
Discovering Adaptable Symbolic Algorithms from Scratch

Stephen Kelly1,4, Daniel S. Park1, Xingyou Song1,2, Mitchell McIntire3, Pranav Nashikkar3,
Ritam Guha5, Wolfgang Banzhaf5, Kalyanmoy Deb5, Vishnu Naresh Boddeti5, Jie Tan1,2, Esteban Real1,2

1Google Research, 2 Google DeepMind, 3Google, 4McMaster University, 5Michigan State University

Abstract— Autonomous robots deployed in the real world
will need control policies that rapidly adapt to environmental
changes. To this end, we propose AutoRobotics-Zero (ARZ),
a method based on AutoML-Zero that discovers zero-shot
adaptable policies from scratch. In contrast to neural network
adaption policies, where only model parameters are optimized,
ARZ can build control algorithms with the full expressive
power of a linear register machine. We evolve modular policies
that tune their model parameters and alter their inference
algorithm on-the-fly to adapt to sudden environmental changes.
We demonstrate our method on a realistic simulated quadruped
robot, for which we evolve safe control policies that avoid falling
when individual limbs suddenly break. This is a challenging
task in which two popular neural network baselines fail. Finally,
we conduct a detailed analysis of our method on a novel and
challenging non-stationary control task dubbed Cataclysmic
Cartpole. Results confirm our findings that ARZ is significantly
more robust to sudden environmental changes and can build
simple, interpretable control policies.

I. INTRODUCTION

Robots deployed in the real world will inevitably face
many environmental changes. For example, robots’ internal
conditions, such as battery levels and physical wear-and-tear,
and external conditions, such as new terrain or obstacles,
imply that the system’s dynamics are non-stationary. In these
situations, a static controller that always maps the same state
to the same action is rarely optimal. Robots must be capable
of continuously adapting their control policy in response to the
changing environment. To achieve this capability, they must
recognize a change in the environment without an external cue,
purely by observing how actions change the system state over
time, and update their control in response. Recurrent deep
neural networks are a popular policy representation to support
fast adaptation. However, they are often (1) monolithic, which
leads to the distraction dilemma when attempting to learn
policies that are robust to multiple dissimilar environmental
physics [1], [2]; (2) overparameterized, which can lead to
poor generalization and long inference time; and (3) difficult
to interpret. Ideally, we would like to find a policy that can
express multiple modes of behavior while still being simple
and interpretable.

We propose AutoRobotics-Zero (ARZ), a new framework
based on AutoML-Zero (AMLZ) [3] to specifically support
the evolution of dynamic, self-modifying control policies in a
realistic quadruped robot adaptation task. We represent these

Full version: https://arxiv.org/abs/2307.16890
Videos: https://youtu.be/sEFP1Hay4nE
Correspondence: spkelly@mcmaster.ca

wX: vector memory at address X.
def f(x, v, i):

w0 = copy(v)
w0[i] = 0
w1 = abs(v)
w1[0] = -0.858343 * norm(w2)
w2 = w0 * w0
return log(x), w1

sX: scalar memory at address X.
vX: vector memory at address X.
obs, action: observation and action vectors.
def GetAction(obs, action):

if s13 < s15: s5 = -0.920261 * s15
if s15 < s12: s8, v14, i13 = 0, min(v8, sqrt(min(0, v3))), -1
if s1 < s7: s7, action = f(s12, v0, i8)
action = heaviside(v12)
if s13 < s2: s15, v3 = f(s10, v7, i2)
if s2 < s0: s11, v9, i13 = 0, 0, -1
s7 = arcsin(s15)
if s1 < s13: s3 = -0.920261 * s13
s12 = dot(v3, obs)
s1, s3, s15 = maximum(s3, s5), cos(s3), 0.947679 * s2
if s2 < s8: s5, v13, i5 = 0, min(v3, sqrt(min(0, v13))), -1
if s6 < s0: s15, v9, i11 = 0, 0, -1
if s2 < s3: s2, v7 = f3(s8, v12, i1)
if s1 < s6: s13, v14, i3 = 0, min(v8, sqrt(min(0, v0))), -1
if s13 < s2: s7 = -0.920261 * s2
if s0 < s1: s3 = -0.920261 * s1
if s7 < s1: s8, action = f(s5, v15, i3)
if s0 < s13: s5, v7 = f(s15, v7, i15)
s2 = s10 + s3
if s7 < s12: s11, v13 = f(s9, v15, i5)
if s4 < s11: s0, v9, i13 = 0, 0, -1
s10, action[i5] = sqrt(s7), s6
if s7 < s9: s15 = 0
if s14 < s11: s3 = -0.920261 * s11
if s8 < s5: s10, v15, i1 = 0, min(v13, sqrt(min(0, v0))), -1
return action

Fig. 1: Automatically discovered Python code representing an adaptable
policy for a realistic quadruped robot simulator (top–right inset). This evolved
policy outperforms MLP and LSTM baselines when a random leg is suddenly
broken at a random time. (Lines in red will be discussed in the text).

policies as programs instead of neural networks and demon-
strate how the adaptable policy and its initial parameters
can be evolved from scratch using only basic mathematical
operations as building blocks. Evolution can discover control
programs that use their sensory-motor experience to fine-
tune their policy parameters or alter their control logic on-
the-fly while interacting with the environment. This enables
the adaptive behaviors necessary to maintain near-optimal
performance under changing environmental conditions. Unlike
the original AMLZ, we go beyond toy tasks by tackling the
simulator for the actual Laikago robot [4]. To facilitate this,
we shifted away from the supervised learning paradigm of
AMLZ. We show that evolved programs can adapt during
their lifetime without explicitly receiving any supervised input

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 1-5, 2023. Detroit, USA

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 3889

20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

91
90

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S5

55
52

.2
02

3.
10

34
19

79

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

(such as a reward signal). Furthermore, while AMLZ relied on
the hand-crafted application of three discovered functions, we
allow the number of functions used in the evolved programs
to be determined by the evolutionary process itself. To do this,
we use conditional automatically defined functions (CADFs)
and demonstrate their impact. With this approach, we find that
evolved adaptable policies are significantly simpler than state-
of-the-art solutions from the literature because evolutionary
search begins with minimal programs and incrementally adds
complexity through interaction with the task domain. Their
behavior is highly interpretable as a result.

In the quadruped robot, ARZ is able to evolve adaptable
policies that maintain forward locomotion and avoid falling,
even when all motors on a randomly selected leg fail
to generate any torque, effectively turning the leg into a
passive double pendulum. In contrast, despite comprehensive
hyperparameter tuning and being trained with state-of-the-art
reinforcement learning methods, MLP and LSTM baselines
are unable to learn robust behaviors under such challenging
conditions.

While the quadruped is a realistic complex task, simulating
the real robot is time-consuming. Due to the lack of efficient
yet challenging benchmarks for adaptive control, we created a
toy adaptation task dubbed Cataclysmic Cartpole and repeated
our analysis on this task with similar findings. In both cases,
we provide a detailed analysis of evolved control programs
to explain how they work, something notoriously difficult
with black box neural network representations.

In summary, this paper develops an evolutionary method
for the automated discovery of adaptable robotic policies
from scratch. We applied the method to two tasks in
which adaptation is critical, Quadruped Leg-Breaking and
Cataclysmic Cartpole. On each task, the resulting policies:

• surpass carefully-trained MLP and LSTM baselines;
• are represented as interpretable, symbolic programs; and
• use fewer parameters and operations than the baselines.

These points are demonstrated for each task in Section V.

II. RELATED WORK

Early demonstrations of Genetic Programming (GP) estab-
lished its power to evolve optimal nonlinear control policies
from scratch that were also simple and interpretable [5]. More
recently, GP has been used to distill the behavior of complex
neural network policies developed with Deep Reinforcement
Learning into interpretable and explainable programs without
sacrificing control quality [6]. In this work, we extend these
methods to evolve programs that can change their behavior
in response to a changing environment.

We demonstrate how to automatically discover a controller
that can context switch between distinct behavior modes
when it encounters diverse tasks, thus avoiding trade-offs
associated with generalization across diverse environmental
physics. If we can anticipate the nature of the environmental
change a robot is likely to encounter, we can simulate
environments similar to the expected changes and focus on
building multitask control policies [2], [7]. In this case, some
form of domain randomization [8] is typically employed

to expose candidate policies to a breadth of task dynamics.
However, policies trained with domain randomization often
trade optimality in any particular environment dynamics
for generality across a breadth of dynamics. This is the
problem we aim to address with ARZ. Unlike previous
studies in learning quadruped locomotion in the presence
of non-stationary morphologies (e.g., [9]), we are specifically
interested in how controllers can be automatically built from
scratch without requiring any prior task decomposition or
curriculum learning. This alleviates some burden on robotics
engineers and reduces researcher bias toward known machine
learning algorithms, opening the possibility for a complex
adaptive system to discover something new.

In addition to anticipated non-stationary dynamics, another
important class of adaptation tasks in robotics is sim-to-
real transfer [11], where the robot needs to adapt policies
trained in simulation to unanticipated characteristics of the
real-world. Successful approaches to learn adaptive policies
can be categorized by three broad areas of innovation: (1)
New adaptation operators that allow policies to quickly tune
their model parameters within a small number of interactions
[10], [11], [12], [13]; (2) Modular policy structures that
separate the policy from the adaptation algorithm and/or
world model, allowing both to be learned [14], [15], [16],
[17]; and (3) Hierarchical methods that allow a diverse set
of complete or partial behaviors to be dynamically switched
in and out of use at run-time, adapting by selecting the
best strategy for the current environmental situation [9],
[2], [18]. These algorithmic models of behavioral plasticity,
modular structure, and hierarchical representations reflect the
fundamental properties of meta-learning. In nature, these
properties emerged through adaptation at two timescales
(evolution and lifetime learning) [19]. ARZ makes these two
time scales explicit by implementing an evolutionary search
loop that acts on a “genome” of code, and an evaluation that
steps through an episode which is analogous to the “lifetime”
of the robot.

III. METHODS

A. Algorithm Representation

As in the original AutoML-Zero [3], policies are rep-
resented as linear register machines that act on virtual
memory [20]. In this work, we support four types of memory:
scalar, vector, matrix, and index (e.g. s1, v1, m1, i1).
Scalar, vector, and matrix memory are floating-point, while
index memory stores integers. Algorithms are composed of
two core functions: StartEpisode() and GetAction().
StartEpisode() runs once at the start of each episode
of interaction with the environment. Its sole purpose is
to initialize the contents of virtual memory with evolved
constants. The content of these memories at any point in
time can be characterized as the control program’s state. Our
goal is to discover algorithms that can adapt by tuning their
memory state or altering their control code on-the-fly while
interacting with their environment. This adaptation, as well
as the algorithm’s decision-making policy, are implemented
by the GetAction() function, in which each instruction

3890

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

executes a single operation (e.g.s0=s7*s1 or s3=v1[i2]).
We define a large library of operations (Table S2) and place no
bounds on the complexity of programs. Evolutionary search
is employed to discover what sequence of operations and
associated memory addresses appear in the GetAction()
function.

Conditional Automatically Defined Functions: In ad-
dition to StartEpisode() and GetAction(), up to 6
Conditionally-invoked Automatically Defined Functions [21]
(CADFs) may be generated in an algorithm. Each CADF
represents an additional function block, itself automatically
discovered, which is callable from GetAction(). Since each
CADF is conditionally invoked, the sequence of CADFs
executed at each timestep throughout an episode is dynamic.
This property is advantageous for multi-task learning and
adaptation because programs that can switch control code
in and out of the execution path on-the-fly are able to
dynamically integrate general, re-useable code for related
tasks and specialized code for disjoint tasks. We demonstrate
in Section IV how this improves performance for the
quadruped task. Each CADF receives 4 scalars, 2 vectors, and
2 indices as input, and execution of the function is conditional
on a < comparison of the first 2 scalars (a configuration
chosen for simplicity). The set of operations available is
identical to GetAction() except that CADFs may not call
each other to avoid infinite recursion. Each CADF uses its
own local memory of the same size and dimensionality as the
main memory used by Setup() and GetAction(). Their
memory is initialized to zero at the start of each episode and
is persistent across timesteps, allowing functions to integrate
variables over time. Post-execution, the CADF returns the
single most recently written index, scalar, and vector from
its local memory.

The policy-environment interface and evaluation procedure
are illustrated in Fig. 2. Sections V-A and V-B provide
examples of evolved programs in this representation for the
quadruped robot and Cataclysmic Cartpole task, respectively.

B. Evolutionary Search

Two evolutionary algorithms are employed in this work:
Multi-objective search with the Nondominated Sorting genetic
algorithm II (NSGA-II) [22] and single-objective search
with Regularized evolution (RegEvo) [23], [3]. Both search
algorithms iteratively update a population of candidate control
programs using an algorithmic model of the Darwinian prin-
ciple of natural selection. The generic steps for evolutionary
search are:

1) Initialize a population of random control programs.
2) Evaluate each program in the task (Fig. 2).
3) Select promising programs using a task-specific fitness

metric (See Fig. 2 caption).
4) Modify selected individuals through crossover and then

mutation (Fig. S1).
5) Insert new programs into the population, replacing some

proportion of existing individuals.
6) Go to step 2.

StartEpisode = initialization code.
GetAction = control algorithm.
Sim = simulation environment.
episodes = number of evaluation episodes.
sX/vX/mX/iX: scalar/vector/matrix/index memory
at address X.
def EvaluateFitness(StartEpisode, GetAction):

sum_reward = 0
for e in episodes:

reward = 0
steps = 0
Initialize sX/vX/mX with evolved parameters.
iX is initialized to zero.
StartEpisode()
Set environment initial conditions.
state = Sim.Reset()
while (!Sim.Terminal()):

Copy state to memory, will be accessible
to GetAction.
v1 = state
Execute action-prediction instructions.
GetAction(state)
if Sim.NumAction() > 1:

action = v4
else:

action = s3
state = Sim.Update(action)
reward += Reward(state, action)
steps += 1

sum_reward += reward
sum_steps += steps

return sum_reward/episodes, sum_steps/episodes

Fig. 2: Evaluation process for an evolved control algorithm. The single-
objective evolutionary search uses the mean episodic reward as the algorithm’s
fitness, while the multi-objective search optimizes two fitness metrics: mean
reward (first return value) and mean steps per episode (second return value).

For the purposes of this study, the most significant difference
between NSGA-II and RegEvo is their selection method.
NSGA-II identifies promising individuals using multiple
fitness metrics (e.g., forward motion and stability) while
RegEvo selects based on a single metric (forward motion).
Both search methods simultaneously evolve: (1) Initial
algorithm parameters (i.e. initial values in floating-point
memory sX, vX, mX), which are set by StartEpisode();
and (2) Program content of the GetAction() function and
CADFs.

1) Multi-Objective Search: In the Quadruped robot tasks,
the goal is to build a controller that continuously walks at
a desired pace in the presence of motor malfunctions. It is
critical that real-world robots avoid damage associated with
falling, and the simplest way for a robot to achieve this is by
standing relatively still and not attempting to move forward
after it detects damage. As such, this domain is well suited
to multi-objective search because walking in the presence
of unpredictable dynamics while maintaining stability are
conflicting objectives that must be optimized simultaneously.
In this work, we show how NSGA-II maintains a diverse
population of control algorithms covering a spectrum of
trade-offs between forward motion and stability. From this
diverse population of partial solutions, or building blocks,
evolutionary search operators (mutation and cross-over) can
build policies that are competent in both objectives. NSGA-II
objective functions and constraints for the quadruped robot

3891

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

task are discussed in Section IV.
2) Single-Objective Search: The Cataclysmic Cartpole task

provides a challenging adaptation benchmark environment
without the safety constraints and simulation overhead of
the real-world robotics task. To further simplify our study
of adaptation and reduce experiment time in this task,
we adopt the RegEvo search algorithm and optimize it
for fast experimentation. Unlike NSGA-II, asynchronous
parallel workers in RegEvo also perform selection, which
eliminates the bottleneck of waiting for the entire population
to be evaluated prior to ranking, selecting, and modifying
individuals.

Crossover and Mutation Operators: We use a simple
crossover operator that swaps a randomly selected CADF
between two parent algorithms. Since all CADFs have the
same argument list and return value format, no signature
matching is required to select crossover points. If either parent
algorithm contains no CADFs, one randomly selected parent
is returned. Post-crossover, the child program is subject to
stochastic mutation, which adds, removes, or modifies code
using operators listed in Table S1.

C. Algorithm Configurations and Baselines
Temporal memory is the primary mental system that allows

an organism to change, learn, or adapt during its lifetime.
In order to predict the best action for a given situation in a
dynamic environment, the policy must be able to compare
the current situation with past situations and actions. This
is because generating an appropriate action depends on the
current state and a prediction of how the environment is
changing. Our evolved algorithms are able to adapt partly
because they are stateful: the contents of their memory (sX,
vX, mX, and iX) are persistent across timesteps of an episode.

We compare ARZ against stateless and stateful baselines.
These policy architectures consist, respectively, of multilayer
perceptrons (MLP) and long short-term memory (LSTM)
networks whose parameters to be optimized are purely
continuous. Therefore, we use Augmented Random Search
(ARS) [24], which is a state-of-the-art continuous optimizer
and has been shown to be particularly effective in learning
robot locomotion tasks [12], [25]. In comparison, Proximal
Policy Optimization [26] underperformed significantly; we
omit the results and leave investigation for future work. All
methods were allowed to train until convergence with details
in Supplement S1-A.

IV. NON-STATIONARY TASK DOMAINS

We consider two different environments: a realistic sim-
ulator for a quadruped robot and the novel Cataclysmic
Cartpole. In both cases, policies must handle changes in
the environment’s transition function that would normally
impede their proper function. These changes might be sudden
or gradual, and no sensor input is provided to indicate when
a change is occurring or how the environment is changing.

A. Quadruped Robot
We use the Tiny Differentiable Simulator [27] to simulate

the Unitree Laikago robot [4]. It is a quadruped robot with 3

actuated degrees of freedom per leg. Thus the action space has
12-dimensional real values corresponding to desired motor
angles. A Proportional-Derivative controller is used to track
these desired angles. The observation space includes 37 real
values describing the angle and velocity for each joint as
well as the position, orientation, and velocity of the robot
body. Each episode begins with the robot in a stable upright
position and continues for a maximum of 1000 timesteps (10
seconds). Each action suggested by the policy is repeated for
10 consecutive steps.

The goal of the non-stationary quadruped task is to move
forward (x-axis) at 1.0 meters/second. Adaptation must handle
sudden leg-breaking in which all joints on a single, randomly
selected leg suddenly become passive at a random time within
each episode. The leg effectively becomes a double pendulum
for the remainder of the episode. The episode will terminate
early if the robot falls and this results in less return. We
design the following reward function:

r(t) = 1.0− 2 ∗ |v(t)− v̄| − ||⃗a(t)− a⃗(t− 1)||2, (1)

where the first term 1.0 is the survival bonus, v̄ is the target
forward velocity of 1 m/s, v(t) is the robot’s current forward
velocity, and a⃗(t) and a⃗(t− 1) are the policy’s current and
previous action vectors. This reward function is shaped to
encourage the robot to walk at a constant speed for as long
as possible while alleviating motor stress by minimizing the
change in the joint acceleration. In the context of multi-
objective search, maximizing the mean of Equation 1 over a
maximum of 1000 timesteps is Objective 1. To discourage
behaviors that deviate too much along the y-axis, we terminate
an episode if the robot’s y-axis location exceeds ±3.0 meters.
Objective 2 is simply the number of timesteps the robot
was able to survive without falling or reaching this y-axis
threshold. Importantly, we are not interested in policies that
simply stand still. Thus, if Objective 2 is greater than 400
and Objective 1 is less than 50, both fitnesses are set to
0. As shown in Fig. S2, these fitness constraints eliminate
policies that would otherwise persist in the population without
contributing to progress on the forward motion objective.

B. Cataclysmic Cartpole Environment

To study the nature of adaptation in more detail, we
introduce a new, highly challenging but computationally
simple domain called Cataclysmic Cartpole in which multiple
aspects of the classic Cartpole ([28]) physics are made
dynamic. Adaptation must handle the following non-stationary
properties:

• Track Angle: The track tilts to a random angle at a
random time. Because the robot’s frame of reference for
the pole angle (θ) is relative to the cart, it must figure
out the new direction of gravity and desired value of
θ to maintain balance, and respond quickly enough to
keep the pole balanced. The track angle is variable in
[-15, 15] degrees. This simulates a change in the external
environment.

• Force: A force multiplier f is applied to the policy’s
action such that its actuator strength may increase or

3892

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

decrease over time. The policy’s effective action is f ×
action, where f changes over time within the range [0.5,
2]. This simulates a drop in actuator strength due to a
low battery, for example.

• Damping: A damping factor D simulates variable joint
friction by modifying joint torque as τD = −Dq̇r, where
q̇r is the joint velocity (see eqns. 2.81, 2.83 in [29]).
This simulates joint wear and tear. D changes over time
in the range [0.0, 0.15].

Each type of change is controlled by a single parameter.
We investigate two schedules for how these parameters might
change during an episode, illustrated in Fig. S4.

V. RESULTS

A. Quadruped Leg-Breaking

1) Comparison with Baselines: ARZ—with the inclusion
of CADFs—is the only method that produced a viable control
policy in the leg-breaking task. This problem is exceedingly
difficult: finding a policy that maintains smooth locomotion
and is robust to leg breaking requires 20 evolution experiment
repetitions (Fitness > 600 in Fig. 3a). In Fig. 3a, training
fitness between 500 and 600 typically indicates either (1)
a viable forward gait behavior that is only robust to 3/4
legs breaking or (2) a policy robust to any leg breaking
but which operates at a high frequency not viable for a
real robot, with its reward being significantly penalized by
fitness shaping as a result. Within the single best repeat, the
NSGA-II search algorithm produces a variety of policies with
performance trade-offs between smooth forward locomotion
(reward objective) and stability (steps objective), Fig. 3b.
From this final set of individuals, we select a single policy
to compare with the single best policy from each baseline.
Due to practical wall-clock time limits, we were only able
to train both ARS+MLP and ARS+LSTM policies up to 106

trials in total, but found that under this sample limit, even
the best ARS policy only achieved a reward of 360, much
lower than the 570 found by the best ARZ policy, suggesting
that ARZ can even be more sample efficient than standard
neural network baselines.

Fig. 4 confirms that ARZ is the only method capable of
building a controller that is robust to multiple different legs
breaking mid-episode. We plot post-training test results for
one champion ARZ policy in comparison with the single-
best controller discovered by ARS+MLP and ARS+LSTM.
ARZ’s adaption quality (as measured by mean reward) is
superior to baselines in the case of each individual leg, and
its performance on the stationary task (See "None" in Fig. 4)
is significantly better than any other method. Interestingly,
Fig. 4 indicates that the MLP also learned a policy that is
robust to the specific case of the back-right leg breaking.
Unlike ARZ, it is unable to generalize this adaptation to any
other leg. Finally, while the LSTM policy performed better
than the MLP on the stationary task, it fails to adapt to any
of the leg-breaking scenarios.

Visualizing trajectories for a sample of 5 test episodes from
Fig. 4 confirms that the ARZ policy is the only controller

0 1 2 3 4 5
Individuals 1e7

0

100

200

300

400

500

600

700

Re
wa

rd
 (m

ax
)

With CADFs
Without CADFs

(a) Evolution progress

900 920 940 960 980 1000
Steps Per Episode (max)

0

100

200

300

400

500

600

700

Re
wa

rd
 (m

ax
)

With CADFs
Without CADFs

(b) Best Pareto fronts

Fig. 3: CADFs speed up evolution on average and produced the best final
result. (a) shows ARZ search data recorded over 20 independent repeats
with and without the use of CADFs. The horizontal axis for (a) shows the
total number of individual programs evaluated, while the vertical axis shows
mean return (Equation 1) over 32 episodes for the single best individual
discovered so far. (b) shows Pareto fronts for the single repeats with max
reward from each experiment. Each point in (b) represents the bi-objective
fitness of one control program.

Front-Right Front-Left Back-Right Back-Left None

200

400

600

800

Av
er

ag
e

Re
wa

rd

ARZ MLP LSTM

Fig. 4: ARZ discovers the only policy that can adapt to any leg breaking.
The plot shows test results for the single best policy from ARZ and ARS
baselines (MLP and LSTM) in the mid-episode leg-breaking task. For each
leg, bars show mean reward over 100 episodes in which that leg is broken
at a randomly selected timestep. A reward < 400 in any column indicates
the majority of test episodes for that leg ended with a fall.

that can avoid falling in all scenarios, although in the case of
the front-left leg breaking, it has trouble maintaining forward
motion, Fig. 5. This is reflected in its relatively weak test
reward for the front-left leg (See Fig. 4). The MLP policy
manages to keep walking with a broken back-right leg but
falls in all other dynamic tasks. The LSTM, finally, is only
able to avoid falling in the stationary task in which all legs
are reliable.

(a) ARZ (b) MLP (c) LSTM

Fig. 5: ARZ discovers the only policy that consistently avoids falling. Plot
shows sample trajectories in each leg-breaking task. The vertical bar indicates
the change point (step 500). ▲ indicates that the robot fell over. Each plot
shows 4 test episodes in which a unique leg breaks. From top to bottom,
the affected legs are: None, Back-Left, Back-Right, Front-Left, Front-Right.

2) On Simplicity and Interpretability: The policy for the
Quadruped Leg-Breaking task discovered by evolutionary
search is presented in Fig. 1. This algorithm uses 608
parameters and can be expressed in less than 40 lines of code,

3893

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

executing at most 2080 floating point operations (FLOPs)
per step. This should be contrasted with the number of
parameters and FLOPs expended in the baseline MLP/LSTM
models, which use more than 2.5k/9k parameters and 5k/18k
FLOPs per step, respectively. A detailed account of how these
numbers were obtained can be found in Section S4. We note
that each function possesses its own variables and memory,
which persists throughout the run. The initialization value for
the variables are tuned for the GetAction function, thus
counted as parameters, while they are all set to zero for f.

Here we provide an initial analysis of the ARZ policy,
leaving a full analysis and interpretation of the algorithm
to future work. The key feature of the algorithm is that it
discretizes the input into four states, and the action of the
quadruped is completely determined by its internal state and
the discrete label. The temporal transitions of the discretized
states show a stable periodic motion when the leg is not
broken, and the leg-breaking introduces a clear disruption in
this pattern, as shown in Fig. 6. This being a stateful algorithm
with multiple variables accumulating and preserving variables
from previous steps, we conjecture that the temporal pattern of
the discrete states serves as a signal for the adaptive behavior
of the quadruped.

100 150 200
0
1
2
3

St
at

e

No Breaking

500 550 600
0
1
2
3

St
at

e

Front-Right Breaking

500 550 600
0
1
2
3

St
at

e

Back-Right Breaking

500 550 600
Step

0
1
2
3

St
at

e

Back-Left Breaking

Fig. 6: State trajectories of various leg-breaking patterns. The leg-breaking
event is marked by a vertical red line. Note that different leg breaking patterns
result in different state trajectories. We conjecture that these trajectories
serve as signals that trigger the adaptive response in the algorithm.

We now expand upon how the continuous input signal is
discretized in the ARZ algorithm presented in Fig. 1. We first
observe that the only way the incoming observation vector
interacts with the rest of the algorithm is by forming scalar
s12, by taking an inner-product with a dynamical vector v3
(the second of the three red-colored lines of code). The scalar
s12 affects the action only through the two if statements
colored in red. Thus the effect of the input observation on the
action is entirely determined by the relative position of the
scalar s12 with respect to the two decision boundaries set
by the scalars s15 and s7. In other words, the external input
of the observation to the system is effectively discretized into
four states: 0 (s12 ≤ s15, s7), 1 (s15, s7 < s12),
2 (s7 < s12 ≤ s15) or 3 (s15 < s12 ≤ s7).

Thus external changes in the environment, such as leg

breaking, can be accurately detected by the change in the
pattern of the state trajectory, because the variables s7 and
s15 defining the decision boundary of the states form a stable
periodic function in time. We demonstrate this in Fig. 7, where
we plot the values of the three scalars s12, s15 and s7 for
front-leg breaking, whose occurrence is marked by the vertical
red line. Despite the marked change of behavior of the input
s12 after leg-breaking, we see that the behavior of the two
scalars s7 and s15 are only marginally affected. Intriguingly,
the behavior of the scalar registers s7 and s15 resemble that
of central pattern generators in biological circuits responsible
for generating rhythmic movements [30].

450 500 550
Step

0

5

10

Fl
oa

t V
al

ue

s12
s15
s7

Fig. 7: The scalar values s12, s15 and s7 of the quadruped during front-leg
breaking. Note the consistent periodic behavior of the scalars s15 and s7
despite leg breaking, marked by the vertical red line. The same periodicity
is observed for all leg-breaking scenarios analyzed.

The policy’s ability to quickly identify and adapt to multiple
unique failure conditions is clear in Fig. 8a, which plots the
controller’s actions one second before and after a leg breaks.
We see a clear, instantaneous change in behavior when a
leg fails. This policy is able to identify when a change has
occurred and rapidly adapt. Fig. 8b shows the particular
sequence of CADFs executed at each timestep before and
after the change, indicating that CADFs do play a role in the
policy’s ability to rapidly adjust its behavior. Indeed, only
evolutionary runs that included CADFs were able to discover
a policy robust to any leg breaking.

(a) Actions (b) CADF call sequences

Fig. 8: ARZ policy behavior changes when Front-Left leg breaks mid-episode
(step 500), as shown by the dynamics of the actions and the program control
flow due to CADFs.

B. Cataclysmic Cartpole

Introducing a novel benchmark adaptation task is an infor-
mative addition to results in the realistic quadruped simulator
because we can empirically adjust the nature of the benchmark
dynamics until they are significant enough to create an
adaptation gap: when stateless policies (i.e., MLP generalists)
fail to perform well because they cannot adapt their control
policy in the non-stationary environment (See Section S2

3894

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

for details.). Having confirmed that Cataclysmic Cartpole
requires adaptation, we only examine stateful policies in this
task.

1) Comparison with Baselines: In Cataclysmic Cartpole,
we confirm that ARZ produces superior control relative to
the (stateful) ARS+LSTM baseline in tasks with a sudden,
dramatic change. Fig. 9 and 10 show testing that was done
after the search is complete. A fitness score of 800 indicates
the policy managed to balance the pole for ≈ 800 timesteps,
surviving up to the last point in an episode with any active
dynamics (See Fig. S4). "Stationary" is the standard Cartpole
task while "Force", "Damping", and "Track Angle" refer
to Cartpole with sudden or continuous change in these
parameters only (See Section IV-B). "All" is the case where all
change parameters are potentially changing simultaneously.
Legends indicate the policy type and corresponding task
type used during evolution. First, note that strong adaptable
policies do not emerge from ARZ or ARS+LSTM evolved in
the stationary task alone (See ARZ [Stationary] and LSTM
[Stationary]), implying that proficiency in the stationary task
does not directly transfer to any non-stationary configuration.
However, when exposed to non-stationary properties during
the search, ARZ and ARS+LSTM discover policies that adapt
to all sudden and continuous non-stationary tasks. ARZ is
significantly more proficient in the sudden change tasks (Fig.
10), achieving near perfect scores of ≈ 1000 in all tasks. In
continuous change, the single best LSTM policy achieves the
best multitasking performance with a stronger score than ARZ
on the Track Angle problem, and it is at least as proficient as
ARZ on all other tasks. However, unlike the LSTM network,
ARZ policies are uniquely interpretable.

Stationary Force Damping Track Angle All
0

200

400

600

800

1000

Av
er

ag
e

Re
wa

rd

Policy Type [Train Task]: ARZ [All] ARZ [Stationary] LSTM [All] LSTM [Stationary]

Fig. 9: Post-evolution test results in the Cataclysmic Cartpole continuous-
change task. Legend indicates policy type and search task. [All] marks
policies exposed to all tasks during evolution. ARZ and LSTM both solve
this adaptation task, and no direct transfer from stationary tasks to dynamic
tasks is observed. The best 5 policies from each experiment are shown.

Stationary Force Damping Track Angle All

600

800

1000

Av
er

ag
e

Re
wa

rd

Policy Type [Train Task]: ARZ [All] LSTM [All]

Fig. 10: Post-evolution test results in the Cataclysmic Cartpole sudden-
change task. [All] marks policies exposed to all tasks during evolution.
ARZ discovers the only policy that adapts to all sudden-change Cataclysmic
Cartpole tasks. The best 5 policies from each experiment are shown.

2) On Simplicity and Interpretability: Here we decompose
an ARZ policy to provide a detailed explanation of how it
integrates state observations over time to compute optimal

actions in a changing environment. An example of an
algorithm discovered in the ARZ [All] setting of Fig. 9
is presented in Fig. 11. Note that CADFs were not required
to solve this task and have thus been omitted from the search
space in order to simplify program analysis. What we find are
three accumulators that collect the history of observation and
action values from which the current action can be inferred.

sX: scalar memory at address X.
obs: vector [x, theta, x_dot, theta_dot].
a, b, c: fixed scalar parameters.
V, W: 4-dimensional vector parameters.
def GetAction(obs, action):

s0 = a * s2 + action
s1 = s0 + s1 + b * action + dot(V, obs)
s2 = s0 + c * s1
action = s0 + dot(obs, W)
return action

Fig. 11: Sample stateful action function evolved on the task where all
parameters are subject to continuous change (ARZ [All] in Fig. 9). Code
shown in Python.

This algorithm uses 11 variables and executes 25 FLOPs
per step. Meanwhile, the MLP and LSTM counterparts use
more than 1k and 4.5k parameters, expending more than 2k
and 9k FLOPs per step, respectively. More details for this
computation are presented section S4.

There are two useful ways to view this algorithm. First,
by organizing the values of s0, s1, and s2 at step n into
a vector Zn, which can be interpreted as a vector in latent
space of d = 3 dimensions, we find that the algorithm can
be expressed in the form: sn+1 = concat(obsn+1 , actn);
Zn+1 = Ũ ·Zn+ P̃ ·sn+1; actn+1 = ÃT ·Zn+1+W̃T ·sn+1,
with the projection matrix P̃ that projects the state vector
to the latent space, and a d × d evolution matrix Ũ . This
is a linear recurrent neural network with internal state Zn.
The second way to view the algorithm is to interpret it as
a generalization of a proportional–integral–derivative (PID)
controller. This can be done by first explicitly solving the
recurrent equations presented above and taking the continuous
limit. Introducing a single five-dimensional state vector s(t) =
[x(t), θ(t), ẋ(t), θ̇(t), act(t)], and d-dimensional vectors u, v,
and w, a five-dimensional vector p and a constant term c, the
algorithm in the continuous time limit can be written in the
form: act(t) = c+wT ·U t ·u+ pT · s(t)+ vT ·

∫ t

0
dτ U t−τ ·

P · s(τ) where P and U are the continuous-time versions of
P̃ and Ũ . In our particular discovered algorithm (Fig. 11), d
happens to be 3. Notice that the integration measure now has
a time-dependent weight factor in the integrand versus the
conventional PID controller. Further derivations, discussions,
and interpretations regarding this algorithm are presented in
the supplementary material.

VI. CONCLUSION AND DISCUSSION

We have shown that using ARZ to search simultaneously
in program space and parameter space produces proficient,
simple, and interpretable control algorithms that can perform
zero-shot adaptation, rapidly changing their behavior to
maintain near-optimal control in environments that undergo

3895

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

radical change. In the remainder of this section, we briefly
motivate and speculate about future work.

CADFs and the Distraction Dilemma. In the quadruped
robot domain, we have observed that including Conditionally
invoked Automatically Defined Functions (CADFs) in our
search space improves the expressiveness of evolved control
algorithms. In the single best policy, CADFs have been used
to discretize the observation space into four states. The action
is then completely determined by the internal state of the
system and this discretized observation. One interpretation
is that this discretization helps the policy define a switching
behavior that can overcome the distraction dilemma: the
challenge for a multi-task policy to balance the reward of
excelling at multiple different tasks against the ultimate goal
of achieving generalization [1]. By contrast, searching only
in the parameter space of a hand-designed MLP or LSTM
network did not produce policies that can adapt to more than
one unique change event (i.e., a single leg breaking). A deeper
study of modular/hierarchical policies and their impact on
the distraction dilemma is left to future work.

The Cataclysmic Cartpole Task. Given the computationally
intensive nature of simulating a real robot, we felt compelled
to also include a more manageable toy task where adaptation
matters. This led to the Cataclysmic Cartpole task. We found
it useful for doing quick experiments and emphasizing the
power and interpretability of ARZ results. We hope that it
may also provide an easily reproducible environment for use
in further research.

Adapting to Unseen Task Dynamics. Looking to the future,
we have included detailed supplementary material which
raises an open and ambitious question: how can we build
adaptive control policies without any prior knowledge about
what type of environmental change may occur in the future?
Surprisingly, preliminary results with ARZ on the cataclysmic
cartpole task suggest that injecting partial-observability and
dynamic actuator noise during evolution (training) can act as
a general surrogate for non-stationary task dynamics S2. In
preliminary work, we found this to support the emergence of
policies that can adapt to novel task dynamics that were not
experienced during search (evolution). This was not possible
for our LSTM baselines. If true, this would be significant
because it implies we might be able to evolve proficient
control policies without complete prior knowledge of their
task environment dynamics, thus relaxing the need for an
accurate physics simulator. Future work may investigate the
robustness of this preliminary finding.

AUTHOR CONTRIBUTIONS

SK and ER led the project. ER and JT conceived the project and acted
as principal advisors. All authors contributed to the methodology. SK, MM,
PN, and DP ran the evolution experiments. XS ran the baselines. MM and
DP analysed the algorithms. SK, DP, and MM wrote the paper. All authors
edited the paper.

ACKNOWLEDGEMENTS
We would like to thank Wenhao Yu, Chen Liang, Sehoon Ha, James

Lee and the Google Brain Evolution and AutoML groups for technical
discussions; Erwin Coumans for physics simulations advice; Erwin Coumans,

Kevin Yap, Jacob Budzis, Heng Li, Kaiyuan Wang, and Ryan Gillard for
code contributions; and Quoc V. Le, Vincent Vanhoucke, Ed Chi, and Erik
Goodman for guidance and support.

REFERENCES

[1] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van
Hasselt, “Multi-Task Deep Reinforcement [...]].” AAAI, 2019.

[2] S. Kelly, T. Voegerl, W. Banzhaf, and C. Gondro, “Evolving hierarchical
memory-prediction [...]],” Genet. Program. Evolvable Mach., 2021.

[3] E. Real, C. Liang, D. R. So, and Q. V. Le, “AutoML-Zero: Evolving
Machine Learning Algorithms From Scratch,” ICML, 2020.

[4] “Unitree Robotics.” [Online]. Available: http://www.unitree.cc/
[5] J. R. Koza and M. A. Keane, “Genetic breeding of non-linear optimal

control strategies [...]],” in Analysis and Optimization of Systems, 1990.
[6] Y. Dhebar, K. Deb, S. Nageshrao, L. Zhu, and D. Filev, “Toward

Interpretable-AI Policies [...]],” IEEE. Trans. Cybern., 2022.
[7] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown:

Learning a universal policy [...],” in RSS, 2017.
[8] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,

“Domain randomization for transferring [...]],” CoRR, 2017.
[9] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can

adapt like animals,” Nature, 2015.
[10] X. Song, Y. Yang, K. Choromanski, K. Caluwaerts, W. Gao, C. Finn,

and J. Tan, “Rapidly Adaptable Legged Robots [...],” in IROS, 2020.
[11] X. Song, W. Gao, Y. Yang, K. Choromanski, A. Pacchiano, and Y. Tang,

“ES-MAML: simple hessian-free meta learning,” in ICLR, 2020.
[12] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha, “Learning fast adaptation

with meta strategy optimization,” IEEE Robot. Autom. Lett., 2020.
[13] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for

fast adaptation of deep networks,” in ICML, 2017.
[14] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “RMA: rapid motor

adaptation for legged robots,” CoRR, 2021.
[15] E. Najarro and S. Risi, “Meta-Learning through Hebbian Plasticity in

Random Networks,” CoRR, 2020.
[16] D. Floreano and J. Urzelai, “Evolutionary robots with on-line self-

organization and behavioral fitness,” Neural Networks, 2000.
[17] T. Anne, J. Wilkinson, and Z. Li, “Meta-learning for fast adaptive

locomotion with uncertainties [...]],” in IROS, 2021.
[18] A. Li, C. Florensa, I. Clavera, and P. Abbeel, “Sub-policy adaptation

for hierarchical reinforcement learning,” in ICLR, 2020.
[19] J. X. Wang, “Meta-learning in natural and artificial intelligence,”

Current Opinion in Behavioral Sciences, 2021.
[20] M. Brameier and W. Banzhaf, Linear Genetic Programming. Springer,

2007.
[21] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable

Programs. Cambridge, MA, USA: MIT Press, 1994.
[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic [...],” IEEE Trans. Evol. Comput., 2002.
[23] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution

for image classifier architecture search,” AAAI, 2019.
[24] H. Mania, A. Guy, and B. Recht, “Simple random search of static

linear policies is competitive [...]],” in NeurIPS, 2018.
[25] K.-H. Lee, O. Nachum, T. Zhang, S. Guadarrama, J. Tan, and W. Yu,

“PI-ARS: Accelerating Evolution-Learned [...]],” in IROS, 2022.
[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” CoRR, 2017.
[27] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme,

“NeuralSim: Augmenting Differentiable [...]],” in ICRA, 2021.
[28] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: A Bradford Book, 2018.
[29] S. Sueda, “Analytically differentiable articulated [...]],” 2021. [Online].

Available: https://github.com/sueda/redmax/blob/master/notes.pdf
[30] E. Marder and D. Bucher, “Central pattern generators and the control

of rhythmic movements,” Current Biology, 2001.
[31] R. Gillard, S. Jonany, Y. Miao, M. Munn, C. de Souza, J. Dungay,

C. Liang, D. R. So, Q. V. Le, and E. Real, “Unified functional hashing
in automatic machine learning,” arXiv, 2023.

[32] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, 2002.

[33] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” JMLR, 2012.

[34] D. Hafner, J. Davidson, and V. Vanhoucke, “Tensorflow agents: Efficient
batched reinforcement learning in tensorflow,” CoRR, 2017.

[35] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016.

3896

Authorized licensed use limited to: Te Herenga Waka - Victoria University of Wellington. Downloaded on June 30,2025 at 02:42:01 UTC from IEEE Xplore. Restrictions apply.

