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We discuss a family of competitive dynamics useful for pattern recognition purposes. Derived from a physical
model of mode competition, they generalize former concepts to include populations of cells working as
grandmother cell assemblies. Also the notion of unfair competition is introduced.

1. Introduction

The grandmother cell approach to pattern recognition
has had considerable success. Originally being a con-
cept of neurophysiology (for recent developments'),
modellers of neural networks have used this concept
for performing tasks in artificial neural networks more
and more frequently in the last decades.?~> Within the
grandmother cell approach, each pattern—even a very
complicated one—is assigned to a cell in the network
responsible for that pattern (the grandmother cell rec-
ognizes the grandmother). If and when similar patterns
are presented to the network corresponding cells are
strongly excited and able to dominate the network’s
reaction to this particular input. This method has
merits in a world where correlations between patterns
are not too high. In other words, the pattern space
should be sparsely populated.

At least two procedures exist to remove correla-
tions, one being static, the other being dynamic. The
static procedure consists of storing variants of the
original patterns, called adjoint patterns. By storing
adjoint patterns which are computed by correcting for
correlations, the pattern space is basically rectified.
The dynamic procedure, on the other hand, consists of
competition between different grandmother cells for a
certain input pattern. Inhibitory connections may link
grandmother cells with each other or with a certain
reservoir mediating competition. After some time has
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elapsed, the cell best fitted to an input pattern has
succeeded in suppressing the activity of other cells. In
a sense, correlations have been removed by a dyna-
mical process in time. The same network architecture
can be used not only for pattern recognition but also
for pattern classification. Its strength is the efficiency
with which patterns or pattern classes can be coded:
One cell per pattern or class.

There is, however, a serious drawback to this
efficiency. It concerns the local concentration of
knowledge. In natural as well as artificial systems,
damage may occur resulting in the removal of certain
parts of localized knowledge. In order to avoid trouble
caused by such damage, a distributed representation of
knowledge should be introduced. This will be the
subject of our contribution. We shall extend a specific
neural network for pattern recognition based on grand-
mother cells to a distributed model. In the course of
this extension, we will retain the mathematical beauty
of the original model as much as possible. Since
adaptation and learning are outside the scope of this
paper, these issues will be addressed in a separate
contribution.

The rest of this paper is organized in the following
order: In Sec. 2, we shall briefly introduce the mode
competition network in its original form and then
derive some of its variants. Especially, the quadratic
variant will be introduced. Section 3 deals with the
first extension to a population model of grandmother
cells. The abstract notion of a grandmother cell will
give way to the notion of a grandmother cell popula-
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tion or grandmother cell assembly performing the same
function. In Sec. 3, the competition between popula-
tions is still fair. In Sec. 4, a more general model will
be introduced, allowing for what we call unfair com-
petition between grandmother cell populations. Finally,
Sec. 5 summarizes our results.

2. The Competitive Dynamics

The original model was conceived from the study of
pattern formation in natural systems. There, compli-
cated patterns could be described by the competition
and co-operation of certain modes.® In fact, the com-
petitive dynamics studied to describe light modes in
laser materials closely resembles the pattern recogni-
tion dynamics given by Haken in 1987.%7

Activities of grandmother cells x;, i = 1, . . . , M,
each with its own codebook vector or pattern stored in
connections A, k = 1, , N, obey the dynamics

xi = x;(1 + x? — 2X@) | (1)

where X® is the sum of quadratic activities

X® = 2 x7° (2)

(1) can be rewritten as in (3) to make the actual
mechanism more evident.

)'c,-=xi(l—2x,2— x,z) 3)
7

I1#i

This dynamics first causes x; to grow, as long as
|lxill << 1Vi. Then the discrimination term (second in
the parenthesis of Eq. (3)) gains influence and causes
more and more differentiation of growth rates between
different cells (the largest activity grows fastest).
Finally, the global sum in (3) assures a saturation at
|xill = 1 for one cell, x; =0 for all others. This
network implements the winner-take-all function? in a
dynamical way and is therefore well suited for learning
tasks where the transient state of the system can be
used.®

One particular aspect of Eq. (1) is that it can be
derived from a scalar potential

X® x@* 4
e e —szﬁ‘. (4)

i

Restricting activities to positive values x; = 0 we
consider a more general dynamics

Xi=xP(l + xP =2X")y =F m,neIN, (5

where we define

X = & 8 (6)
k

In order to achieve a consistent naming, any dynamics
will be called according to the sum of powers
p = m + n. The original model of Eq. (1) we there-
fore call the cubic dynamics.

For the general case, a scalar potential exists only if

oF; oF,;
rotF=0=— - — (7)

dax;  0x;
It can be shown that to this end
b el ot (8)
should hold. This is fulfilled if and only if
m=n-—1. 9)

Thus, for special cases (8), dynamics (5) can be
derived from a potential function

1
V(x) = ——x<"> + = (x<">)2 i PP (10)

Two cases should be mentioned here,

n = X =1+ x; —2XV (11a)

=0 | X =x7(1 + x3 —2X9) . (11b)

The equilibrium values of Eq. (11a) (linear dynamics)
do not allow for

a1 (12a)

and may therefore appear to be useless. It turns out,
however, that the linear dynamics is in fact very useful
for application purposes.®

The dynamics of Eq. (11b) behaves similarly to the
cubic model of Eq. (1) in that

i 1 for an element [’
= (12b)

£ 0 for all other elements / # [’ .



Another interesting special case of dynamics (5) is the
quadratic competitive dynamics m = 1, n = 1

Xi == _x,(l + X; — 2X(1)) 5 (13)

which does not possess a scalar potential.

In Simulation 1, we compare the dynamics of
Egs. (1), (11b) and (13) with respect to their decision
speed. We will refer to these dynamics as the cubic,
quintic and quadratic competitive dynamics respec-
tively.

Simulation 1

We study the decision speed of the quadratic, cubic
and quintic dynamics under the same initial conditions.
We say that the network has decided on a certain
winner if, for one cell [, I e 1,..., N,
x=1—¢€, e = 0.01
holds. In other words, we count the iterations until
saturation has set in up to an uncertainty €. Dynamics
(1), (11b) and (13) are discretrized with the same time
resolution Az in order to get comparable data. 100
random initial conditions are run for network dimen-
sions of N = 10, 20, 40, 70, 100 cells respectively.
Results can be read off from Fig. 1. We can see
that the cubic dynamics is the fastest of the three
dynamics. The reason is that the power n = 2 appear-
ing in the parenthesis of Eq. 1 tends to increase
differential growth rates between modes, as compared
to n = 1. This effect, however, is off-set by m = 2 in
the quintic dynamics which results in a general decel-
eration of all growth rates. From this, we conclude
that the cubic dynamics is rather special in that it is
the fastest self-saturating competitive dynamics of
Eq. (5) possessing a potential function.

3. The Population Model

We now extend the competitive model for m = 1
X =x;(1 + xf — 2X™) | (14)

by considering x; as a collective variable of an assem-
bly of J; cells with activities x;;,

L= 3 X, (15)

In order to be consistent with the dynamics of Eq. (14)
on the global level, we choose the following equation
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Fig. 1. Decision speed for competitive dynamics of equation
(1), cubic, (11b), quintic and (13), quadratic, respectively.
The number of iterations until saturation x;, = 1 — € with

€ = 0.01 is shown in a logarithmic scale. The cubic dyna-
mics is fastest.

for the time development of activities x;;,
Xy = x5l + xf - 2X™) , (16)

where by definition (6),

may be considered as consisting of M assemblies of J;
cells co-operating to form ‘‘fat’’ grandmother cells
governed by collective variables x;.

Figure 2 gives an overview of the system. External
input is connected to assemblies acting like grand-
mother cells on the global level. Their activity is
summed by an inhibitory interneuron which feeds back
its activity to every assembly. Figure 3 gives a more
detailed picture of one of the assemblies.

Turning to Eq. (16), the feedback to a cell i, j uses
three different sources of signals:

(a) activity of x;;, excitatory,

(b) integrating activity of the population x7, mod-
ulated by x;;, excitatory,

(c) global field X, modulated by x,;, inhibitory.

In other words, the cells in a population excite each
other via an intermediate neuron which sums up their
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Fig. 2. Overview of the competitive network. Grandmother cell assemblies compete for the patterns from the external input. The
interneuron which sums the activity of all assemblies is inhibitorily connected back to all assemblies.
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Fig. 3. A single grandmother cell assembly. Each cell con-
nects to an excitatory interneuron which feeds back via
multiplicative connections to all cells of the population.

activities (Fig. 3). Connections at cell x;; should be
multiplicative for Eq. (16) to be fulfilled. Additional-
ly, the total activity x! of the assembly interneuron
provides a signal to yet another intermediate neuron
which feeds back the sum of all populations as an
inhibitory signal.

A further step towards a more general model is to
relax the summing condition (15). Summing up is
substituted by ‘‘weighting’’ through individual connec-
tions to the assembly interneuron

X = axg (18)
J
with
al'j = 0 -
This is more realistic, since a natural system usually
has at least some small deviations from the standard

value. It turns out that the replacement of (15) by (18)
has no effect on the dynamics at the population level



but results in minor changes for the saturation activi-
ties of individual cells.

The stable states for the population are therefore
still x¥ = 1, x? = 0 but these do not uniquely deter-
mine the activities of individual cells;

0 =5=gt, {§ i
X = 1 2 a,-jx,-j =1
J

=0 xg-=0.

Instead, x% is determined by its initial values x;;(0),
since relations are conserved between different x;; in
the same assembly. To observe this, suppose a pair of
cells j, j' belongs to assembly i with

.X.','j = xij(l + x?’ =2 2X(n))

(19)
.X.fij' = .xij’(l + .x,"l e 2x(n)) $
Since parentheses in Eq. (19) are identical
ij(Z
e (20)
x;j (1)

More generally, let activity of cell r be the reference
quantity for winning assembly i,

Xij = ijir j (= ‘Ii7 ] *r. (21)

From

( = a,-jk,-+a,-,)x?,=1, (22)

JeJ,j*Er

it then follows that

JeJ,j#Fr

and

X =kxd jeld,j#r. (24)
All other assemblies lose the competition and end up
with zero activity.

In Simulation 2 we demonstrate the usefulness of
having populations of grandmother assemblies instead
of single grandmother cells. The populations bring in a
new degree of freedom which can be used to realize
certain invariances. Since every cell in a population
will contribute to the winning or losing process this
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population is undergoing (Eq. (16)), it is not too
important which cell actually fired the most in re-
sponse to a stimulation. The overall result of having
won the competition against the other populations is
more important. On the other hand, even after com-
petition has settled to a stable state, information about
the cell which contributed most is still present since
the relations between activities have been conserved
during competition, as we have seen from Eq. (20).

Simulation 2

Here we want to demonstrate the usefulness of having
a new degree of freedom in the grandmother cell
assemblies. Spatial translation is our choice for the
invariance we want to gain by employing populations
of cells. Figure 4 shows 6 populations of cells with
different receptive fields reacting to two dimensional
stimulations. Basically, they are sensitive to bars of a
certain rotational degree and distance from the origin.
Within each population, various positions are realized
differing only in the distance from origin.

The receptive fields are formed using Gaussian
shaped sensitivities in the direction perpendicular to
the corresponding bars. We assume that the receptive
fields within a population can be formed using a
competitive learning process as described in Ref. 8.
For this simulation, we assume regular translations in
symmetrical directions from the origin. We have
chosen the quadratic dynamics (n = 1). For the sake
of simplicity, a;; has been set to 1 for all cells in each
population. All assemblies possess the same number of
cells but this is not strictly necessary. What we
observe is an approximate translational invariance at
the population interneuron level even in the absence of
strong inhibition between perpendicular cell popula-
tions.

Figure 5 shows the development of the winning
assembly with time. The cell with the largest overlap
at the beginning is also largest in activity at the end of
the relaxation process whereas its neighbors in the
population grew proportionally. Thus, in principle, the
cell (and therefore the translation) can be recovered
from analyzing the detailed activity pattern (Fig. 6).

Note that according to Eq. (16), the activity of the
population interneuron plays a decisive role in the
relaxation process. Therefore, it is possible that a large
number of smaller activities summed up in a certain
population outperforms a population with a single cell
showing very high activity with its partners being
nearly silent. This problem can be addressed approp-
riately only in the context of the actual application of
assemblies. In the present example, an additional
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(b)

inhibition between assemblies depending on the size of
angle difference between them would help consider-
ably.

The phase diagram in Fig. 7 shows the region in the
s, d plane for which the system gives the correct
answer. The smaller the width of the stimulating bar,
the broader the region where translational invariance
occurs.

4. Unfair Competition

In Sec. 3 we have maintained the requirement that
every population contributes its fair and equal share to
the globally inhibiting activity X. By inspection of

(a)

Fig. 4. (a) Six populations of cells respective to bars of
different orientation ¢. Members of each population are
distinguishable by their varying displacement d = nd, from
the center. Receptive fields are Gaussian in the direction of
the displacement,

(—(x=%)singp+ (y — ¥)cos ¢ — d)>
I(x,y)=exp| — 8s ;

White represents strong excitation, black represents weak
excitation. (b) Stimulus used for Figs. 5 and 6.

Fig. 2 however, we can see that the connections to the
inhibitory interneuron as well as feed-back connections
from the interneuron may be subjected to variations.
And whereas individual excitatory connection strengths
to the interneuron should only generate an altered
global signal, differences in inhibitory feed-back con-
nections will have the effect of forcing a different
outcome for the competition. Since everything can be
seen on the assembly level, we disregard for the
moment the discrete contributions from individual
member cells of each assembly. Here we consider only
the quadratic dynamics, n = 1. A similar analysis can
be done for the general case.

Let us first substantiate the statement concerning
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connections to the interneuron. Let X be formed as a
weighted sum

X=X By (25)

with individual weights B; from every population i. If
we then consider Eq. (13), we can have two possible
equilibrium  states

1

TR (26)

=0; afl =

In order to keep equilibrium values between 0 and 1
we have to restrict

1
5<B,-sl Vi . 27)

The saturation level of the global activity also changes
to

=y =g=—r. (28)

On the other hand, if individual feed-back cou-
plings between the inhibitory interneuron and compet-
ing populations are introduced, the situation changes
dramatically. In this case, the dynamics reads

xi=x;(1 +x; —2v;X) . (29)

Although equilibrium states are similarly changed as
in (26)

x? =20 : X =— (30)

with

1

3 Saa=al Mg, (31)
the boundaries between state space regions where one
population or another wins the competition are
changed.



In order to observe this, we introduce a threshold
activity x; for every population

1 1
N, { (AR - 32
o X(N+N—1j f) i
with

Ai=9.~=%;- (33)

Every population whose activity is below this
threshold value, will lose the competition. From the
remaining populations /;, . . . , /,, the population with
the largest equilibrium value will win the competition.
Thus if we assume an ordering of indices in the form

x?l >)c?2 > >x?m ; (34)

population /; will win. In the event that no population
exceeds its own threshold, the population which is
nearest to its own threshold will win. In the simulation
below, we shall demonstrate this behaviour for the
case of two competing populations in detail.

For the moment, we note that in the general case
Bi, vi # 1, B, also influences the boundaries between
competing populations by contributing to x,

1
20 =0; X =— (35)
. LT 2yB -1

and to xj via X as stated in Egs. (28, 32).

By changing the connection strengths B; and vy, the
system wins another degree of freedom. Under the
conditions of unfair competition, even a higher activity
value may lose since it may belong to a population
with a stronger coupling to the global inhibitory
interneuron. Vice versa, lower activity values may win
the competition despite participation of momentarily
stronger competitors. This boundary shift may be
considered as a prejudice of the system toward one
decision. If it is only temporary it may also be
interpreted as a shift in attention as was pointed out by
Haken and Ditzinger'®!! in the context of another
variation to the original model.

Simulation 3

Here we wish to demonstrate the behaviour of compet-
ing cells in the case of unfair competition, 3;, y; # 1
for only 2 competing cells. The boundary between
decision regions can easily be computed for the 2-
dimensional case. It takes the form of a function
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x, = f(x,) where the boundary is determined by

i —x;=x5—x,. (36)
Substituting Eq. (32) into Eq. (36) and solving for x,
we get

_1-2B,A

1+ 28,A" e

X2

with
A=y, — 7.

Figure 8 shows a phase diagram for the special
choice of

1 1
=—=0.8 =—=1.0
Y1 B Y2 B,

in order to keep equilibrium values at x{ = 1. The
boundary line given by Eq. (37) is also depicted in
Fig. 8.

Figure 9 shows the angle & between the boundary
line and the horizontal line for various values of (3,
v1. 86 = 45° is the special case of fair competition
between both cells.

5. Summary

Our most general model can now be formulated as
follows:

)'c,»j = xf;'(l + x,'-' = 2’)’,‘X(n)) (38)
with
J;
X = E Q;jXij (39
j=1
and
X =3 Bext, (40)
k

where the weights «;;, B;, y; obey the relations

1
iy Bis ¥ >0 Bivi > 3 (41)

Interpreting x;; as the activity of a neuron, it is

observed that now every weight in Fig. 2 has become
adaptable. Though we have not mentioned the extra
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weights A;; connecting external input g, to the cells
ij, we may assume now that every connection can be
subjected to a learning process.

Adjusting A fine-tunes the access to outside in-
formation for cell j in assembly i. Adjusting a;; will
change the internal importance a given assembly
assigns to a certain cell. Adjusting B; and y; will
finally determine the decision boundaries between
assemblies as well as the equilibrium values for all
cells involved.

In summary, we have indicated the benefits of these
extensions to the original competitive dynamics model.
They are:

(a) The ability to select from a variety of competitive
network types,

(b) distribution of knowledge about pattern classes
over a population of cells,

(c) obtaining an additional degree of freedom for the
assemblies, useful for introducing invariances and

(d) choosing from a continuous spectrum of competi-
tion boundaries.

A great variety of learning processes is imaginable
to take advantage of the newly won freedom of the
system to self —organize. Just to give two examples:

(1) Different cells in the same population could be-
come susceptible to different aspects of the same
pattern. Cells in the same population would learn
to excite each other to gain an edge over compet-
ing populations much as learning in the olfactory
system is supposed to work (generalization-over-
equivalent input, see Ref. 12).

(2) Adaptive weights to and from the inhibitory inter-
neuron could be used to stabilize competitive
learning schemes such as the unsupervised learning
rule proposed by Banzhaf and Haken®'? which is
based on the specialization state of a grandmother
cell (resp. assembly). In this scheme, an assembly
which has not yet specialized enough to certain
input would only weakly be inhibited by other
assemblies enabling it to learn more about the
environment by a Hebbian learning rule.

Studying these and other adaptation processes cer-
tainly has to be a subject of further investigations.

The interpretation of variables in this paper is but
one of the possible ways of looking at the system of
equations presented here. An alternative approach
would be to interpret x;; or x; as the concentration
levels of certain chemical substances or biological cells
e.g. lymphocytes of the immune system. The mechan-
isms of competition and co-operation at work here
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may give enough freedom in the behaviour of such a
system to allow for useful applications.
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