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Abstract—An important challenge for traffic signal control is
adapting to irregular changes in traffic. In recent years, different
heuristics have been developed to address this issue. However,
most of them are tested in artificial scenarios under controlled
circumstances.

In this paper, we present the first implementation of Genetic
Programming in the evolution of traffic signal controllers for a
real-world scenario. The evolved controllers are compared with
a static control and an actuated control. The results indicate
a significant improvement over traditional methods. Moreover,
additional experiments indicate that the evolved controllers have
the ability to adapt to unplanned changes in traffic conditions.

Index Terms—Real-world application, Traffic signal control,
Machine learning, Genetic programming

I. INTRODUCTION

Urban traffic signal control is a complex nonlinear problem

and traffic congestion affects daily life of many citizens. The

rapid increase of metropolitan populations makes control of

traffic signals a challenging task.

The optimization of time schedules is one of the traditional

solutions to this problem. This operation can be performed

through expert observation or through heuristic methods [1],

[2], [3]. However, given that traffic congestion is a dynamic

phenomenon, this approach has the downside of requiring

constant updating of the schedules. Furthermore, it requires

constant monitoring and design of contingency plans to react

to atypical congestion events.

The use of actuated controls and vehicle detectors allows

the generation of more adaptable solutions. Different methods

have been implemented to develop efficient, actuated traffic

signal rules or controllers. Some of them are domain specific.

For example, Green-wave method [4] and back-pressure [5].

Others are based in group dynamics. For example, self-

organized systems [6] and auctions [7].

However, these solutions are heuristics specially designed

by humans to solve the traffic signal control problem. The

present work explores the idea of using machine learning

to automatically evolve adaptive controllers for a real-world

traffic scenario. We are trying to answer the question: Is a

computer able to generate a better solution than a heuristic

designed by humans for a complex traffic network with

multiple intersections?

The remaining of the paper is organized as follows: Section

II lists recently published solutions to the Traffic Signal

Control Problem, Section III presents the characteristics of

the traffic simulator and traffic scenario used, Section IV

briefly defines Genetic Programming and how it can be used

to evolve traffic controllers, Section V introduces the proposed

modification to the standard Genetic Programming, Section VI

presents the experiments performed and the results obtained,

Section VII summarizes the discussion, and Section VIII draws

the conclusions.

II. PREVIOUS WORK

Different approaches have been used to generate actuated

traffic controllers. This section presents some of the recent

publications related to the topic.

In [8], Braum and Kemper modified BALANCE [9]. They

replaced the hill-climbing algorithm used at the tactical level

of BALANCE with a Genetic Algorithm. Several experiments

were performed with the traffic network of Ingolstadt, Ger-

many. The results demonstrate a better performance over the

original BALANCE. The system was implemented in the real-

world and daily average delays were reduced by 21%.

Padmasiri and Ranasinghe [10] used a Genetic Program-

ming and fuzzy logic hybrid approach to define fuzzy rules

for a scenario with a single intersection under different traffic

densities. The set of evolved rules uses traffic parameters as

input and decides to extend or terminate the current green

lapse. Even though the results present an improvement over

previous work, the solutions lack adaptability to changes

under traffic congestion and the study only considers a single

intersection.

Zubillaga et al. [6] proposed a set of self-organizing rules to

coordinate urban traffic. They compared their method with the

green wave method in a 10× 10 grid network under different

traffic densities. The average velocity of the vehicles traversing

the network is higher when the self-organized method is used.
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Fig. 1. Network to be optimized.

In [7], an auction-based method is proposed to coordinate

phase switching operations using local induction loop informa-

tion. The method was tested in a scenario generated with real-

world traffic data from the Mountain View, California area.

Auction-based control performs better than static lights and a

planning-based method.

Yuan et al. [11] proposed a dynamic slot time mechanism

to control the back-pressure algorithm [5]. The mechanism is

tested in a 4×4 artificial network with a specific traffic density.

Partially successful results are reported over the original back-

pressure algorithm.

Yang and Ding [4] proposed a breadth-first-search approach

to the green wave method using gap-outs and extensions. The

method was compared with a self-organized algorithm in a

traffic network of part of Qidong, China. The green wave

method works better than the self-organized method when

traffic saturation is high.

In [12], we presented an epigenetic modification of Genetic

Programming to solve a traffic signal control problem in a

small artificial scenario. The results show an increment in the

performance compared to other methods working with a basic

simulator.

III. SIMULATOR

We use SUMO [13] for all the simulations reported in this

paper. SUMO (Simulation of Urban MObility) is an open-

source traffic micro-simulation suite that has been available

since 2001. We selected SUMO because it includes a traffic

control interface called TraCI. It allows the retrieval of values

of simulated objects and on-line closed loop feedback [14]

using a Python interface.

A. Traffic Scenario

Most of the research projects on heuristic methods in traffic

signal problems work with basic scenarios. Most of these

scenarios are artificial and distant from real-world traffic con-

ditions. Recently, different scenarios of real cities have been

released for SUMO suite to be used by the research community

[15], [16]. These scenarios have the correct representation of

real networks and include real-world traffic data.

TABLE I
SUMMARY OF THE CONFIGURATION PARAMETERS FOR GP

Configuration

Parameters

Selected Values

Population size 40 individuals

Number of generations 200

Fitness function Average vehicle delay

Function set condition, addition, subtraction, conjunction,
disjunction, equal to and bigger than

Terminal set vQueue, hQueue, integer values between −5
and 5

Mutation probability rate 20% per tree

Crossover probability 80%

Initial size limit 5 levels

Maximum size limit 7 levels

Selection operator Tournament selection with group size of 7
individuals

Elitism 1 individual

We decided to test our algorithm in one of them. Due to the

evaluation time required by our method, we chose the Andrea

Costa scenario of Bologna city in Italy [16] presented in the

Figure 1. The model represents 2.45 km2 of a real city with

a total of 179 edges, 112 nodes, and seven traffic lights.

The scenario includes one hour of real traffic for the

morning peak between 8:00 am and 9:00 am. More than 8600

private vehicles and 160 buses are included in the scenario.

As described in [16], the city of Bologna uses the UTOPIA

system for traffic light control. UTOPIA [17] optimizes traffic

light schedules and sorts the traffic light phases to satisfy traffic

demand. For this paper, all the experiments are executed using

the traffic schedule generated by UTOPIA.

A preliminary analysis of the scenario allowed us to identify

the intersections more affected by traffic congestions. We

focused our development on controllers for the four traffic

lights circled in Figure 1 because they are the most congested

intersections.

B. Actuated control

Our approach is compared with an actuated control already

implemented in the SUMO suite. The method is based on Time

Gaps [18]. It works by prolonging traffic phases whenever a

continuous stream of traffic is detected. The actuated control

affects the cycle duration in response to dynamic traffic

conditions.

For the actuated control of the four intersections, we used

the maximum and minimum duration parameters generated by

UTOPIA and included in the Andrea Costa scenario.

IV. GENETIC PROGRAMMING

Genetic Programming (GP) [19] is an Evolutionary Algo-

rithm where computer programs are encoded as a set of genes

and evolve to perform well on a specific task. Usually, GP

generates an executable program as output. The GP parameters

are presented in Table I. The parameters are similar to those

used in [12].

This paper uses strongly typed GP [20] and a tree-based

representation similar to the one used in [12] to simultaneously
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Fig. 2. Detail of intersection 221 with detectors.

evolve the four traffic signal controllers for each of the

intersections circled in Figure 1.

A. Problem configuration

In the optimization of traffic lights, each intersection rep-

resents a different problem. This is because the topology,

traffic densities and traffic time schedules are different for

each intersection. Therefore, instead of evolving a general

controller, we evolve a controller for each of the intersections

to be optimized.

Each of the controllers is a different implementation of the

trafficRule Python function, where vQueue is the sum

of the vehicles stopped in the north-south direction and the

vehicles stopped in the south-north and hQueue is the sum of

the vehicles stopped in the west-east direction and the vehicles

stopped in the east-west direction.

def trafficRule(vQueue,hQueue):

if vQueue > hQueue + 4:

return 1

else:

if hQueue > vQueue + 4:

return -1

return 0

Each controller is executed twice for the corresponding

intersection cycle. Two or more phases are selected to be

affected by the controller. However, the phases can only

be incremented or decremented in the range defined by the

minimum duration and maximum duration of the specific

phase. This requires the manual analysis of each intersection

to be optimized and relates the detectors of the different traffic

directions to the variables vQueue and hQueue.

As an example, Figure 2 presents the intersection 221

with all its detectors. Figure 3 presents the time schedule

generated by UTOPIA for the same intersection. In this case,

the association is simple: vQueue is equal to the sum of

Fig. 3. Time schedule generated by UTOPIA for intersection 221.

detectors t1, t2, t3, b1, b2 and b3. Meanwhile, hQueue is

equal to the sum of detectors l1, l2, l3, l4 and l5. The value

returned by the function is added to the duration of phase 0 and

subtracted from phase 3. However, the association of detectors

and selection of affected phases for intersections 210 and 235

required a deeper analysis.

During the GP evaluation phase, the Python translator

generates the corresponding controllers. After these programs

are generated, the simulator is executed with the parameters

of the Andrea Costa scenario. In order to have access and

control over traffic signals, an additional communication layer

was implemented between the evolutionary process and the

simulation through the TraCI Interface. An architecture dia-

gram of the modifications implemented is displayed in Figure

4.

It is important to emphasize that the framework generated

is open-source and only minor modifications are required in

the experiment runner to test other machine learning methods

with the same scenario1.

V. EPIGENETICS IN EVOLUTIONARY ALGORITHMS

In Biology, Epigenetics can be defined as the study of

cellular and physiological phenotypic trait variations that are

caused by external or environmental factors affecting the way

cells read, express and transfer genetic material.

In recent years, the Evolutionary Algorithm (EA) com-

munity has been focusing in the discoveries in the area of

Epigenetics. Different approaches ([21], [22], [23]) have been

used to represent phenotypic mechanisms. Epigenetics has

normally been used in EA as an additional optimization step

to accelerate the adaptation of the method.

In [12], we presented an epigenetic modification of Genetic

Programming to solve a traffic signal control problem in an

small artificial scenario. The modification is based in DNA

methylation. It changes the chromosome activation when the

1Code available in https://sourceforge.net/projects/acostatrafficscenariotester/
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Fig. 4. Integration of SUMO in the evolution process.

traffic conditions are modified. The results show an increment

in the performance compared to other methods.

A. Epigenetic mechanism

This paper extends the method proposed in [12] to be able to

work with the SUMO simulator in a real world traffic network.

For terms of practicality, we will identify as EpiGP when

Genetic Programming with the epigenetic mechanism is used.

For a more detailed description of the epigenetic mechanism

please refer to [12].

An activation index is associated with every conditional

node in the chromosome. All the activation indices of an indi-

vidual are stored in an epigenetic vector for easy manipulation.

In the first generation, the epigenetic vector is randomly initial-

ized with values between 0% and 100%. During the individual

evaluation step, any conditional node with an activation index

smaller than the activation threshold (50% for this experiment)

is ignored. An online adaptive process, described in detail in

[12], is used to modify the epigenetic vector of the individual.

After the evaluation, The vector is transferred to the offspring

as part of the crossover operation.

The Python class Controller0 is an example of the out-

put generated by the Python translator including the epigenetic

vector. In this case, the second condition is ignored because

the activation index is smaller than the activation threshold. In

other words, trafficRule will return 0 even if hQueue

> vQueue + 4 is true.

class Controller0(controller.Controller):

def trafficRule(vQueue,hQueue):

if (self.epiVect[0] > 0.5 and

vQueue > hQueue + 4) :

return 1

else:

if (self.epiVect[1] > 0.5 and

hQueue > vQueue + 4):

return -1

return 0

def __init__(self):

self.epiVect = [0.95, 0.4]

With this approach, GP can evolve controllers with different

behavior under traffic congestion conditions and in stable
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Fig. 5. Average delay comparison of the three methods for the Andrea Costa
scenario using the real traffic peak configuration.

conditions. The mechanism works as a local hill-climber to

adapt the intersection behavior to the environmental changes.

VI. EXPERIMENTS

Four different methods for traffic signal control were tested

in the Andrea Costa scenario: (1) static control; (2) the

actuated control based on time gaps described in section III-B;

(3) the evolution of adaptive controllers using GP, described in

subsection IV-A; and (4) the evolution of adaptive controllers

using EpiGP, described in subsection V-A. All the methods

use the UTOPIA time schedules included in the Andrea Costa

scenario.

For the time gap actuated method, GP and EpiGP, only the

intersections 210, 219, 221 and 235 indicated in Figure 1 are

being optimized.

The average delay is used as the fitness function. Average

delay is defined as the sum of the stopped time of all the

vehicles in the system divided by the number of processed

vehicles. The average delay is commonly used to measure the

performance of traffic signal control methods [8], [4].

The same route files are used for each simulation run.

Therefore, the output for each execution of the static and

actuated methods are the same. Hence, only one run was

required for the fixed static control and the actuated control.

However, five independent runs were performed for GP and

EpiGP.

Figure 5 presents the comparison of the results obtained by

the four methods. For GP and EpiGP the average and standard

error of the best individual of the five runs are displayed for

each generation.
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As expected with a randomly generated initial population,

during the first 10 generations of GP and EpiGP, the values

are even worse than the value of the static control. However,

EpiGP only requires an average of 25 generations to evolve

controllers that outperform the average delay produced by the

actuated control. After that, the learning curve decelerates,

but it keeps improving the solutions. The learning remains

constant until the end of the evolution. Therefore, an optimal

set of controllers has not been found yet after 200 generations.

The epigenetic modification helps GP to find better solu-

tions. Figure 5 presents a similar behavior for GP and EpiGP

during the first 30 generations. However, the experiments with

the epigenetic mechanism are able to generate solutions that

perform better in the scenario in later stages of the evolution

process.

A. Different Traffic Densities

Any machine learning method has the risk of over-training

solutions. In other words, they can generate solutions only

suitable for the data frame used during the training phase. An

over-trained solution lacks the capacity to perform well even

if the data frame is slightly modified. GP is not an exception

to this phenomenon.

In our experiment, over-trained signal traffic controllers

would not be able to adapt to traffic conditions different to the

hour used as the training set. This would mean that different

controllers would be required throughout the day. However, the

idea of evolving controllers is to eliminate the requirement of

scheduled modifications. To consider the experiment a success,

the solutions generated by EpiGP should perform better than

the static control and the actuated control under different traffic

densities.

An additional experiment with different traffic densities

was realized to guarantee that the solution generated by the

evolutionary methods in the previous experiment were not

over-trained with the traffic conditions used in the Andrea

Costa scenario. Ideally, the controllers would be tested with

real data of different hours for the same network. However,

the Andrea Costa scenario only provides traffic data for a

single hour. To overcome this issue, three new scenarios with

different traffic densities and random routes where generated

for the Andrea Costa network using the randomTrips.py

tool provided with the SUMO suite [18]. Each scenario has a

length of 60 minutes.

Figure 6 presents the comparison of the four different

methods for the three different density scenarios. The average

and standard error of the five independent experiments is

presented for the standard GP method and for EpiGP.

Table II presents the percentage of improvement of the

actuated control, GP and EpiGP over the static control for

the four different experiments realized in the current paper.

Negative values indicate that the static method generated

a better solution than the given method. In three of the

four experiments, EpiGP outperformed the other methods.

However, the level of improvement is less than the obtained

TABLE II
AVERAGE DELAY RELATIVE DIFFERENCES WITH STATIC CONTROL

Methods Training Low
Density

Medium
Density

High
Density

Actuated 9.36 % 20.1 % -15.17 % -41.18 %

GP 18.70 % 1.42 % 3.50 % 9.09 %

EpiGP 23.23 % 6.33 % 6.93 % 12.13 %

for the experiment using real data, as it can be seen in the

second, third and fourth columns of Table II.

The behavior of the actuated method in these scenarios

presents some particularities. It obtained the best performance

in the scenario with low density. However, it behaved poorly

in the scenarios with medium and high densities. The actuated

method works by prolonging traffic phases whenever a contin-

uous stream of traffic is detected. However, especially in the

scenario with high traffic density, several of the intersections

are constantly saturated. Therefore, the actuated method is not

able to optimize the duration of the phases when traffic is

saturated in all the directions.

The evidence presented demonstrates that the signal traffic

controllers generated by both evolutionary methods are not

overtrained for the hour of traffic peak used during the

evolution process. Consequently, the controllers can be used

throughout the day and reduce the average delay of the

vehicles circulating in this specific section of the city.

VII. DISCUSSION

The experiments determined that Genetic Programming is

able to generate traffic signal controllers adaptable to traffic

variation for a real scenario of small size. The method was

compared with a static control and an actuated control. The

generated solutions were tested using scenarios with different

traffic densities. The results display improvement over an

actuated control included in SUMO suite based on time gaps.

Genetic Programming is evolving an independent controller

for each intersection. This approach differs from other heuris-

tics where the goal is a general control mechanism. Hence, the

adaptive local controllers generated by the method are able to

adapt to unexpected traffic density changes.

The adaptive controllers generated do not require com-

munication between lights, and modifications to the traffic

schedules are based on local information. The EpiGP and GP

use information provided only through local induction-loop

sensors to generate reactive signal controllers. This would re-

duce the cost of its implementation in the real-world. However,

the model can be easily extended to consider communication

between lights or between cars and lights.

VIII. CONCLUSIONS AND FUTURE WORK

In [12], we introduced a epigenetic variation of GP to

optimize traffic signal controllers using synthetic data. The

current paper presents a proof of concept of a similar algorithm

using a real-world scenario. The future work should direct

towards the optimization of larger realistic networks and

tweaking the method to be efficient under different conditions.
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Fig. 6. Comparison of scenarios with different densities.

All experiments presented in this paper used the traffic

schedule generated by UTOPIA. Additional experiments are

required to analyze the performance of EpiGP when an opti-

mized traffic schedule is not available.

Larger scenarios should be evaluated to analyze the behavior

of the method under different circumstances. Codeca, et al.

[15] present a full city scenario with 24 hours of real traffic

data. However, testing EpiGP in a scenario of such size

requires modifications to the architecture proposed in the

current paper.

The computational time required for execution of GP con-

strained the number of independent runs made. An alternative

solution is to use parallel computing to reduce simulation clock

time. However, a different traffic simulator needs to be used for

this task because SUMO does not allow parallel computation.

This method can be compared with a broader set of methods

used to optimize traffic signal control. Examples are the self-

organizing method described in [6] and the green wave method

described in [4].
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