
Artificial Intelligence 322 (2023) 103962
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Iterative genetic improvement: Scaling stochastic program

synthesis

Yuan Yuan a,b, Wolfgang Banzhaf b,c,∗
a School of Computer Science and Engineering, Beihang University, Beijing, 100191, China
b Department of Computer Science and Engineering, Michigan State University, East Lansing, 48864, MI, USA
c BEACON Center for the Study of Evolution, Michigan State University, East Lansing, 48864, MI, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 March 2022
Received in revised form 7 June 2023
Accepted 9 June 2023
Available online 15 June 2023

Keywords:
Genetic programming
Genetic improvement
Evolutionary computation
Program synthesis
Artificial intelligence

Program synthesis aims to automatically find programs from an underlying programming
language that satisfy a given specification. While this has the potential to revolutionize
computing, how to search over the vast space of programs efficiently is an unsolved
challenge in program synthesis. In cases where large programs are required for a solution,
it is generally believed that stochastic search has advantages over other classes of search
techniques. Unfortunately, existing stochastic program synthesizers do not meet this
expectation very well, suffering from the scalability issue. To overcome this problem,
we propose a new framework for stochastic program synthesis, called iterative genetic
improvement. The key idea is to apply genetic improvement to improve a current reference
program, and then iteratively replace the reference program by the best program found.
Compared to traditional stochastic synthesis approaches, iterative genetic improvement
can build up the complexity of programs incrementally in a more robust way. We
evaluate the approach on two program synthesis domains: list manipulation and string
transformation, along with a number of general program synthesis problems. Our empirical
results indicate that this method has considerable advantages over several representative
stochastic program synthesizer techniques, both in terms of scalability and of solution
quality.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Program synthesis is a longstanding challenge in artificial intelligence (AI) and has even been considered by some as the
“holy grail of computer science” [1]. The goal of program synthesis is to automatically write a program that has a behavior
consistent with a specification. The specification itself can be expressed in various forms such as logical specification [2,3],
examples [4–7] or in natural language descriptions [8–10]. Program synthesis techniques have been used successfully in
many real-world application domains including data wrangling [5,11,12], program repair [13,14], computer graphics [15,16]
and others. Furthermore, viewing machine learning tasks as program synthesis [17,18] can potentially address some of the
difficulties of modern deep learning approaches, e.g., data hunger or poor interpretability, leading to more reliable and
interpretable AI.

* Corresponding author.
E-mail address: banzhafw@msu.edu (W. Banzhaf).
https://doi.org/10.1016/j.artint.2023.103962
0004-3702/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2023.103962
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2023.103962&domain=pdf
mailto:banzhafw@msu.edu
https://doi.org/10.1016/j.artint.2023.103962

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Recently, program synthesis has seen a renaissance in several different research communities, particularly in the pro-
gramming language and the machine learning community. Most research efforts focus on developing more effective search
techniques since program synthesis is a notoriously difficult combinatorial search problem. Enumerative search-based syn-
thesis [19] enumerates programs in the search space according to a specific order, a topic well studied in the literature.
But this class of techniques is usually inefficient and needs to be augmented with strategies (i) to prune the search space
[5,20], (ii) to bias the search using probabilistic models [7,21,22], or (iii) to split a large problem via divide-and-conquer
strategies [20,23]. Despite such augmentations, enumerative search still struggles to scale to large program sizes, as the
search space grows exponentially with program size. Another popular class of search techniques is to reduce the program
synthesis problem by constraint solving, and leverage off-the-shelf SAT/SMT solvers to efficiently explore the search space
[24–26]. Although this class of techniques has achieved impressive results [27], it also has difficulty in synthesizing large
programs due to the limited power of the underlying SAT/SMT solvers.

Stochastic program synthesis (SPS) employs stochastic search methods such as the Metropolis-Hastings (MH) algorithm
[28] or genetic programming (GP) [29,30] in order to explore the space of programs. Compared to the above mentioned
search techniques, SPS is a very promising technique for addressing harder synthesis problems that require larger programs
[31]. However, this potential of SPS is currently far from being fully exploited. According to the experiments done in [32],
a typical MH approach for program synthesis has been shown to be not very effective compared to other approaches. One
possible drawback of the MH approach is that it cannot make the corresponding local changes when a program is close to
being correct, because the proposal distribution used can only lead to big changes in a program [33].

The Genetic Programming (GP) method was always intended for automatic programming, but has suffered from scala-
bility issues for quite a long time [34]. For hard problems, traditional GP can be very slow and the well-known continued
growth of programs with little or even no fitness improvement (“bloat”) greatly limits its applicability [35]. Although there
have been some methods to handle code growth [36], they usually result in unsatisfactory or even worse performance
[35,36]. Besides MH and GP, stochastic local search (SLS) [37], such as simulated annealing, would be another alternative,
but it has received little attention [38] in program synthesis. One serious limitation of SLS is that it can easily get trapped
in local minima, given that the search space of programs is often highly rugged and contains many plateaus [39,40].

In this paper, we propose an iterative genetic improvement (IGI) method to make SPS more scalable for finding large pro-
grams as solutions. Our approach is inspired by a practical software development technique called iterative enhancement
[41], where human programmers write a simple initial implementation and then enhance it iteratively until a final im-
plementation is achieved. Based on this paradigm, our basic idea is to consider a sequence of program improvements just
like the evolution from a primitive cell to a sophisticated and specialized cell [42]. Our proposed IGI starts with a random
program, then the current program is improved iteratively by applying genetic improvement (GI) [43] which evolves modi-
fications to the current program. When no improvements can be made any more by GI, a perturbation operator is applied
that will allow to continue the iterative improvement process. Because IGI carefully rewrites small parts of a current pro-
gram via GI in each iteration, it can largely avoid unnecessarily big code changes like those of the MH approach [32], or the
code growth problem traditional GP faces, leading to faster search. Moreover, IGI considers a neighborhood of the current
program that is much larger than SLS based techniques such as SA [38], so it is more able to avoid or escape local minima
and plateaus. We demonstrate the superiority of IGI on two different program synthesis domains in comparison with several
representative SPS techniques. Our experimental results show that IGI can outperform all of the compared techniques by
a large margin in terms of scalability, and our results also indicate that IGI appears to be less prone to overfitting. More-
over, to demonstrate the power of IGI as a general program synthesizer, we compare IGI using expression trees with two
state-of-the-art GP systems for general program synthesis.

The rest of this paper is organized as follows. In Section 2 we discuss some background material for our study. Section 3
describes the proposed IGI method in detail. Section 4 and Section 5 present empirical results on domain-specific program
synthesis and general program synthesis, respectively. Section 6 briefly introduces other work related to this study. Section 7
summarizes and concludes.

2. Preliminaries and background

2.1. Domain-specific language

A domain-specific language (DSL) is a computer language that is specifically created for a particular domain. Program
synthesis is usually based on a given DSL in order to take a first cut at the space of possible programs.

A DSL can be expressed as a primitive set which includes functions and terminals assumed to be useful for solving prob-
lems in a specific domain. Consider a toy DSL with the primitive set {ADD, SUB, EQ, ITE, 0, 1, IN0, IN1}. In this primitive
set, ADD, SUB, EQ and ITE are functions explained in Table 1, and the remaining four entities are terminals. Among the
four terminals, integers 0 and 1 are constants, and integers IN0 and IN1 are external inputs to the program.

The primitive set of a DSL defines the complete hypothesis space of possible programs. Each program can be represented
as an expression tree. Fig. 1 shows such a tree for a valid program in the above toy DSL.

In our experiments, we will consider two DSLs. One is useful for list manipulation (referred to as DSL-LM), and the
other is useful for string transformation (referred to as DSL-ST). They are described in detail in Appendix A and Appendix B,
respectively.
2

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table 1
Description of functions in the DSL.

Symbol Arguments Return Type Description

ADD x: Integer; y: Integer Integer Return x + y.

SUB x: Integer; y: Integer Integer Return x − y.

EQ x: Integer; y: Integer Boolean If x is equal to y, return true,
otherwise return false.

ITE c: Boolean; x: Integer; Integer If c is true, return x,
y: Integer otherwise return y.

Fig. 1. The tree of the valid program ITE(EQ(IN0, IN1), 0, ADD(IN0, IN1)) in the above toy DSL.

Table 2
A PBE task with four I/Oexamples (each input contains two integers) and a possible program in the
toy DSL that satisfies all of the four examples.

Input (Ii) Output (O i) Program

3, 3 0 ITE(EQ(IN0, IN1), 0, ADD(IN0, IN1))
2, 5 7
8, 1 9
6, 6 0

2.2. Programming by example

Programming by example (PBE) is a subfield of program synthesis, where the specification is given in the form of input-
output (IO) examples.

Assume that we have a DSL that defines the space of all possible programs denoted by P . In PBE, a task is described by
a set of I/Oexamples X = {(I1, O 1), . . . , (In, O n)}. We can then say we have solved this task if we find a program p ∈ P that
can map correctly every input in X to the corresponding output, i.e., p(Ii) = O i, ∀i = 1, 2, . . . , n. Table 2 shows a PBE task
with four I/Oexamples and a potential correct program from the toy DSL described in Section 2.1.

Our goal is to build a program synthesizer which can find such a program p in P according to the I/Ospecification X
within a certain time limit.

2.3. Genetic improvement

Genetic improvement (GI) [43] is the use of an automated search algorithm, genetic programming, to improve an ex-
isting program. GI typically conducts the search over the space of patches, where a patch constitutes a sequence of edits
that are applied to the original program and corresponds to a modified program. Compared to the original program, an
improved version needs to have better functional properties (e.g., by eliminating buggy behavior) [44,13,14,45] or better
non-functional properties (e.g., shorter execution time or smaller energy consumption) [46–48], depending on the appli-
cation scenario or an user’s goal. GI has achieved notable success in software repair and optimization. GenProg [44] is a
pioneer system for test-suite based software repair, which is typically based on GI. Inspired by GenProg’s limitations, ARJA
systems [14,45] introduce a number of enhancements such as lower-granularity patch representation, finer-grained fitness
function and multi-objective formulation, which can achieve state-of-the-art repair performance on a set of real Java bugs.
Recently, a GI approach called SapFix [49] has been deployed successfully at Facebook to suggest fixes for six production
systems. As for software optimization, GI has been recently extended to more novel applications [50]. Some examples in-
clude the performance tuning of GPU kernels [48] and the speedup of a genetic programming system [51]. In addition, there
are several emerging tools [52,53] available that have been developed to facilitate the use of GI for improving non-functional
properties of software.

Note that GI normally takes real-world source code as a starting point and improves it by introducing some small
changes. So the programs studied in GI applications are usually written in a general-purpose programming language (GPL)
such as C or Java. In contrast, the goal of program synthesis is to create a program that realizes user intent from scratch. So
3

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
traditional program synthesis is largely applied to a particular domain and works over a DSL. The DSL should be expressive
enough to represent a variety of tasks in the target domain, but also should be restricted enough to allow efficient search.
Program synthesis in a GPL can automate human programming in a more general sense, but would be less efficient when
applied to a domain where a DSL can be properly defined.

In our proposed approach, GI improves a program with respect to a fitness function measuring how well the program
performs over a given set of input-output examples.

3. Iterative genetic improvement

3.1. Overview

The IGI framework proposed here is described in Algorithm 1. First, in Step 1, we create K program trees randomly using
ramped half-and-half initialization [29] with a depth range of [dmin, dmax]. The best among these K random programs is
set to become the initial program p0. This step is intended to find a good starting point for the search by sampling from a
(substantial) number of programs instead of a single one.

Algorithm 1 Framework of the Proposed IGI.
1: p0 ← InitProg(dmin, dmax, K)

2: p ← IterGenImprov(p0)

3: while termination criterion is not satisfied do
4: p′ ← Perturbation(p)
5: p′′ ← IterGenImprov(p′)
6: p ← AcceptanceCriterion(p, p′′)
7: end while
8: return the best program found

In Step 2, we make incremental improvements from p0 by applying the GI procedure iteratively until a program p is
reached that cannot be further improved by the adopted GI. In each iteration GI tries to produce an improved version pi+1
by searching for modifications to the current program pi . Fig. 2 illustrates this process where pl = p, and we call the process
from pi to pi+1 an epoch, where pi+1 is an improved version of pi obtained through GI.

After Step 2, to continue the search, we need to generate a new starting program for IterGenImprov. To do this,
a naive strategy is to randomly produce a new program as the starting program. However this strategy is obviously not
efficient because the search history is completely discarded. Here we follow the basic idea of iterated local search [54]. That
is, we apply some perturbation operator to the new p that leads to an intermediate program p′ (Step 4 in Algorithm 1). Then
IterGenImprov restarts the search from p′ and returns p′′ (Step 5 in Algorithm 1). In Step 6, AcceptanceCriterion
will decide to which program the next time Perturbation is applied. In this paper, this criterion just simply returns the
better of p and p′′ . Steps 4–6 are iterated until some termination criterion is met. In Fig. 3, we further provide a schematic
overview of our IGI approach.

As can be seen in IGI, we need to compare the quality of two programs frequently. This is aided by a predefined
fitness function which can measure how well a program satisfies the given specification. Suppose we are given a set
of n input-output examples {(I1, O 1), . . . , (In, O n)}, the fitness function of a program p can be defined as f itness(p) =
1
n

∑n
i=1 sim(O i, p(Ii)), where sim function indicates the similarity between the expected output O i and the actual output

p(Ii). In our study, for DSL-LM, sim returns 1 if O i = p(Ii) otherwise returns 0. As for DSL-ST, we use a finer-grained sim
function which returns the normalized Levenshtein similarity1 between two strings. In our approach, a program with larger
fitness is better, while in the case of two programs having the same fitness, the program with smaller size is deemed
better according to Occam’s razor. A program p will satisfy the given specification iff it achieves maximum fitness (i.e.,
f itness(p) = 1).

Section 3.2 will detail how to apply GI to the current program pi to get an improved version pi+1, which corresponds
to one epoch in IterGenImprov (see Fig. 2). Section 3.3 will explain how to conduct the perturbation operator, which
corresponds to Step 4 in Algorithm 1.

3.2. Applying genetic improvement

3.2.1. Patch representation
A program different from the program we want to improve can be coded as the difference between the original and

the new program. In computing, this is known as a program patch, represented as a sequence of edits to the program’s
expression tree. In this patch representation, we define three kinds of edits: replacement, insertion and deletion. Syntactic
and type constraints are considered in these edits in order to ensure that the modified tree remains legal. To randomly

1 We use the levenshtein.normalized_similarity function from https://github .com /life4 /textdistance, calculating a value between [0, 1], with
1 returned if the two strings are the same.
4

https://github.com/life4/textdistance

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Fig. 2. Illustration of Step 2 in Algorithm 1. pi+1 is an improved version of pi for i = 0, 1, . . . , l − 1, that is obtained by applying GI to pi . Since pl+1 is not
better than pl (i.e., GI fails to improve pl), pl is finally returned by IterGenImprov.

Fig. 3. Schematic overview of the proposed IGI.

Fig. 4. Illustration of a replacement edit (shaded nodes are changed).

generate an edit, we first select a node randomly in the expression tree that is called target node. Then we choose one of
the three kinds of edits randomly.

1) Replacement: If we choose to perform replacement, the target node is replaced by another random primitive from
the primitive set which has the same number of arguments, the same argument types and the same return type. This is
illustrated in Fig. 4.

2) Insertion: If we choose to perform insertion, for the primitive that can be inserted, its return type and at least one of
its argument types should be the same as the return type of the target node. Such a primitive is selected at random from
the primitive set. Then this primitive will replace the target node, and the subtree rooted at the target node will become
one of its child tree that requires the same data type. All the remaining children of this primitive will be selected randomly
from the set of terminals with the corresponding data types. This is illustrated in Fig. 5.

3) Deletion: If we choose to perform deletion, one node is randomly chosen from the children of the target node that
have the same return type as the target node. The subtree rooted at this node will replace the subtree rooted at the target
node. This is illustrated in Fig. 6.

A patch contains a list of concrete edits and each edit is performed sequentially when applying the patch. This is
illustrated in Fig. 7.

In our study, we find that the above replacement/insertion edits sometimes struggle to introduce the following two
kinds of primitives into the program. First, if the return type of a primitive is different from all its argument types (e.g., the
primitive LEN in the DSL-ST), we know that it is hard or even impossible to bring the two kinds of primitives using the
above insertion edit. Second, if there are no corresponding terminals for some of its argument types of a primitive (e.g., the
primitive Take in the DSL-LM), the situation is similar. Also, a replacement edit might have little chance to get introduced
5

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Fig. 5. Illustration of an insertion edit (shaded nodes are the newly inserted nodes).

Fig. 6. Illustration of a deletion edit (shaded nodes are removed from the original tree).

Fig. 7. Illustration of a patch that contains three edits. The number above the node is the ID of the node. The blue shaded nodes are changed by replacement
edits and the green shaded nodes are the new nodes added by the insertion edit. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

into a program, if there are few (or even no) primitives with the same return type and argument types in the set. Should the
desired program really require this primitive, the search will become inefficient. We address the generation of replacement
and insertion edits to introduce the two kinds of primitives easily as follows:
For the replacement edit, when the target node is a leaf, a function with the same return type is also allowed to replace the
target node and the arguments of this function will be filled with random terminals having the corresponding types. This is
demonstrated in Fig. 8.

As for the insertion edit, when the algorithm fails to find a terminal for a child of the inserted node, it instead chooses
a function with the desired return type and fill its arguments with random terminals having the corresponding types. This
is demonstrated in Fig. 9.

Note that there may exist conflicts between two edits. For example, a replacement edit as shown in Fig. 4 and a deletion
edit as shown in Fig. 6 cannot take effect at the same time. We resolve such conflicts at the time of generating or applying
a patch by disabling the latter one if it conflicts with a previous edit.
6

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Fig. 8. Illustration of a replacement edit (shaded node in the original tree is replaced by the shaded nodes in the new tree).

Fig. 9. Illustration of an insertion edit (shaded node are the newly inserted nodes).

Using this patch representation, we can search for patches to the current program pi that are able to produce an im-
proved version pi+1. In our framework, we provide two alternative search algorithms: stochastic beam search (SBS) and
linear genetic programming (LGP) [55], which are described in the next subsections 3.2.2 and 3.2.3, respectively.

3.2.2. Stochastic beam search
In stochastic beam search (SBS), the search for patches of length L + 1 is based on the patches of length L (i.e., there are

already L edits in the patch). Suppose that we currently have a set of B patches of length L. Then for each of the B patches,
we produce C copies and append a randomly generated edit to each copy where the appended edit should not conflict with
the previous L edits. Having produced a total of B × C patches of length L + 1, tournament selection is used to select B
patches from the total B × C . Based on these B patches of length L + 1, SBS continues to explore further patches, this time
of length L + 2.

SBS starts the search from B empty patches (i.e., length L = 0), with a limiting parameter Lmax used to restrict the
maximum length of allowed patches. Once SBS finds a program p′

i that is better than the current program pi , we need to
decide whether to continue SBS or just return p′

i as pi+1 for the next GI epoch. In this study, our strategy is that if p′
i is the

best program ever found from the beginning of IGI, SBS in this GI epoch is deemed to be fruitful and continues searching
for better return programs until it reaches Lmax. Otherwise p′

i can be simply returned as pi+1. Note that SBS may fail to find
any improved version of the current program pi after reaching Lmax, in this case the perturbation operator will be invoked.

3.2.3. Linear genetic programming
In the linear genetic programming (LGP) approach, the search starts with a population of N random patches denoted

P0. To produce patches with diverse lengths, each patch length in P0 is drawn from a 1 + Poisson(1) distribution, where
Poisson(λ) is a Poisson distribution with parameter λ = 1.

In the g-th generation of LGP, we use tournament selection to select two parent patches from Pg and apply crossover
and mutation to the two patches to generate two offspring. By repeating this process N/2 times, N offspring patches are
generated which constitute the next population Pg+1.

One-point crossover between two parent patches is used. Suppose that the length of the two parents is L1 and L2,
respectively. We use a cut point in the two parents given by �αL1� and �αL2�, where α ∈ (0, 1) is a random value. The
edits after the cut points are swapped between the two parent patches, leading to two offspring.

Mutation is then applied to each of the two offspring patches. When applying mutation to a patch, an edit in the patch
is selected uniformly at random, and with equal probabilities removed, replaced with a random edit, or a random edit is
inserted after the selected one.

In LGP, we use the same strategy as in SBS to determine when to terminate the search and return the best program LGP
has found during the current epoch of GI.
7

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
3.3. Perturbation operator

The goal of the perturbation operator is to provide a new good starting program for the next application of IterGen-
Improv in case we get stuck.

When applying the perturbation to p (Step 4 in Algorithm 1), some useful components of p need to be conserved,
in order to provide a new good starting program for the next application of IterGenImprov. At the same time the
perturbation should not be too small, in order to avoid staying stuck in the same local optimum as the previous epoch of
IterGenImprov.

In our framework, the perturbation operator works as follows: First, we collect a set of nodes denoted by N from the
expression tree of p, where the size of the subtree rooted at each node is not smaller than Smin. Second, we randomly select
a node ν from N . For convenience, the subtree rooted at node ν is denoted by T and its size is denoted by ST . Third,
we randomly generate M trees with size in the range [1, ST] and the same return type as T . Fourth, we replace T in the
tree of p with each of the M trees in turn, and obtain M new programs. Last, the best program among the M programs is
returned as the perturbed program p′ .

In addition, we handle two special cases: One is that N = ∅ and the other is that the selected node ν is the root node.
For both of these cases, we invoke the initialization function InitProg to produce a program that is used as the perturbed
program p′ .

As can be seen from above, Smin is the parameter that restricts the minimum strength of a perturbation. Since we know
that a random subtree replacement usually leads to a bad fitness of the new program in program synthesis, our perturbation
operator generates M candidate program variants instead of a single one. Moreover, with a relatively low probability, the
perturbation operator can ignore much (when ν is the node very close to root) or even all (when ν is the root node) of the
information of p, which can help to explore other promising regions of the program space.

4. Experiments on domain-specific program synthesis

In this section, we conduct experiments on two domain-specific applications. All techniques investigated here explore
the same search space of expression trees. We mainly want to demonstrate the superiority of the search strategy of IGI.

4.1. Experimental setup

The IGI framework is instantiated here with SBS (see Section 3.2.2) and LGP (see Section 3.2.3), resulting in two algo-
rithms IGI-SBS and IGI-LGP, respectively. The source code is implemented in Python and has been made available at GitHub.2

All the experiments in this section are conducted on the Intel Xeon E5-2680 2.4 GHz CPU processor with 20 GB memory.

4.1.1. Benchmarks
We evaluate the algorithms on synthesis tasks from two different application domains: list manipulation and string

transformation. The corresponding DSLs for the two domains are described in Appendix A and Appendix B.
For the list manipulation domain, 200 benchmarks3 are generated, similar to [7]. In particular, when generating a bench-

mark, we first randomly generate a program with a number of tree nodes in the range between 10 and 15. Then we
continuously feed random inputs to the program and obtain the corresponding outputs. This process is terminated until we
collect 100 valid input-output examples (i.e., only integers in [−256, 255] are allowed following [7]) or run out of the com-
puting budget. In the latter case, we just discard the program and start over again. Note that in order to test the scalability
of SPS techniques, we consider larger oracle programs than existing studies [7,26,56,57]. For example, oracle programs with
at most seven nodes were investigated in [7].

As for the second domain, string transformations, we use the dataset consisting of all SyGuS tasks whose outputs are
only strings from the PBE-Strings track in 2018 and 2019 [58]. This results in 185 tasks in total. The semantic specifications
consist of 2–400 examples.

4.1.2. Baseline algorithms
IGI-SBS and IGI-LGP are compared to the following representative SPS techniques:
MH [32] — This approach is an adaption of the algorithm proposed in [59] for program superoptimization. It uses

the Metropolis-Hastings procedure to sample programs. Given the current program p, a variant p′ with the same size is
obtained by conducting a random subtree replacement. The probability of adopting p′ as the new current program is given
by the Metropolis-Hastings acceptance ratio α(p, p′) = min{1, exp(β(C(p) − C(p′))}, where β is a smoothing constant and
C(p) = ∑n

i=1{1 − sim(O i, p(Ii))} indicates the degree to which p violates a set of given input-output examples. The approach
starts search for programs of size k = 1, but switches at each step with some probability pm to search for programs of size
k + 1 or k − 1.

2 The source code is available at https://github .com /yyxhdy /igi/.
3 These benchmarks are available at https://github .com /yyxhdy /igi /tree /main /dataset.
8

https://github.com/yyxhdy/igi/
https://github.com/yyxhdy/igi/tree/main/dataset

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table 3
Main result (in the list manipulation domain) comparing the performance of all algorithms considered.

Statistics IGI-SBS IGI-LGP MH GP SIHC SA

Total solved 141 136 24 65 80 62
Fastest solved 76 51 1 2 22 4
Smallest solved 74 64 6 14 49 14
Average time 581.76 596.28 474.77 726.97 615.26 1135.35
Median time 229.78 173.27 28.85 404.61 198.15 884.54
Average size 12.09 12.31 12.75 16.32 10.41 22.5
Median size 12.0 12.0 8.5 12.0 10.0 15.5

GP [60] — This is a highly optimized genetic programming system, often referred to as TinyGP. It employs a steady state
algorithm where only one individual in the population is replaced each generation. During program evolution the system
uses tournament selection to select mating parents, and subtree crossover and point mutation to generate offspring.

SIHC [38] — This algorithm uses stochastic iterated hill climbing (SIHC) to discover programs. It starts with a random
program as the current program pc , then a mutation operator called HVL-Mutate is applied to the current program to obtain
a variant p′

c . If p′
c is better than pc , p′

c will replace pc as the new current program and the search will move onward from
it. Otherwise, another mutation to pc is tried. The maximum number of mutations that can be applied to pc is given by a
parameter Tmax. If none of the Tmax variants is better than pc , pc is discarded and a new current program is generated at
random.

SA [38] — This algorithm uses simulated annealing (SA) to discover programs. It is somewhat similar to SIHC, but at
each step only a single variant p′

c is generated from pc using HVL-Mutate, and the variant p′
c will be accepted as the new

current program with probability min{1, exp((f itness(p′) − f itness(p))/Tc)}, where Tc is the current temperature which is
decreased by an exponential rate.

Note that the original HVL-Mutate does not consider data-type constraints in a DSL, so it is not applicable to synthe-
sis tasks where there are multiple data-types. In our experiments, we replace the HVL-Mutate in SIHC and SA with the
replacement/insertion/deletion edit described in Section 3.2.1, in order to ensure a fair comparison.

4.1.3. Parameter settings
The timeout for each run of the algorithm on a benchmark is set to one hour in these experiments, and in each run the

algorithm will be terminated at once when a solution program is found.
The key parameters of all algorithms considered are tuned on two additional difficult synthesis tasks,4 one for each

domain. Grid search is used to find the best parameter combination among 81 combinations for IGI-SBS, 72 combinations
for IGI-LGP, 50 combinations for MH, 81 combinations for GP, 40 combinations for SIHC and 50 combinations for SA. Details
can be seen in Appendix C.

4.2. Results for list manipulation

We evaluate IGI-SBS and IGI-LGP on 200 benchmarks from the list manipulation domain and compare them with MH,
GP, SIHC and SA. Each algorithm runs only once on each benchmark. Table 3 summarizes the comparison results, where
we list for each algorithm the number of benchmarks solved (“Total solved”), the number of benchmarks solved with the
fastest solving time (“Fastest solved”), the number of benchmarks solved with the smallest program size (“Smallest solved”),
the average and median times to find a solution, and the average and median sizes of solution programs. Here program size
refers to the number of nodes in the program’s expression tree.

Out of 200 benchmarks, IGI-SBS and IGI-LGP can solve 141 and 136 benchmarks, respectively. Other algorithms perform
much worse than IGI-SBS and IGI-LGP in terms of total number of benchmarks solved. The most competitive one is SIHC, but
it can only solve 80 benchmarks, which is just about 57% of that by IGI-SBS. GP and SA solve similar number of benchmarks
(65 for GP and 62 for SA). MH can only solve 24 benchmarks and is significantly outperformed by all other algorithms.

IGI-SBS and IGI-LGP are the fastest solvers in 76 and 51 benchmarks, respectively. Next to IGI-SBS and IGI-LGP, SIHC is
the fastest only in 22 benchmarks. In terms of average and median times, IGI-SBS and IGI-LGP show clear advantages over
GP and SA, and show similar performance to SIHC. Although both, average and median times consumed by MH are smallest,
MH scales poorly.

We also judge solution quality based on the size of a solution program [61]. According to average and median sizes,
solutions found by IGI-SBS and IGI-LGP have overall better quality than those found by GP and SA. Compared to IGI-SBS and
IGI-LGP, SIHC can generate solutions with smaller average and median sizes. This is reasonable because IGI-SBS and IGI-LGP
can solve many benchmarks that require larger solution programs whereas SIHC can not. Moreover, IGI-SBS and IGI-LGP can
provide the smallest solutions for 74 and 64 benchmarks respectively, whereas SIHC can only provide the smallest solutions
for 49 benchmarks.

4 The definitions of the two tasks are available at https://github .com /yyxhdy /igi /tree /main /pt.
9

https://github.com/yyxhdy/igi/tree/main/pt

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Fig. 10. (a) Number of benchmarks solved versus the computation time; (b) Number of benchmarks solved versus the number of evaluations in the list
manipulation domain.

Interestingly, SA needs much more time to find a solution compared to the other algorithms. In addition, the solutions
found by SA are also much larger than those by the other algorithms. One possible reason is that the space of programs
contains a series of discrete plateaus. SA always accepts solutions with the same fitness, so it may spend much time to
traverse these plateaus. Moreover, during this process, many subtree structures with no effect on fitness [62] could be
added into the code, producing larger and larger programs. Our proposed IGI explores a large neighborhood of the current
program using GI techniques, so it can avoid or escape from plateaus more easily.

In Fig. 10, we plot the number of benchmarks solved versus computation time (Fig. 10(a)) and the number of evaluations
(Fig. 10(b)) for each algorithm. Compared to the baselines, the number of benchmarks solved by IGI-SBS or IGI-LGP increases
more steadily with elapsed time/evaluations. For MH, almost all the solutions are found during the very early period of the
search. Considering that MH searches for progressively larger programs, this implies that its search mechanism is inadequate
for synthesizing larger programs. Note that SA gets stuck after a relatively small number of evaluations (i.e., about 5 × 105),
10

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Fig. 11. (a) Number of benchmarks in each range of program tree size; (b) Percentage of benchmarks solved in each range of program tree size by the
considered algorithms.

but these evaluations cost most of the budget time (i.e., about 3000 seconds). This implies that SA tends to examine larger
programs whose execution times are longer.

In Fig. 11(a), we bin the generated 200 benchmarks according to the oracle program size (in terms of the number of
tree nodes). Fig. 11(b) further shows the percentage of benchmarks solved in each range by the considered algorithms. It is
reasonable that the performance of our IGI tends to degrade when the program size gets larger, because the search space
of programs would increase exponentially with the increasing of program size. But compared to the other algorithms, our
IGI can maintain a large performance margin in all ranges of program size. Note that although our IGI algorithms perform
much better, they still fail to solve about 30% benchmarks here. The possible reason is that the fitness landscapes of these
missing benchmarks are extremely complex which require more efficient search, and a larger computational budget may
help to solve them.

In Fig. 12, we show the program complexity versus fitness on problems L129 and L197, in order to demonstrate the
robustness of IGI in terms of building up the complexity of programs. For brevity, we only present the results of IGI-SBS,
11

Fig. 12. Program complexity versus fitness. The program complexity is measured in terms of the number of tree nodes.

Table 4
Results for 10 hard benchmarks (in the list manipulation domain) that are randomly cho-
sen. The data indicates the number of successful runs out of 50. Best performance is
shown in bold.

Benchmarks IGI-SBS IGI-LGP MH GP SIHC SA

L15 20 24 0 1 0 0
L53 20 14 0 0 0 0
L82 4 8 0 1 0 7
L129 37 36 0 1 0 0
L172 15 12 0 0 0 0
L179 29 35 0 12 0 10
L180 26 32 0 0 4 4
L183 30 39 4 13 1 0
L188 32 25 0 0 0 0
L197 32 28 0 0 0 0

GP and SA in the figure. We can clearly see that in GP and SA, the program complexity can dramatically increase without
much fitness improvement. Whereas in IGI-SBS, the program complexity can be built up very stably along with a series of
significant fitness improvements.

Due to the stochastic nature of SPS techniques we measure the performance of each technique as the number of runs out
of 50 that solve the benchmark, called success rate. Table 4 lists the success rates of each algorithm on 10 hard benchmarks.
These benchmarks are randomly chosen out of the 200 benchmarks and can be solved by no more than three techniques,
according to the results in Table 3. It can be seen from Table 4 that IGI-SBS and IGI-LGP perform similarly well and obtain
the best success rates on some of the 10 benchmarks. IGI-SBS and IGI-LGP perform much better than all baselines except
on L82 where SA is very competitive. On L53, L172, L188 and L197, IGI-SBS and IGI-LGP can achieve decent success rates,
whereas all the baselines never succeed.

In summary, the IGI algorithms clearly outperform all the baselines in terms of scalability in the list manipulation domain
with overall better solution quality. Moreover, they also have an overwhelming advantage in solving hard synthesis tasks.

4.3. Results for string transformation

Table 5 shows the main result in the string transformation domain. IGI-SBS and IGI-LGP solve the most number of
benchmarks (i.e., 172 for both of them), followed by GP that solves 159. So IGI algorithms again outperform all the other
algorithms in terms of scalability. Moreover, they are also superior to others in terms of synthesis time. In particular, IGI-
SBS finds solutions in an average time of 73.39 seconds, whereas SIHC, the fastest baseline, consumes 128.16 seconds on
average.

In terms of solution size, SA severely suffers from the code growth problem and average solution size reaches over 277,
possibly due to the same reason as in Section 4.2. GP suffers from a similar problem with average and median sizes of
42.37 and 27. IGI-SBS and IGI-LGP find solutions that are of comparable size to those by MH and SIHC, but are better in
scalability.

Fig. 13 plots the number of benchmarks solved with the increasing of computational time (Fig. 13(a)) and evaluations
(Fig. 13(b)). Unlike in the list manipulation domain, the trajectories of IGI-SBS and IGI-LGP start steep and almost flatten
very quickly, indicating that most of benchmarks in this domain do not pose great challenge to IGI.
Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
12

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962

Table 5
Main result (in the string transformation domain) comparing the performance of all algorithms consid-
ered.

Statistics IGI-SBS IGI-LGP MH GP SIHC SA

Total solved 172 172 108 159 156 158
Fastest solved 63 50 2 5 51 3
Smallest solved 56 38 38 14 88 6
Average time 73.39 109.45 360.04 135.3 128.16 325.29
Median time 4.02 5.25 29.56 39.39 6.94 91.79
Average size 19.1 20.78 24.82 42.37 14.28 277.43
Median size 17.0 19.0 15.0 27.0 12.5 120.0

Fig. 13. (a) Number of benchmarks solved versus the computation time; (b) Number of benchmarks solved versus the number of evaluations in the string
transformation domain.
13

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Fig. 14. Program complexity versus fitness. The program complexity is measured in terms of the number of tree nodes. enwfts refers to extract-nth-word-
from-text-string.

Table 6
Results for 10 hard benchmarks (in the string transformation domain) that are randomly chosen, where
n shows the number of examples for each benchmark. The data indicates the number of successful runs
out of 50. Best performance is shown in bold.

Benchmarks n IGI-SBS IGI-LGP MH GP SIHC SA

31753108 3 50 50 0 28 1 22
44789427 4 50 50 0 35 12 42
exceljet2 3 50 50 0 39 9 18
enwfts 4 44 36 0 14 0 23
ewtbwsc 3 50 49 0 47 6 10
gmnffn 4 50 49 0 22 0 18
p10lr 400 46 42 9 26 18 34
stsasc 4 50 50 0 43 1 31
sncfc 3 46 45 0 48 10 41
univ_4 8 49 42 0 32 1 27

The full name of some benchmarks are as follows. enwfts: extract-nth-word-from-text-string; ewtbwsc:
extract-word-that-begins-with-specific-character; gmnffn: get-middle-name-from-full-name; p10lr:
phone-10-long-repeat; stsasc: split-text-string-at-specific-character; sncfc: strip-numeric-characters-
from-cell.

Fig. 14 plots the program complexity with the improvement of fitness on problems exceljet2 and enwfts. The observa-
tion is similar to that of Fig. 12, which demonstrates the robustness of IGI in building up the program complexity during
evolution.

To further examine the performance of IGI, we select 10 hard benchmarks in the same way as we do in the list manip-
ulation domain. Table 6 shows the success rates for each algorithm on these 10 benchmarks. From Table 6, IGI-SBS always
succeeds in 6 benchmarks, while IGI-LGP always succeeds in 4. Both IGI-SBS and IGI-LGP achieve higher success rates than
all the baselines on all the benchmarks except on sncfc where GP is slightly better. MH performs very poorly, which always
fails in 9 out of 10 benchmarks. It seems that although SIHC is very competitive to GP and SA in terms of the number
of benchmarks solved, it generally performs worse than GP and SA on hard benchmarks. The similar phenomenon can be
observed in the list manipulation domain. This implies that it is more difficult for the simple search mechanism of SIHC to
adapt to hard synthesis tasks that may have complex fitness landscapes.

In summary, IGI algorithms perform better than all the other algorithms in terms of scalability in the string transforma-
tion domain, without sacrificing the solution quality. In addition, they spend less average time to find solution programs,
and also have much stronger ability to address hard synthesis tasks.

4.4. On the issue of generalization

Although the issue of generalization is not the focus of this paper, it is interesting to see how well the solution programs
found by IGI algorithms generalize to unseen input-output examples. We generated 100 additional input-output examples
for each of the 200 benchmarks in the list manipulation domain using the corresponding oracle programs. Note that this
cannot be done in the string transformation domain since oracle programs are unknown for those benchmarks.

Table 7 reports the percentage of solution programs that can generalize to 100 hold-out input-output examples for each
considered algorithm. It can be seen that the IGI algorithms have better generalization ability than GP, SIHC and SA. This
also implies that the better scalability of IGI is not due to overfitting on given input-output examples. MH achieves the
highest generalization percentage, but from a small basis as it only solves 24 relatively easy tasks with overfitting less likely
14

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table 7
Percentage of solution programs that can generalize to 100 hold-out input-output examples.

Statistics IGI-SBS IGI-LGP MH GP SIHC SA

Total solved 141 136 24 65 80 62
Generalizable 133 122 23 57 68 51

Percentage (%) 94.33 89.71 95.83 87.69 85 82.26

Table 8
The data types and fitness function used for each problem.

Benchmarks Data Types Fitness Function

Number I/O integer, float float error
Small or Large integer, boolean, string Levenshtein distance of strings
Compare String Lengths integer, boolean, string boolean error
Last Index of Zero integer, boolean, vector of integers integer error
Mirror Image integer, boolean, vector of integers boolean error
Sum of Squares integer, boolean integer error
Grade integer, boolean, char, string char error for grade char
Median integer, boolean integer error
Smallest integer, boolean integer error
Syllables integer, boolean, char, string integer error

to occur. It is worth mentioning that in our experiments all algorithms considered stop searching once a solution is found.
We can further alleviate overfitting by letting the algorithm return all solution programs found within the time budget and
then choose the smallest one among them.

5. Experiments on general program synthesis

In this section, we conduct experiments on general programming problems. To support this, we define a primitive set for
IGI that contains the basic data types and functions used in PushGP [63], and adopt the same approach in strongly typed
genetic programming (STGP) [64] to introduce local variables and control flow structures, leading to 263 different functions
in total in our IGI system for general program synthesis. Note that general program synthesis systems usually use various
program structures such as Push language [65], derivation trees [66] and tangled program graphs [67], so they indeed
work over different search spaces in terms of syntax. Our IGI framework focuses on the search strategy and can be extended
to any program structure once their patch representation and perturbation operators are properly defined. In this paper,
expression trees are just used as the program structure within IGI. Here we want to demonstrate that, equipped with a set
of instructions with similar functionality, our IGI systems using expression trees can be more effective than state-of-the-art
genetic programming (GP) systems on general program synthesis.

5.1. Experimental setup

5.1.1. Benchmarks
In the GP literature, there is a set of problems designed as a benchmark suite for general program synthesis [68],

which are selected from introductory computer science textbooks. The solutions to most of these problems would require
multiple data types and control flow structures, aiming to assess the capabilities of a program synthesis system in generating
programs with similar characteristics to human-written programs. In our experiments, we examine ten test problems of
varying difficulty from this suite, which are described in Appendix D in detail. Table 8 shows the data types and fitness
function used for each problem.

5.1.2. Baseline systems
We compare our IGI-SBS and IGI-LGP with two advanced program synthesis systems, i.e., PushGP5 and GE,6 based on

genetic programming. Their descriptions are as follows:
PushGP [65,63] — PushGP evolves programs in a stack-based Turing complete language called Push. Push uses stacks to

store data and maintains a separate stack for each data type. One salient feature of Push is that it treats code as data and
supports a special data type, i.e., CODE type. A Push program is made up of a list of instructions and literals. During the
execution of an instruction, all its required arguments are popped from their stacks and the results are pushed onto the
stacks with the appropriate types. Instructions that explicitly manipulate data of the CODE stack can alter the computation
process at runtime, making it easy to express complex control structures such as recursion.

5 An implementation of PushGP in Python is available at https://github .com /erp12 /pyshgp.
6 An implementation of GE in Python is available at https://github .com /PonyGE /PonyGE2.
15

https://github.com/erp12/pyshgp
https://github.com/PonyGE/PonyGE2

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table 9
Results for general program synthesis benchmarks, where n shows the number of examples for
each benchmark. The data indicates the number of successful runs out of 50. Best performance
is shown in bold.

Benchmarks n IGI-SBS IGI-LGP PushGP GE

Number I/O 25 50 50 50 49
Small or Large 100 32 23 13 17
Compare String Lengths 100 50 50 14 9
Last Index of Zero 150 8 12 18 21
Mirror Image 100 50 50 43 6
Sum of Squares 50 8 7 4 2
Grade 200 22 14 3 6
Median 100 50 50 33 40
Smallest 100 50 50 46 49
Syllables 100 49 50 8 0

GE [69,70,66] — Grammatical evolution (GE) is a GP based system, where a context-free Backus-Naur form (BNF) gram-
mar is used in a genotype-to-phenotype mapping process. With a BNF definition and a fitness function as inputs, GE can
evolve complete programs in an arbitrary language. Unlike standard GP, GE uses linear genomes or derivation trees to en-
code genetic information and maps them to programs according to the input BNF grammar definition, which can help to
simplify the application of search operators to different programming languages.

5.1.3. Parameter settings
For our IGI systems, we employ the same parameter settings used in Section 4. As for PushGP and GE, we follow the

parameter settings used in the previous studies [68] and [70], respectively, where those settings target the same benchmarks
considered here. Both PushGP and GE use lexicase selection [71]. Each system will be run 50 times independently on each
benchmark. The timeout for a system in each run is set to one hour, and the system will be terminated at once when a
solution program is found.

5.2. Results

In Table 9, we report the success rates for each system on these general program synthesis benchmarks. As can be seen,
IGI-SBS and IGI-LGP always succeed in 5 and 6 out of the 10 problems, respectively. They also perform considerably better
than PushGP and GE on most of these problems. It is worth noting that the IGI systems can address several synthesis
problems well where PushGP and GE struggle. For example, on problem “Syllables”, both IGI systems can achieve very high
success rates, whereas PushGP rarely succeeds and GE even fails to return any solution program in all runs. In Algorithm 2,
we further show the pseudocode of a solution program obtained by IGI-SBS on problem “Syllables”. Although the program
seems not to be complex to human programmers, it is particularly challenging for a general program synthesis system to
generate such a program since the search space of programs is extremely large. Taking a closer look at Algorithm 2, we
can see that IGI-SBS indeed obtains a clever solution to “Syllables”. Essentially, this program first replaces all vowels in the
string with char ‘e’ and then just returns the number of occurrences of ‘e’ in the string. Another interesting observation is
on the “Sum of Squares” problem. This problem intentionally requires a program that loops over integers from 1 to n and
then sum their squares. However, such a program seems very fragile and any slight change will destroy its functionality
completely. So there is indeed insufficient guidance for a GP system to move toward this solution. Instead of searching for
this fragile program, the IGI systems essentially try to evolve an analytical solution to this problem: n(n + 1)(2n + 1)/6.

Algorithm 2 A solution program synthesized by IGI-SBS on “Syllables”.
Input: s, a string containing symbols, spaces, digits, and lowercase letters.
Output: n, the number of occurrences of vowels (a, e, i, o, u, y) in s.

 ReplaceChar(s, c1, c2): replace all c1 in s with c2

 OccurrencesOfChar(s, c): the number of times the char c in s
1: s ← ReplaceChar(s, ‘a’, ‘o’)
2: s ← ReplaceChar(s, ‘i’, ‘o’)
3: s ← ReplaceChar(s, ‘y’, ‘e’)
4: s ← ReplaceChar(s, ‘u’, ‘o’)
5: s ← ReplaceChar(s, ‘o’, ‘e’)
6: n ← OccurrencesOfChar(s, ‘e’)

Table 10 shows the percentage of solution programs that can generalize to hold-out input-output examples on each
benchmark. It can be seen that, compared to PushGP and GE, the IGI systems show better or at least not worse general-
ization ability on all the problems except “Small or Large”, “Compare String Lengths” and “Grade”. It is also noted that IGI
systems can achieve high generalization rates (≥ 87.5) except on these three problems. The poor generalization ability on
the three problems may be largely due to the inadequacy of the input-output examples provided.
16

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table 10
Percentage (%) of solution programs that can generalize, where n shows the number of hold-out
input-output examples for each benchmark.

Benchmarks n IGI-SBS IGI-LGP PushGP GE

Number I/O 1000 96 94 94 91.84
Small or Large 1000 6.25 26.09 7.69 58.82
Compare String Lengths 1000 24 22 28.57 11.11
Last Index of Zero 1000 87.5 91.67 55.56 47.62
Mirror Image 1000 92 92 86.05 16.67
Sum of Squares 49 100 100 75 50
Grade 2000 54.55 50 66.67 50
Median 1000 92 96 63.64 75
Smallest 1000 96 98 86.96 89.8
Syllables 1000 97.96 98 87.5 –

In summary, our IGI systems can outperform state-of-the-art GP systems on general program synthesis tasks. They also
show promising performance and creativity in addressing some hard synthesis tasks. In the future, we expect that IGI can
be extended to other program structures with better evolvability so that its power can be even better harvested.

6. Related work

Program synthesis is an active research topic including a large and diverse body of work, such as enumerative program
synthesis [20,21,23,61], constraint-based program synthesis [24,3,25] and neural program synthesis [11,72–74]. In what
follows, we review some prior work on stochastic program synthesis that is most closely related to our proposed IGI.

Metropolis-Hastings algorithm. This line of research started from STOKE [59], which tackles superoptimization prob-
lems using a stochastic search strategy known as Metropolis-Hastings (MH). Due to the surprisingly good performance of
STOKE on superoptimization, it had stirred great interest with its publication and was regarded as a timely and significant
contribution [31] to program synthesis at that time. Alur et al. [32] adapted STOKE and introduced a MH approach over pro-
grams represented by trees. This MH approach participated in SyGuS competitions 2014–2016 [58], but it did not achieve
very competitive performance compared to other categories of techniques. Since then, the enthusiasm of researchers for
stochastic synthesis seemed to drop and there was no stochastic solver participating in SyGuS competitions in the follow-
ing years. Recently, several studies have been conducted to enhance the performance of STOKE. For example, Bunel et al.
[75] proposed to learn the proposal distribution in STOKE parameterized by a neural network, which is expected to better
exploit the power of MH; Koenig et al. [76] proposed an effective adaptive restart algorithm for addressing a limitation
in STOKE where the search often progresses via a series of plateaus. However, these enhancements have mostly targeted
superoptimization, and it is still unclear how to make them amenable to stochastic search over trees.

Genetic programming. Genetic programming (GP) [29,30,60] has a much longer history than Metropolis-Hastings algo-
rithm for the purpose of program synthesis. Indeed, achieving automatic programming is arguably the most aspirational
goal in the field of GP [34]. In canonical GP, the variation operations are implemented via crossover and mutation. Bor-
rowing ideas from estimation of distribution algorithms (EDAs) [77], an interesting alternative is to replace such variation
operations with the process of sampling from a probability distribution [78–80]. One typical example in this family of GP
is probabilistic incremental program evolution (PIPE) [78], where the population is replaced by a hierarchy of probability
tables with the tree structure. Although EDA-based GP approaches are appealing, they usually fail to offer significant per-
formance gains over standard tree-based GP [60], which remains to be investigated. It is known that the most widespread
type of GP expresses programs as syntax trees, but there are other GP based program synthesizers which use different pro-
gram representations. PushGP [65] and grammar-guided GP (GGGP) [81] are among the most representative ones. PushGP
evolves programs expressed in the Push programming language, which supports different data types by providing a stack
for each data type as well as for the code that is executed. Recent studies around PushGP focus on designing new mutation
operators [82] and parent selection methods [71,83] in order to further improve its performance. GGGP can either use the
derivation tree [84] or a linear genome [69] as its program representation, which can be mapped to a resulting program via
the context-free grammar. Recently, some work on GGGP has paid attention to grammar design [70], generalizability [85]
and the quality of generated code [86,87].

Stochastic local search. Although stochastic local search (SLS) [37] has been used extensively for combinatorial problems,
there is surprisingly little research on SLS for program synthesis. The most notable work in this direction is O’Reilly’s
PhD thesis [38], where stochastic iterated hill climbing (SIHC) and simulated annealing (SA) were investigated for solving
program discovery problems. Her results indicate that SIHC and SA are generally comparable to GP and even sometimes
outperform GP. In addition to this work, there are some other research efforts on SLS that target a specific synthesis problem.
For example, Nguyen et al. [88] proposed to evolve dispatching rules in job-sop scheduling via iterated local search; Kantor
et al. [89] presented simulated annealing using the interaction-transformation representation for symbolic regression.

But all these methods have not (yet) succeeded in bringing into being a comprehensive methodology for program syn-
thesis. So it remains to be seen which technique has the most power and will be adopted by the wider community.
17

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
7. Conclusion

In this paper, we have proposed IGI, a new framework for stochastic program synthesis. IGI considers a sequence of
program improvements by iteratively searching for modifications to the current reference program. In terms of solution
representation, IGI uses a differential code representation that will undergo epochs of evolution under the control of input-
output examples. IGI can therefore also be seen as a kind of generative or developmental genetic programming [90,91],
which allows the reuse of code and helps to scale up the complexity of evolved programs. Experimental results on two
different application domains have demonstrated the clear advantage of IGI over several representative SPS techniques in
terms of scalability and solution quality. In addition, we have shown the superiority of IGI as a general program synthesizer
over two state-of-the-art general program synthesis systems.

It is promising to incorporate lexicase selection [71] into our IGI framework in the future, to enhance performance.
We are also interested to apply the IGI approach to other GP domains such as symbolic regression [92]. Another future
research direction is to investigate how to extend IGI to popular general-purpose programming languages, aided by large
language models of code [74]. Finally, it would also be interesting to use IGI as the symbolic search engine in neurosymbolic
programming [93].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Code is made available on github.

Acknowledgements

Authors gratefully acknowledge support from the Koza Endowment fund to Michigan State University (grant No.
RT100614). Runs were done on MSU’s iCER HPCC system.

Appendix A. DSL for list manipulation (DSL-LM)

This DSL is introduced in the DeepCoder paper [7], which is inspired by query languages such as SQL. It contains a
number of high-level functions that can be used to manipulate integer arrays or integers. In Tables A.11 to A.13 we list
all of the functions of DSL-LM and give their symbols, argument types, return types and detailed descriptions. For each
benchmark task in this domain, all these functions are available. Note that there are no constants in DSL-LM, and terminals
are all from the program’s external inputs.

Table A.11
Description of functions in the DSL-LM.

Symbol Arguments Return Type Description

HEAD x: Integer array Integer Return the first element of a given array x (or NULL if x is empty).

LAST x: Integer array Integer Return the last element of a given array x (or NULL if x is empty).

TAKE n: Integer;
x: Integer array

Integer array Given an integer n and an array x, return the array truncated after the n-th element. (If the
length of x is not larger than n, return x without modification.)

DROP n: Integer;
x: Integer array

Integer array Given an integer n and an array x, return the array with the first n elements dropped. (If the
length of x is not larger than n, return an empty array.)

ACCESS n: Integer;
x: Integer array

Integer Given an integer n and an array x, return the (n + 1)-th element of x. (If the length of x is
not larger than n, return NULL.)

MINIMUM x: Integer array Integer Return the minimum of a given array (or NULL if x is empty).

MAXIMUM x: Integer array Integer Return the maximum of a given array (or NULL if x is empty).

REVERSE x: Integer array Integer array Return the elements of a given array x in reversed order.

SORT x: Integer array Integer array Return the elements of a given array x in non-decreasing order.

SUM x: Integer array Integer Return the sum of the elements in a given array x.

MAPA1 x: Integer array Integer array Each element in a given array x plus 1, and the modified array is returned.
18

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table A.11 (continued)

Symbol Arguments Return Type Description

MAPM1 x: Integer array Integer array Each element in a given array x minus 1, and the modified array is returned.

MAPT2 x: Integer array Integer array Each element in a given array x is multiplied by 2, and the modified array is returned.

MAPT3 x: Integer array Integer array Each element in a given array x is multiplied by 3, and the modified array is returned.

MAPT4 x: Integer array Integer array Each element in a given array x is multiplied by 4, and the modified array is returned.

MAPD2 x: Integer array Integer array Each element in a given array x divided by 2 (fractions are rounded down), and the
modified array is returned.

MAPD3 x: Integer array Integer array Each element in a given array x divided by 3 (fractions are rounded down), and the
modified array is returned.

MAPD4 x: Integer array Integer array Each element in a given array x divided by 4 (fractions are rounded down), and the
modified array is returned.

Table A.12
Description of functions in the DSL-LM (continued).

Symbol Arguments Return Type Description

MAPV1 x: Integer array Integer array Each element in a given array x is multiplied by −1, and the modified array is returned.

MAPP2 x: Integer array Integer array Each element in a given array x is multiplied by itself, and the modified array is returned.

FILG0 x: Integer array Integer array Return the elements of a given array x that are larger than 0 in their original order.

FILL0 x: Integer array Integer array Return the elements of a given array x that are less than 0 in their original order.

FILEV x: Integer array Integer array Return the elements of a given array x that are even in their original order.

FILOD x: Integer array Integer array Return the elements of a given array x that are odd in their original order.

COUG0 x: Integer array Integer Return the number of elements in a given array x that is larger than 0.

COUL0 x: Integer array Integer Return the number of elements in a given array x that is less than 0.

COUEV x: Integer array Integer Return the number of elements in a given array x that is even.

COUOD x: Integer array Integer Return the number of elements in a given array x that is odd.

ZIPSUM x: Integer array
y: Integer array

Integer array Return an array z with length n where z[i] = x[i] + y[i], i = 0, 1, . . .n − 1 and n is the
minimum of the lengths of x and y.

ZIPDIF x: Integer array
y: Integer array

Integer array Return an array z with length n where z[i] = x[i] − y[i], i = 0, 1, . . .n − 1 and n is the
minimum of the lengths of x and y.

ZIPMUL x: Integer array
y: Integer array

Integer array Return an array z with length n where z[i] = x[i] ∗ y[i], i = 0, 1, . . .n − 1 and n is the
minimum of the lengths of x and y.

ZIPMAX x: Integer array
y: Integer array

Integer array Return an array z with length n where z[i] = max{x[i], y[i]}, i = 0, 1, . . .n − 1 and n is the
minimum of the lengths of x and y.

ZIPMIN x: Integer array
y: Integer array

Integer array Return an array z with length n where z[i] = min{x[i], y[i]}, i = 0, 1, . . .n − 1 and n is the
minimum of the lengths of x and y.

Table A.13
Description of functions in the DSL-LM (continued).

Symbol Arguments Return Type Description

SCANSUM x: Integer array Integer array Returns an array y of the same length as x and with its content defined by the recurrence:
y[0] = x[0], y[i] = y[i − 1] + x[i], for i ≥ 1.

SCANDIF x: Integer array Integer array Returns an array y of the same length as x and with its content defined by the recurrence:
y[0] = x[0], y[i] = y[i − 1] − x[i], for i ≥ 1.

SCANMUL x: Integer array Integer array Returns an array y of the same length as x and with its content defined by the recurrence:
y[0] = x[0], y[i] = y[i − 1] ∗ x[i], for i ≥ 1.

SCANMAX x: Integer array Integer array Returns an array y of the same length as x and with its content defined by the recurrence:
y[0] = x[0], y[i] = max{y[i − 1], x[i]}, for i ≥ 1.

SCANMIN x: Integer array Integer array Returns an array y of the same length as x and with its content defined by the recurrence:
y[0] = x[0], y[i] = min{y[i − 1], x[i]}, for i ≥ 1.

Appendix B. DSL for string transformation (DSL-ST)

This DSL is designed for the PBE-Strings track in the SyGuS competition [58]. Table B.14 describes all of the functions
of DSL-ST in detail. Terminals include constants and the program’s external inputs. For each task of the SyGuS benchmarks
the definition file specifies – besides the input-output examples – what functions in Table B.14 are used and provides some
string, integer and Boolean constants.
19

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table B.14
Description of functions in the DSL-ST.

Symbol Arguments Return Type Description

CAT s: String
t: String

String Concatenate the strings s and t, and return the combined string.

REP s: String
t: String
r: String

String Return a copy of the string s where the first occurrence of a substring t is replaced with another
substring r.

AT s: String
i: Integer

String Return the string containing a single character at index i in s, i.e., s[i]. (If i < 0 or i is no smaller
than the length of s, return an empty string.)

ITS x: Integer String If integer x is not smaller than 0, convert x into the string and return the string. Otherwise, return
an empty string.

SITE b: Boolean
s: String
t: String

String If b is true, return s, otherwise return t.

SUBSTR s: String
i: Integer
j: Integer

String Return the substring of a given string s with the start index i and the end index min{n, i + j} − 1,
where n is the length of s. (If i < 0 or j < 0 or i ≥ n, return an empty string.)

ADD x: Integer
y: Integer

Integer Return the sum of integers x and y.

SUB x: Integer
y: Integer

Integer Return the difference between integers x and y.

LEN s: String Integer Return the length of a given string s.

STI s: String Integer If all characters in the string s are digits, convert s into the integer and return the integer.
Otherwise return −1.

IITE b: Boolean
x: Integer
y: Integer

Integer If b is true, return x, otherwise return y.

IND s: String
t: String
i: Integer

Integer Search the string t in the substring of s that starts at index i and ends at index n − 1, where n is
the length of s, and return the lowest index in s where t is found. (If i < 0 or i ≥ n or t is not
found in s, return −1.)

EQ x: Integer
y: Integer

Boolean If x equals to y, return true, otherwise return false.

PRF s: String
t: String

Boolean If s is the prefix of t, return true, otherwise return false.

SUF s: String
t: String

Boolean If s is the suffix of t, return true, otherwise return false.

CONT s: String
t: String

Boolean If t is found in s, return true, otherwise return false.

Appendix C. Parameter selection

The key parameters of each algorithm are tuned by performing grid search on two hard synthesis tasks from the list
manipulation domain and the string transformation domain respectively. For each parameter combination of an algorithm,
we perform 10 independent runs of this algorithm using a timeout of 20 minutes each run on the two tasks respectively.
Then for each of the two tasks, we can rank all the parameter combinations of an algorithm according to the average
maximum fitness achieved over 10 runs. We select the parameter combination with the lowest average rank over the two
tasks. For IGI-SBS, the space of parameters considered is beam width ∈ {25, 50, 100}, the number of successors for each
patch ∈ {5, 10, 20}, the maximum length of patches considered ∈ {2, 3, 4}, and tournament size ∈ {2, 5, 8} (81 combina-
tions). For IGI-LGP, the space of parameters considered is population size ∈ {50 ∗ i|i = 1, . . . , 8}, the maximum number
of generations in each epoch ∈ {5, 10, 20} and tournament size ∈ {2, 5, 8} (72 combinations). For MH, the space of pa-
rameters considered is switch probability ∈ {0.002 ∗ i|i = 1, 2, . . . , 10} and smoothing constant ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (50
combinations). For GP, the space of parameters considered is population size ∈ {5000, 10000, 20000}, crossover probability
∈ {0.8, 0.9, 1.0}, mutation probability (per node) ∈ {0.05, 0.08, 0.1} and tournament size ∈ {2, 5, 8} (81 combinations). For
SIHC, the space of parameters considered is the maximum number of mutations ∈ {500 ∗ i|i = 1, 2, . . . , 40} (40 combina-
tions). As for SA, the space of parameters considered is final temperature ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01} and stepsize
∈ {500 ∗ i|i = 1, 2, . . . 10} (50 combinations).

The final tuned parameters for all the considered algorithms are shown in Tables C.15, C.16, C.17, C.18, C.19 and C.20,
respectively. These parameters are used throughout our experiments.
20

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Table C.15
Parameter setting of IGI-SBS.

Parameter Value

Beam width (B) 50
Number of successors of each patch (C) 5
Maximum length of patches considered (Lmax) 3
Tournament size 2
Number of initial programs (K) B × C × Lmax

Number of perturbations (M) 200
Minimum perturbation strength (Smin) 4
Minimum depth of initial programs (dmin) 2
Maximum depth of initial programs (dmax) 4

Table C.16
Parameter setting of IGI-LGP.

Parameter Value

Population size (N) 100
Maximum generations (G) 5
Tournament size 2
Crossover probability 1.0
Mutation probability 1.0
Number of initial programs (K) N × G
Number of perturbations (M) 200
Minimum perturbation strength (Smin) 4
Minimum depth of initial programs (dmin) 2
Maximum depth of initial programs (dmax) 4

Table C.17
Parameter setting of MH.

Parameter Value

Switch probability (pm) 0.006
Smoothing constant (β) 0.7
Maximum allowed depth of programs 30

Table C.18
Parameter setting of GP.

Parameter Value

Population size 20000
Crossover probability 0.9
Mutation probability (per node) 0.1
Tournament size 2
Minimum depth of initial programs (dmin) 2
Maximum depth of initial programs (dmax) 4
Maximum allowed depth of programs 30

Table C.19
Parameter setting of SIHC.

Parameter Value

Maximum number of mutations (Tmax) 500
Minimum depth of initial programs (dmin) 2
Maximum depth of initial programs (dmax) 4
Maximum allowed depth of programs 30

Table C.20
Parameter setting of SA.

Parameter Value

Starting temperature 1.5
Final temperature 0.001
Stepsize 500
Minimum depth of initial programs (dmin) 2
Maximum depth of initial programs (dmax) 4
Maximum allowed depth of programs 30
21

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
Appendix D. Descriptions of general program synthesis benchmarks

The general program synthesis benchmark problems used in our experiments are described as follows:

1. Number IO: Given an integer and a float, return their sum.
2. Small or Large: Given an integer n, return a string “small” if n < 1000 and a string “large” if n ≥ 2000 (and nothing if

1000 ≤ n < 2000).
3. Compare String Lengths: Given three strings s1, s2, and s3, return true if length(s1) < length(s2) < length(s3), and false

otherwise.
4. Last Index of Zero: Given a vector of integers, at least one of which is 0, return the index of the last occurrence of 0 in

the vector.
5. Mirror Image: Given two vectors of integers, return true if one vector is the reverse of the other, and false otherwise.
6. Sum of Squares: Given an integer n, return the sum of squaring each integer in the range [1, n].
7. Grade: Given 5 integers, the first four represent the lower numeric thresholds for achieving an A, B, C, and D, and will

be distinct and in descending order. The fifth represents the student’s numeric grade. The program must return the
grade X for a student, where X is A, B, C, D, or F depending on the thresholds and the numeric grade.

8. Median: Given 3 integers, return their median.
9. Smallest: Given 4 integers, return the smallest of them.

10. Syllables: Given a string containing symbols, spaces, digits, and lowercase letters, return the number of occurrences of
vowels (a, e, i, o, u, y) in this string.

References

[1] S. Gulwani, O. Polozov, R. Singh, et al., Program synthesis, Found. Trends® Program. Lang. 4 (2017) 1–119.
[2] Z. Manna, R. Waldinger, A deductive approach to program synthesis, ACM Trans. Program. Lang. Syst. 2 (1980) 90–121.
[3] S. Srivastava, S. Gulwani, J.S. Foster, From program verification to program synthesis, in: Proceedings of the 37th Annual Symposium on Principles of

Programming Languages, 2010, pp. 313–326.
[4] M.A. Bauer, Programming by examples, Artif. Intell. 12 (1979) 1–21.
[5] S. Gulwani, Automating string processing in spreadsheets using input-output examples, ACM SIGPLAN Not. 46 (2011) 317–330.
[6] S. Gulwani, Programming by examples: applications, algorithms, and ambiguity resolution, in: International Joint Conference on Automated Reasoning,

Springer, 2016, pp. 9–14.
[7] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, D. Tarlow, DeepCoder: learning to write programs, in: The 5th International Conference on Learning

Representations, 2017.
[8] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. Roy, Program synthesis using natural language, in: Proceedings of the 38th

International Conference on Software Engineering, ICSE, 2016, pp. 345–356.
[9] N. Yaghmazadeh, Y. Wang, I. Dillig, T. Dillig, Sqlizer: query synthesis from natural language, Proc. ACM Program. Lang. 1 (2017) 1–26.

[10] E.C. Shin, M. Allamanis, M. Brockschmidt, A. Polozov, Program synthesis and semantic parsing with learned code idioms, Adv. Neural Inf. Process. Syst.
32 (2019) 10825–10835.

[11] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, P. Kohli, RobustFill: neural program learning under noisy I/O, in: International Conference
on Machine Learning, PMLR, 2017, pp. 990–998.

[12] X. Chen, P. Maniatis, R. Singh, C. Sutton, H. Dai, M. Lin, D. Zhou, Spreadsheetcoder: formula prediction from semi-structured context, in: International
Conference on Machine Learning, PMLR, 2021, pp. 1661–1672.

[13] C. Le Goues, M. Dewey-Vogt, S. Forrest, W. Weimer, A systematic study of automated program repair: fixing 55 out of 105 bugs for $8 each, in: The
34th International Conference on Software Engineering, ICSE, IEEE, 2012, pp. 3–13.

[14] Y. Yuan, W. Banzhaf Arja, Automated repair of Java programs via multi-objective genetic programming, IEEE Trans. Softw. Eng. 46 (2020) 1040–1067.
[15] S. Gulwani, V.A. Korthikanti, A. Tiwari, Synthesizing geometry constructions, ACM SIGPLAN Not. 46 (2011) 50–61.
[16] K. Ellis, D. Ritchie, A. Solar-Lezama, J.B. Tenenbaum, Learning to infer graphics programs from hand-drawn images, in: Proceedings of the 32nd Inter-

national Conference on Neural Information Processing Systems, 2018, pp. 6062–6071.
[17] K. Ellis, A. Solar-Lezama, J. Tenenbaum, Unsupervised learning by program synthesis, Adv. Neural Inf. Process. Syst. 28 (2015) 973–981.
[18] D.K. Trivedi, J. Zhang, S.-H. Sun, J.J. Lim, Learning to synthesize programs as interpretable and generalizable policies, Adv. Neural Inf. Process. Syst. 34

(2021).
[19] R. Alur, R. Singh, D. Fisman, A. Solar-Lezama, Search-based program synthesis, Commun. ACM 61 (2018) 84–93.
[20] R. Alur, A. Radhakrishna, A. Udupa, Scaling enumerative program synthesis via divide and conquer, in: International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, Springer, 2017, pp. 319–336.
[21] W. Lee, K. Heo, R. Alur, M. Naik, Accelerating search-based program synthesis using learned probabilistic models, ACM SIGPLAN Not. 53 (2018) 436–449.
[22] A. Odena, K. Shi, D. Bieber, R. Singh, C. Sutton, H. Dai Bustle, Bottom-up program synthesis through learning-guided exploration, in: International

Conference on Learning Representations, 2021.
[23] K. Huang, X. Qiu, P. Shen, Y. Wang, Reconciling enumerative and deductive program synthesis, in: Proceedings of the 41st Conference on Programming

Language Design and Implementation, 2020, pp. 1159–1174.
[24] A. Solar-Lezama, Program Synthesis by Sketching, University of California, Berkeley, 2008.
[25] S. Jha, S. Gulwani, S.A. Seshia, A. Tiwari, Oracle-guided component-based program synthesis, in: 2010 ACM/IEEE 32nd International Conference on

Software Engineering, vol. 1, IEEE, 2010, pp. 215–224.
[26] Y. Feng, R. Martins, O. Bastani, I. Dillig, Program synthesis using conflict-driven learning, ACM SIGPLAN Not. 53 (2018) 420–435.
[27] R. Alur, D. Fisman, S. Padhi, R. Singh, A. Udupa, Sygus-comp 2018: results and analysis, arXiv:1904 .07146, 2019.
[28] S. Chib, E. Greenberg, Understanding the Metropolis-Hastings algorithm, Am. Stat. 49 (1995) 327–335.
[29] J.R. Koza, J.R. Koza, Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1, MIT Press, 1992.
[30] W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming: an Introduction, Morgan Kaufmann Publishers Inc., 1998.
[31] S. Gulwani, Technical perspective: program synthesis using stochastic techniques, Commun. ACM 59 (2016) 113.
[32] R. Alur, R. Bodik, G. Juniwal, M.M. Martin, M. Raghothaman, S.A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, A. Udupa, Syntax-guided synthesis, in:

Formal Methods in Computer–Aided Design, 2013, pp. 1–8.
22

http://refhub.elsevier.com/S0004-3702(23)00108-X/bibE564115DC5A47D3788B42C4A9CEDDA92s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib80C684C1919989208F81496E8708167Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2DFC80893F0F35DCAE0573BD46681A0Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2DFC80893F0F35DCAE0573BD46681A0Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib84B2789447C1029CFF206C6E60319661s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib6B298FCBEF05C86AF8936AC9D9CA9E9Ds1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibA1884BED6E9E4C501B3BE5B7A25921DDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibA1884BED6E9E4C501B3BE5B7A25921DDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibE92D5D95E087D3174A022570AC7FC884s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibE92D5D95E087D3174A022570AC7FC884s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib32A7DA166EA3919D6A1AEB7B862FE408s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib32A7DA166EA3919D6A1AEB7B862FE408s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib23AD6A42254621599A85F04CB72CF1CBs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0205EBFAB143E98C43476A37993E85F5s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0205EBFAB143E98C43476A37993E85F5s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib87D68C3F3F2DECE813F42527EA99184As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib87D68C3F3F2DECE813F42527EA99184As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAD385813F8C980E9F7B4BCD23A8069C0s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAD385813F8C980E9F7B4BCD23A8069C0s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib68C5CF3D7767A64BA4091C072E652C4As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib68C5CF3D7767A64BA4091C072E652C4As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD428DB904EBF3040F319AE5135F16A41s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib436544CEFF5130B94FC6F48337049E34s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib3563D0EB51B8FF28E804E037D8ACC0FCs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib3563D0EB51B8FF28E804E037D8ACC0FCs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib608BF2E1BA37B688EF588CA5EA09D339s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0747BE5ED13653421A2F76DEA3C9100Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0747BE5ED13653421A2F76DEA3C9100Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibE61F9BB8EE186E51B08186382F78BCDFs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib75C318FF9185DB7B8779200494C64951s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib75C318FF9185DB7B8779200494C64951s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib4690D493C36765DB7C15CB3BBCDE7925s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2DE5EC48A1AA2C990D651EAC9E32FD37s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2DE5EC48A1AA2C990D651EAC9E32FD37s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAC5EEB49A0D63B4FF420FF8F2FDF993Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAC5EEB49A0D63B4FF420FF8F2FDF993Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib48FB1A39228C1D3CF836D461D55690C9s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib9136689B83D51C378A9B421B1C613022s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib9136689B83D51C378A9B421B1C613022s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib9AD278F639E1EA56EF7B8626006FF33Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibFC79583DDFAEC7F8B1070829BC3B1F4Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibE94E9B40E3BD3F8B41DF1C620DFE3E42s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB12236C454A68A2993CE63C37BE6E63Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibCB5A9D9006231F6D44C5752728A2640Bs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib55638D8923A1FB84F5B492AF0F0597FCs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib22060501EDF383A9EE2D017C50A38111s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib22060501EDF383A9EE2D017C50A38111s1

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
[33] Lecture 5: Inductive Synthesis with Stochastic Search, https://people .csail .mit .edu /asolar /SynthesisCourse /Lecture5 .htm, 2018. (Accessed 1 January
2022).

[34] M. O’Neill, L. Spector, Automatic programming: the open issue?, Genet. Program. Evol. Mach. (2019) 1–12.
[35] S. Gustafson, A. Ekart, E. Burke, G. Kendall, Problem difficulty and code growth in genetic programming, Genet. Program. Evol. Mach. 5 (2004) 271–290.
[36] S. Luke, L. Panait, A comparison of bloat control methods for genetic programming, Evol. Comput. 14 (2006) 309–344.
[37] H.H. Hoos, T. Stützle, Stochastic Local Search: Foundations and Applications, Elsevier, 2004.
[38] U.-M. O’Reilly, An analysis of genetic programming, Ph.D. thesis, Carleton University, 1995.
[39] E. Schulte, Z.P. Fry, E. Fast, W. Weimer, S. Forrest, Software mutational robustness, Genet. Program. Evol. Mach. 15 (2014) 281–312.
[40] W.B. Langdon, J. Petke, Software is not fragile, in: First Complex Systems Digital Campus World E-Conference 2015, Springer, 2017, pp. 203–211.
[41] V.R. Basil, A.J. Turner, Iterative enhancement: a practical technique for software development, IEEE Trans. Softw. Eng. (1975) 390–396.
[42] W. Banzhaf, Some remarks on code evolution with genetic programming, in: Inspired by Nature, Springer, 2018, pp. 145–156.
[43] J. Petke, S.O. Haraldsson, M. Harman, W.B. Langdon, D.R. White, J.R. Woodward, Genetic improvement of software: a comprehensive survey, IEEE Trans.

Evol. Comput. 22 (2018) 415–432.
[44] C. Le Goues, T. Nguyen, S. Forrest, W. Weimer, GenProg: a generic method for automatic software repair, IEEE Trans. Softw. Eng. 38 (2011) 54–72.
[45] Y. Yuan, W. Banzhaf, Toward better evolutionary program repair: an integrated approach, ACM Trans. Softw. Eng. Methodol. 29 (2020) 1–53.
[46] W.B. Langdon, M. Harman, Optimizing existing software with genetic programming, IEEE Trans. Evol. Comput. 19 (2015) 118–135.
[47] B.R. Bruce, J. Petke, M. Harman, E.T. Barr, Approximate oracles and synergy in software energy search spaces, IEEE Trans. Softw. Eng. 45 (2019)

1150–1169.
[48] J.-Y. Liou, X. Wang, S. Forrest, C.-J. Wu, GEVO: GPU code optimization using evolutionary computation, ACM Trans. Archit. Code Optim. 17 (2020) 1–28.
[49] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols, A. Scott, SapFix: automated end-to-end repair at scale, in: 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP, IEEE, 2019, pp. 269–278.
[50] S. Zuo, A. Blot, J. Petke, Evaluation of Genetic Improvement Tools for Improvement of Non-functional Properties of Software, 2022.
[51] W.B. Langdon, Genetic improvement of genetic programming, in: 2020 IEEE Congress on Evolutionary Computation, CEC, IEEE, 2020, pp. 1–8.
[52] A.E. Brownlee, J. Petke, B. Alexander, E.T. Barr, M. Wagner, D.R. White, Gin: genetic improvement research made easy, in: Proceedings of the Genetic

and Evolutionary Computation Conference, 2019, pp. 985–993.
[53] G. An, A. Blot, J. Petke, S. Yoo, Pyggi 2.0: language independent genetic improvement framework, in: Proceedings of the 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2019, pp. 1100–1104.
[54] H.R. Lourenço, O.C. Martin, T. Stützle, Iterated local search: framework and applications, in: Handbook of Metaheuristics, Springer, 2019, pp. 129–168.
[55] M.F. Brameier, W. Banzhaf, Linear Genetic Programming, Springer Science & Business Media, 2007.
[56] P. Liskowski, I. Bladek, K. Krawiec, Neuro-guided genetic programming: prioritizing evolutionary search with neural networks, in: Proceedings of the

Genetic and Evolutionary Computation Conference, 2018, pp. 1143–1150.
[57] Y. Chen, C. Wang, O. Bastani, I. Dillig, Y. Feng, Program synthesis using deduction-guided reinforcement learning, in: International Conference on

Computer Aided Verification, Springer, 2020, pp. 587–610.
[58] Syntax-guided synthesis, https://sygus .org, 2014. (Accessed 1 January 2022).
[59] E. Schkufza, R. Sharma, A. Aiken, Stochastic superoptimization, ACM SIGARCH Comput. Archit. News 41 (2013) 305–316.
[60] R. Poli, W.B. Langdon, N.F. McPhee, J.R. Koza, A Field Guide to Genetic Programming, 2008.
[61] W. Lee, Combining the top-down propagation and bottom-up enumeration for inductive program synthesis, Proc. ACM Program. Lang. 5 (2021) 1–28.
[62] W. Banzhaf, F.D. Francone, P. Nordin, The effect of extensive use of the mutation operator on generalization in genetic programming using sparse data

sets, in: International Conference on Parallel Problem Solving from Nature, Springer, 1996, pp. 300–309.
[63] E. Pantridge, L. Spector, Pyshgp: Pushgp in python, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2017,

pp. 1255–1262.
[64] D.J. Montana, Strongly typed genetic programming, Evol. Comput. 3 (1995) 199–230.
[65] L. Spector, A. Robinson, Genetic programming and autoconstructive evolution with the push programming language, Genet. Program. Evol. Mach. 3

(2002) 7–40.
[66] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, M. O’Neill, PonyGE2: grammatical evolution in python, in: Proceedings of the Genetic

and Evolutionary Computation Conference Companion, 2017, pp. 1194–1201.
[67] S. Kelly, R.J. Smith, M.I. Heywood, Emergent policy discovery for visual reinforcement learning through tangled program graphs: a tutorial, in: Genetic

Programming Theory and Practice XVI, 2019, pp. 37–57.
[68] T. Helmuth, L. Spector, General program synthesis benchmark suite, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation, 2015, pp. 1039–1046.
[69] M. O’Neill, C. Ryan, Grammatical evolution, IEEE Trans. Evol. Comput. 5 (2001) 349–358.
[70] S. Forstenlechner, D. Fagan, M. Nicolau, M. O’Neill, A grammar design pattern for arbitrary program synthesis problems in genetic programming, in:

European Conference on Genetic Programming, Springer, 2017, pp. 262–277.
[71] T. Helmuth, N.F. McPhee, L. Spector, Lexicase selection for program synthesis: a diversity analysis, in: Genetic Programming Theory and Practice XIII,

Springer, 2016, pp. 151–167.
[72] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, P. Kohli, Neuro-symbolic program synthesis, in: International Conference on Learning Representa-

tions, 2017.
[73] J. Hong, D. Dohan, R. Singh, C. Sutton, M. Zaheer, Latent programmer: discrete latent codes for program synthesis, in: International Conference on

Machine Learning, PMLR, 2021, pp. 4308–4318.
[74] M. Chen, J. Tworek, H. Jun, Q. Yuan, H.P.d.O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., Evaluating large language models

trained on code, arXiv preprint, arXiv:2107.03374, 2021.
[75] R. Bunel, A. Desmaison, M.P. Kumar, P.H. Torr, P. Kohli, Learning to superoptimize programs, in: International Conference on Learning Representations,

2016.
[76] J.R. Koenig, O. Padon, A. Aiken, Adaptive restarts for stochastic synthesis, in: Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, 2021, pp. 696–709.
[77] P. Larrañaga, J.A. Lozano, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, vol. 2, Springer Science & Business Media,

2001.
[78] R. Salustowicz, J. Schmidhuber, Probabilistic incremental program evolution, Evol. Comput. 5 (1997) 123–141.
[79] K. Sastry, D.E. Goldberg, Probabilistic model building and competent genetic programming, in: Genetic Programming Theory and Practice, Springer,

2003, pp. 205–220.
[80] K. Yanai, H. Iba, Estimation of distribution programming based on Bayesian network, in: IEEE Congress on Evolutionary Computation, vol. 3, IEEE, 2003,

pp. 1618–1625.
[81] R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’neill, Grammar-based genetic programming: a survey, Genet. Program. Evol. Mach. 11 (2010)

365–396.
23

https://people.csail.mit.edu/asolar/SynthesisCourse/Lecture5.htm
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib789FAA9C3F1310C0EE9B4ADDEC6B1697s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibF125AE56C350D61BF266EFA2AA8EE545s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibFD67E1CA21AE7636A1F79DDCA3E4C13Ds1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib4393F0DE6E5D849DD6121F72B9113232s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib64F85C42367536D196A954511B95F989s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib62796A87765FF4EB59CD50F81E8CD0A9s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib62AD1CC899C8F58DDCDD248EDEB26443s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib41E2761DAA28887D7C28B003436A3E85s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibA1C48C7D7462D07ED5616B8E32EFC71As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibCDE5A112322512C45F9F553405AAF89Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibCDE5A112322512C45F9F553405AAF89Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibCC1457AB5C113F40B853C81E010DFEBDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib47B3EAB75460C7CCB05ADB0D08EBBB59s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib88E3F3C86913B971F3D8F30E724EBF63s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib3E8E6A83012480F4A16BF4A7B9AFCC91s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib3E8E6A83012480F4A16BF4A7B9AFCC91s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib37D7A36043CB6BC7EB293B6416031C12s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibDFA17B4AD8C96CC25E35198F24524283s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibDFA17B4AD8C96CC25E35198F24524283s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib72B1F00BF72E7335FABD8B96E0B68BDDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibC4E5A3B5C09CB69C180B0D3B96FE5D0Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD05625FF9D2265B36D8A5EE37D9BF68Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD05625FF9D2265B36D8A5EE37D9BF68Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD2192D87002742A6D7D4287FEC2CBA7Bs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD2192D87002742A6D7D4287FEC2CBA7Bs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD87E502885FACFD620290D03C16FAF7Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibFE049BAA25118239B2761A6ABA3BA27As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibC0E57CCB8507568F0CA20CAD7D4FFDCDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibC0E57CCB8507568F0CA20CAD7D4FFDCDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0519837EC081505D837F83E279443098s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0519837EC081505D837F83E279443098s1
https://sygus.org
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibC906AE2F0B2A3384423987F0A098236Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB938A3597DD9FE2F913677B1D55A418Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2971E1B42E74C3664F260652DDD7BF88s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB22AC0333B00E2F63602E610A4CA635Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB22AC0333B00E2F63602E610A4CA635Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib4ABB887F9A813BF186C6F7C5AE2F23B6s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib4ABB887F9A813BF186C6F7C5AE2F23B6s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibF0C32C947C1F8C2B3BAC955F3F7B89F9s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib6392A595439CF6144926772FFCC0F95Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib6392A595439CF6144926772FFCC0F95Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2B7942EBDAB3E40BD09CE8A834F9D1EAs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2B7942EBDAB3E40BD09CE8A834F9D1EAs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibDFB579695E8721B4D4EE1BDE1C588768s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibDFB579695E8721B4D4EE1BDE1C588768s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibBA76D53EE94422E6CF193B076B118C5Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibBA76D53EE94422E6CF193B076B118C5Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibCFA34BEE8D6C0E84681A94E7A0E194F8s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib275FFAD14A3E1125FBA23CA1AA9D4746s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib275FFAD14A3E1125FBA23CA1AA9D4746s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB0F1A05AB34B3A73148B1F6980D51F38s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB0F1A05AB34B3A73148B1F6980D51F38s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib7C0ADB21198DD14545DC34130CE0B90Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib7C0ADB21198DD14545DC34130CE0B90Cs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibC35CF893488D477D8721CC2E4742DF97s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibC35CF893488D477D8721CC2E4742DF97s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib19A8298E369B99DA92F4C00117A3413As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib19A8298E369B99DA92F4C00117A3413As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib5C3E1B5E9F5ED78F0808965A512DB63As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib5C3E1B5E9F5ED78F0808965A512DB63As1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAE19D79AB2B048FF9648C9A9040FD636s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAE19D79AB2B048FF9648C9A9040FD636s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibE72445DF2504A805484144C6BC0D5E60s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibE72445DF2504A805484144C6BC0D5E60s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibA66177DFB20E3063CD9D8DB729900552s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib504959636CBDC711B1BC85FBE1FC4A9Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib504959636CBDC711B1BC85FBE1FC4A9Es1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAFAC3C03856FA7AB01A0DDE36CFB17A1s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAFAC3C03856FA7AB01A0DDE36CFB17A1s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0516ED3889319BECAC49EC0C96E33770s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib0516ED3889319BECAC49EC0C96E33770s1

Y. Yuan and W. Banzhaf Artificial Intelligence 322 (2023) 103962
[82] T. Helmuth, N.F. McPhee, L. Spector, Program synthesis using uniform mutation by addition and deletion, in: Proceedings of the Genetic and Evolution-
ary Computation Conference, 2018, pp. 1127–1134.

[83] T. Helmuth, A. Abdelhady, Benchmarking parent selection for program synthesis by genetic programming, in: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, 2020, pp. 237–238.

[84] P.A. Whigham, et al., Grammatically-based genetic programming, in: Proceedings of the Workshop on Genetic Programming: from Theory to Real-World
Applications, vol. 16, Citeseer, 1995, pp. 33–41.

[85] D. Sobania, On the generalizability of programs synthesized by grammar-guided genetic programming, in: European Conference on Genetic Program-
ming (Part of EvoStar), Springer, 2021, pp. 130–145.

[86] D. Sobania, F. Rothlauf, Teaching gp to program like a human software developer: using perplexity pressure to guide program synthesis approaches,
in: Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 1065–1074.

[87] E. Hemberg, J. Kelly, U.-M. O’Reilly, On domain knowledge and novelty to improve program synthesis performance with grammatical evolution, in:
Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 1039–1046.

[88] S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Automatic programming via iterated local search for dynamic job shop scheduling, IEEE Trans. Cybern. 45
(2014) 1–14.

[89] D. Kantor, F.J. Von Zuben, F.O. de Franca, Simulated annealing for symbolic regression, in: Proceedings of the Genetic and Evolutionary Computation
Conference, 2021, pp. 592–599.

[90] J.R. Koza, Human-competitive results produced by genetic programming, Genet. Program. Evol. Mach. 11 (2010) 251–284.
[91] A.E. Eiben, J. Smith, From evolutionary computation to the evolution of things, Nature 521 (2015) 476–482.
[92] P. Orzechowski, W. La Cava, J.H. Moore, Where are we now? A large benchmark study of recent symbolic regression methods, in: Proceedings of the

Genetic and Evolutionary Computation Conference, 2018, pp. 1183–1190.
[93] S. Chaudhuri, K. Ellis, O. Polozov, R. Singh, A. Solar-Lezama, Y. Yue, et al., Neurosymbolic programming, Found. Trends® Program. Lang. 7 (2021)

158–243.
24

http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB96C604001C6903BB431867575B85F0Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibB96C604001C6903BB431867575B85F0Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2F0E9DD49546003A59A20EBF4956C855s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2F0E9DD49546003A59A20EBF4956C855s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibA3B59BC6FD5D7BA6EFFF83E259DB16B1s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibA3B59BC6FD5D7BA6EFFF83E259DB16B1s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib4E8D25BD00BB410DB7B2A5EA6BCE668Ds1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib4E8D25BD00BB410DB7B2A5EA6BCE668Ds1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD86CE99C0F5DC2DA1449311480DA41A6s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibD86CE99C0F5DC2DA1449311480DA41A6s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAF5D0D9F811ADE75E43526A073878CA9s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAF5D0D9F811ADE75E43526A073878CA9s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAFF39CB6C6922BE515C90F985E1A3497s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bibAFF39CB6C6922BE515C90F985E1A3497s1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib3186DA74C919DF45B8CB364C195623EDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib3186DA74C919DF45B8CB364C195623EDs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib038420C25F7C6C81D1544EDBA6CF465Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib8244D277ED5D0DCBEA1CB468379FF79Fs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib348E672008097BEB6BE52A9FAB71F14Bs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib348E672008097BEB6BE52A9FAB71F14Bs1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2514C41030DA608B8D721110FD9F2B4Ds1
http://refhub.elsevier.com/S0004-3702(23)00108-X/bib2514C41030DA608B8D721110FD9F2B4Ds1

	Iterative genetic improvement: Scaling stochastic program synthesis
	1 Introduction
	2 Preliminaries and background
	2.1 Domain-specific language
	2.2 Programming by example
	2.3 Genetic improvement

	3 Iterative genetic improvement
	3.1 Overview
	3.2 Applying genetic improvement
	3.2.1 Patch representation
	3.2.2 Stochastic beam search
	3.2.3 Linear genetic programming

	3.3 Perturbation operator

	4 Experiments on domain-specific program synthesis
	4.1 Experimental setup
	4.1.1 Benchmarks
	4.1.2 Baseline algorithms
	4.1.3 Parameter settings

	4.2 Results for list manipulation
	4.3 Results for string transformation
	4.4 On the issue of generalization

	5 Experiments on general program synthesis
	5.1 Experimental setup
	5.1.1 Benchmarks
	5.1.2 Baseline systems
	5.1.3 Parameter settings

	5.2 Results

	6 Related work
	7 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A DSL for list manipulation (DSL-LM)
	Appendix B DSL for string transformation (DSL-ST)
	Appendix C Parameter selection
	Appendix D Descriptions of general program synthesis benchmarks
	References

