.
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6.4.2 The Model

We treat an image space as a collection of pixels p = (px, py) ∈ I, and an image as
a collection of intensities on that space, f (p) ∈ [0,1], or simply f (I).

We have seen how CGP kernel functions can be used to reverse-engineer image-
processing filters. Here we use this notion, that of a sliding window function, and
apply it to the design of transforms on the space of images. Since we know that this
space of image transforms contains some useful image filters, we assume that more
specialized or effective filters can be designed to highlight portions of an image
database. Ultimately, we are searching for kernel functions that will help us in the
classification of images.

Here we outline the definition of an evolvable feature extractor from a CGP
graph. The CGP graph is used to define a transformation on the space of images.
In this case, however, no explicit image target is given; instead, we hope to create a
transform useful for accentuating the important features of the images. Next, these
transformed images are converted to a set of numerical values. Finally, these numer-
ical values are used to train or test a classifier. An overview of the entire process is
illustrated in Fig. 6.26.

Fig. 6.26 An overview of the feature extraction procedure.

6.4.2.1 CGP Graphs as Image Transforms

We again use a simple form of CGP. The graph consists of a single row of connec-
tion nodes of length nc = Ln. These are augmented by a large collection of inputs, la-
belled I0, . . . , Ini−1. Levels-back is chosen so that any connection node may connect
to any previous node or input, and addressing is relative. There is a single output,
automatically defined to be the final node in the representation. We use the function
set {Max, Min, Add, Sub, Mult, Div, Const, Abs, Square, Pow}, i.e. a simple listing
of functions known to beuseful in common convolution functions.

As before, the CGP graphs operate on a square of pixel intensities, p̄ = {p0, p1,
..., pm2}, surrounding a central pixel p. Given a CGP graph T with ni = m2, we can
apply the graph to p̄ as follows:
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T ( f ( p̄)) = T ( f (p0), f (p1), . . . , f (pn2)). (6.4)

Note that if f (q) does not exist for some pixel q (beyond the edges of the image,
say), then we return the value f (q) = −1. Furthermore, if T ( f ( p̄)) �∈ [0,1], we re-
place it by the closest boundary value, either 0 or 1.

Given some image f (I), we can define a new image T ( f (I)) as follows. Let I′

be an image space of the same dimensions as I. For each pixel p′ ∈ I′, let f (p′) =
T ( f ( p̄)). Hence, every CGP graph T can be viewed as a transform on the space of
images.

6.4.2.2 Feature Extraction

Thus far, we have discussed the generation of an image transform from a CGP graph,
allowing us a means of mapping from the space of images to itself. However, our
data still exists in a very high-dimensional space, unsuitable for a classifier. To per-
form the dimensionality reduction, we have to rely on some common statistical mo-
ments, chosen for simplicity and speed. The choice of a simple statistical measure
is a purposeful attempt to constrain the results of the evolutionary process. That is,
the use of GP is generally known to be capable of low bias and high variance [16],
and a well-known but biasing step is likely to help us avoid overfitting.

There are many forms of statistical moments that could be used in this context.
Local, orthogonal and multi-scale moments – such as wavelet-basis and Zernike
polynomials, are common choices, but we are not considered desirable for the given
application. We instead selected a collection of simple geometrically-based mo-
ments, some of which were transform-, rotation- and scale-invariant. These prop-
erties are desirable for cell images, since the exact location, zoom level and orienta-
tion of the cell image relative to the image boundaries is superfluous. We thus chose
a collection of 16 moments for the reduction of images to numerical vectors, drawn
from the first few geometric moments, central moments and Hu’s moments [14].
For details, see [20].

6.4.2.3 A Cell Classification Problem

We worked with a database of images of cells, CellsDB, originally collected by
the Centre hospitalier de l’Université de Montréal (CHUM), where the causes and
associated symptoms of oculopharyngeal muscular dystrophy (OPMD) have been
studied extensively [1]. Intranuclear inclusions (INIs) have been detected via both
pathological studies and electron microscopy. These INIs are tubular, about 8.5 nm
in external diameter and 3 nm in internal diameter and up to 0.25 µm in length,
and converge to form tangles or palisades [34]. Detection of these inclusions is
expected to lead to the detection of OPMD. CellsDB was collected and prepared
by Tarundeep Dhot at the Centre for the Study of Brain Diseases at CHUM, and
is pre-segmented and divided into two categories associated with the presence or
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absence of inclusions indicating OPMD: ‘healthy’ and ‘sick’. An example of some
cell images may be seen in Fig. 6.27.

Detecting OPMD-indicating INIs is a difficult task, requiring training for human
classification. It is dependent upon the relative pixel intensities in a neighbourhood,
and it is thus difficult to distinguish between noise and other intranuclear patterns.
A further difficulty is that cell images come in a variety of scales: for this reason,
we chose to mix images taken at 10×, 20×, and 40× zoom. We broke the database
into two sets: 186 healthy and 200 sick cell images for training, and 200 healthy and
200 sick cell images for validation.

Fig. 6.27 Examples of healthy (top row) and sick (bottom row) cell images.

We chose to investigate the classifiability of this database using a collection of
predefined moments, drawn from previous work in image classification. We imple-
mented a collection of general features used in images processing: image entropy,
fractal dimension, and our 16 statistical moments. We also selected a collection of
cell-specific features, designed to operate on the nuclear boundary and interior of a
cell image: threshholded area, variance, mean radius, radius variance, perimeter
and compactness. These 24 features were calculated for the validation set of im-
ages, and evaluated using a collection of classifiers with 10-fold cross-validation.
The results are summarized in Table 6.6. The best expected performance was an SS
value of 0.580 – composed of a true-positive rate of 0.774 and a true-negative rate
of 0.750 – under a 5-nearest neighbour (5-NN) classifier.

6.4.2.4 Evaluation of a Transform

A common and fast choice for the evaluation of a set of feature values is the use of
a measure of inter-class and intra-class spread. Here, however, we used a classifier
directly. Although slower, this effectively eliminated assumptions regarding the un-
derlying distribution of data points, thus allowing us to consider a wider range of
potential feature extractors.

We wished to award fitness to any particular collection of feature values based on
its ability to distinguish between healthy and sick cells. To do so, we converted the
database to a set of features, and then attempted to classify the cells using some
given classifier and evaluation technique. The classifier returned a false-positive
rate, FPR, for both classes, which we combined into a measure of sensitivity speci-
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ficity:
SS = (1−FPR(healthy))(1−FPR(sick)) (6.5)

SS ∈ [0,1] iwould be maximized for perfect recognition. All classifiers and evalua-
tion techniques were implemented via the Weka machine-learning system, version
3.5.7 [41].

For the training runs, a set of 16 feature values were computed for the trans-
formed image, consisting of the 16 chosen moments. These were evaluated under a
50–50 train–test split.

For the validation runs, a set of 16 features were computed for the transformed
image, and added to the original 24 predefined features. These 40 values were eval-
uated using a 1-NN classifier with 10-fold cross-validation.

The reason that a smaller set of features was used in the definition of the training
evaluation was as follows: randomization of the database prior to classification is a
useful feature to help prevent overfitting, but leads to a stochastic fitness function.
Beginning with a set of features which is already adept at classification – as the
predefined features are – makes the variance due to stochasticity greater than the
fitness gains in early evolution, hence hindering the selection operator.

Table 6.6 shows the expected classification accuracies of the feature sets for
completely randomly generated transforms. There is little difference in mean per-
formance between the predefined features alone and the inclusion of a randomly
generated transform, but a difference can be seen in the overall variance, suggesting
that some new useful information is occasionally added.

Table 6.6 Comparison of classification on a standard database of unevolved features ( /0) with a
database augmented by a randomly generated transform. All figures are the mean (with the standard
deviation in parentheses) of SS over 40 runs

Transform Decision tree Ridor 1-NN 5-NN

/0 0.495 (0.020) 0.461 (0.024) 0.517 (0.012) 0.580 (0.016)

Random transform 0.521 (0.080) 0.503 (0.059) 0.553 (0.070) 0.611 (0.067)

6.4.3 Transform Evolution

We conducted an informal parameter search to select a good running point for our
evolutionary algorithm. Contrary to results for previous applications, in this context
experimentation demonstrated to us that crossover was a useful genetic operator:
we therefore included a single-point crossover in our work. We selected a popu-
lation size of 200, a rate of mutation of 0.02, a probability of crossover of 0.6,
single-member elitism, a graph size of Ln = 100 and a kernel size of 6× 6. Each
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evolutionary algorithm was run for 50 generations, using a 1-NN classifier; 40 runs
were undertaken in total.

Evolution was quite successful at increasing the fitness (training SS), which in-
creased from a mean best fitness of 0.523 in the first generation to a mean best fitness
of 0.620. In a few cases, evolution optimized training SS at the expense of validation
SS, but a good general increase in the latter was seen in most runs. The mean best
validation SS for the final generation was 0.676 (s.d. 0.052), and was maximized
at a value of 0.766, a 32% improvement over the expected performance of the best
classifier found for predefined features alone.

6.4.3.1 Best Discovered Transform

In this subsection, we explore the best evolved transform in more detail. The best
individual of the final (50th) generation of the run with the highest validation fitness
was selected. This best individual had a sensitivity specificity of 0.766, encompass-
ing true-positive rates of 0.878 for healthy cells and 0.873 for sick cells.

The same evolved attribute values, when evaluated using a J48 decision tree in-
stead of a 1-NN, gave a sensitivity-specificity of 0.801, encompassing true-positive
rates of 0.912 for healthy cells and 0.878 for sick cells, or a 38% improvement over
the expected performance of the best classifier found for predefined features alone.
The performance for the best discovered transform, relative to the best expected
performance for the unevolved features alone, is summarized in Table 6.7.

Table 6.7 Comparison of classification results for unevolved versus best evolved features

Classifier Transform SS T PR(H) T PR(S)

5-NN /0 0.580 0.774 0.750

1-NN Best transform 0.766 0.878 0.873

Decision tree Best transform 0.801 0.912 0.878

The best transform, once neutral code is removed, may be written as the follow-
ing neighbourhood function:

Output(I0, . . . , I35) = Min(I11 − I15, Pow(I9− Max(I6, I25), I8)).

The same transform is illustrated in CGP graph form in Fig. 6.28. This function
mostly returns black (0), except when both I11 − I15 and (I9 −max{I6, I25})I8 are
(relatively) high. The first subsection ensures that the variance of the right-hand part
of the neighbourhood is high (excluding inclusions that are too large). The second
subsection ensures that I9 is high, while both of I6 and I25 are low or just I8 is
low. This ensures that that the left part of the image is dark, while there is some
lightness in the right half, hence excluding light spots that extend to the right of the
neighbourhood. Hence, we detect the left half of inclusions of the proper size and
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variance. Note that this function works for several different microscope zoom levels
simultaneously.

Fig. 6.28 A CGP graph view of the best discovered individual.

Although non-OPMD-indicating inclusions are still highlighted using this func-
tion, the OPMD-indicating inclusions are highlighted with more intensity, hence
allowing greater recognition of the cells than with the original image features alone.
Examples of the output are shown in Fig. 6.29.

Fig. 6.29 Examples of the action of the best discovered transform on cell images. The transformed
images have been subjected to contrast stretching and colour inversion to make the distinction
between black and dark grey more visible.
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Feature selection was run on the database of the original moments and the
evolved moments, using an information gain attribute evaluator. The evaluator se-
lected 30 of the features as significant, discarding the other 10. The top 10 ranked
attributes, by information gain, were all moments of the evolved transformed image.

6.4.4 Future Directions

The use of a single image transform in the above work was based on our expectation
of the pattern to be detected – we aimed to discover one type of nuclear INI, and
hence we chose a single transform. Evolving several transforms simultaneously is
also a possibility. Figure 6.30 shows a visualization of some transforms that were
evolved when we selected for four transforms rather than one using the CellsDB
database. In this case, a transform recovering the area of the interior of the cell nu-
cleus is visible, and also partial edge detectors: this is an effective recovery of some
of the more important information originally included in the predefined features.
Clearly, some problem domains would require several transforms to distinguish the
class data, and the best means of representing multiple image transforms and ensur-
ing good cooperation between them is an open problem.

Fig. 6.30 The action of four simultaneously evolved transforms (right) on a cell image (left).

Evolutionary algorithms are known for their capacity to automatically discover
parameters in learning techniques. Another valuable line of development would be
the automated evolution of database-specific parameters, such as the selection of
a dimension-reducing set of moments, the selection of an appropriate local pixel
neighbourhood size, and the selection of an appropriate number of image trans-
forms. These would also make the system less dependent on expert input.
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