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3.1 Introduction 

Image analysis is the process of extracting useful information from image data. 
This extracted information can then be used to study systems captured in the image 
data. Image analysis is broadly applied from medical imaging to computer vision 
[ 11, 14]. In medical imaging, the image data will often come from magnetic reso-
nance imaging (MRI), positron emission tomography (PET), computerized tomogra-
phy (CT), x-rays, etc. [  11]. For example, in [ 12] the authors are able to use MRI and 
PET image data with deep learning methods to improve the success rate of identify-
ing Alzheimer’s disease. Image analysis involves extracting useful information from 
image data, which is generally rich with information, but can also contain significant 
noise. Segmentation is a specific step in image analysis where the features of interest 
are isolated and background information (noise) is removed. 

Active learning is a field in machine learning where data selection is performed to 
maximally inform model development [ 2]. Active learning’s origins drew inspiration 
from query learning, which was a method for designing experiments with the goal 
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of maximizing information gain using statistical measures [ 8]. In many ways active 
learning is similar to query learning, the key difference though is the consideration 
for how the information gained will inform model development of a specific machine 
learning method. This is why active learning methods vary based on which machine 
learning method is being used from neural networks to support vector machines 
[ 1, 6, 9]. Uncertainty sampling is a method for selecting new training data that max-
imizes model uncertainty with the idea that the data points the model is maximally 
uncertain about will provide the most information for model training [ 7]. Uncertainty 
sampling has been shown to be an effective method when used with support vector 
machines, where one intuitive approach is to sample new data points nearest the 
decision boundary [ 6]. 

There are 3 main classes of active learning: pool-based, stream-based, and mem-
bership query synthesis [ 9]. Pool-based methods rely on an existing set of unlabelled 
data, which the active learning method search to pick one or several data points 
that contain maximal information to label and add to the training set. Stream-based 
methods are similar to pool-based in the sense that the unlabelled data exists. The 
key difference is that the data is not searched but rather fed to the AL method one 
data point at a time and the AL method either indicates the data be labelled or not 
based on some predicted information score. Membership query synthesis does not 
use existing data and instead searches a space to find a training point to both be gen-
erated and labelled. In this work, we focus on pool-based methods where we have 
existing unlabelled data and select training samples one at a time by selecting the 
sample with the highest predicted information score. 

While genetic programming models individually generally lack statistical prop-
erties to compute uncertainty, model populations present in GP can be utilized to 
quantify uncertainty across the diverse models within a population. We have previ-
ously applied active learning to genetic programming in symbolic regression tasks 
using active learning in genetic programming (AL-GP) with a stack-based genetic 
programming system (StackGP) [ 4]. In that work we took inspiration from [ 5] and 
explored how populations in GP can be exploited to select new training data that the 
current model population is maximally uncertain about. This is done by selecting a 
model ensemble of diverse individuals from the population and using the ensemble 
to find points that maximize the uncertainty to add to the training set. This process 
proved successful and additional work is being performed to study how additional 
data diversity metrics can be included to improve the method. 

This general strategy of utilizing the model populations in symbolic regression GP 
tasks to select training data to maximally inform evolution seemed generalizable to 
GP and evolutionary computation, so in this work, we demonstrate how AL-GP can 
be implemented and applied to other evolutionary computation methods and various 
image analysis problems to accelerate the development of segmentation and object 
classification models. These models can then be used to aid research in various fields 
reliant on image data. 

The SEE-Insight project is an open-source framework to accelerate the biggest 
bottleneck in Scientific Image Understanding, which is manual image annotation. 
SEE-Segment [ 3] is the first tool developed for SEE-Insight and consists of an evolu-
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tionary machine learning approach that utilizes a genetic algorithm to select a com-
puter vision algorithm and optimize parameters for an image annotation task (image 
segmentation). SEE-Segment will work with a Graphical User Interface (GUI) allow-
ing researchers to upload their image datasets and then incrementally annotate their 
images. The image annotations are used to test scientific hypotheses or as a first 
step to feeding into a data-driven model such as a neural network. Because annotat-
ing images can be slow and tedious, while researchers are interfacing with the GUI 
the SEE-Segment system is simultaneously searching this grammar (aka “algorithm 
space”) to find automated methods that can reproduce their manual workflows. This 
search is happening “in the background” on large-scale systems. Given the com-
plexity and size of the search space, there is no guarantee that it will converge to 
a reasonable solution. However, if a good algorithm is found then suggestions are 
passed to the researcher to help speed up their annotation process. In the best case, a 
fully automated algorithm is identified that can reproduce their manual annotation. 
In the worst case, SEE-Segment will not take any longer than manually annotating 
images without the discovery tools. 

This application is an instance of a Combined Algorithm Search and Hyperpa-
rameter (CASH) problem and uses a genetic algorithm to search for an algorithm 
(and hyperparameters). Although the space is nondifferentiable and highly hetero-
geneous, preliminary results are promising. By using a well-defined image grammar 
and genetic algorithms as the core search tool, results of the machine learning are 
highly human interpretable. This allows the system to “generate code” that can be 
used for teaching as well as copy-and-pasted to a researcher’s own program. 

Decision tree GP (DT-GP) is a GP system that evolves decision trees and was 
developed as part of this work specifically to solve the problem of cell classification 
but is generalizable to any classification task. 

In this work, we explore the efficacy of AL-GP in two different population-based 
ML systems and then demonstrate how AL-GP can be applied in a research setting 
to accelerate progress in scientific studies. 

3.2 Data Sets 

3.2.1 KOMATSUNA 

To benchmark the active learning methods in both systems, the KOMATSUNA [ 13] 
data set was used since it is a fairly simple segmentation problem and has ground 
truth labels available. The KOMATSUNA data set contains 300 images of plants 
where the provided labels are the segmentation patterns that identify the plant from 
background data. The KOMATSUNA data set is ordered and tracks plants over time 
as they grow. Each set of 5 consecutive images is taken within the same day so 
the images are substantially similar within those sets. Example images from the 
KOMATSUNA data set are shown in Fig. 3.1 to demonstrate how the sizes of plants 
vary in the set and also how the camera angle and location can vary.
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(a) Plant 1 (b) Label 1 

(c) Plant 2 (d) Label 2 

Fig. 3.1 Example image a from KOMATSUNA dataset with its corresponding label (b). The label 
is the true segmentation mask. A second example image (c) and it’s label d are shown to demonstrate 
the diversity of images in the dataset 

3.2.2 Cell Classification 

AL-GP was also applied to cell image data to show how active learning could be 
applied to the problem of cell segmentation and classification. For this data set, the 
goal of classification is to determine which of the cells are co-transfected (expressing 
two proteins of interest). The image data [ 10] consists of two streams, one that tracks 
the expression of green fluorescence which indicates the presence of one protein, and 
another that tracks purple fluorescence, which indicates the expression of the other 
protein. An example of this data is shown in Fig. 3.2.
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Fig. 3.2 The image on the left shows cells that are expressing a protein with a purple fluorescent 
piece. The image on the right shows cells that are expressing a protein with a green fluorescent 
piece 

3.3 Active Learning 

Active learning was used to iteratively select training samples to maximally inform 
model populations. Each run begins with a single randomly selected training sample 
and one additional training sample is selected and added by active learning after a 
set number of generations. Once the new sample is added, evolution continues on the 
expanded dataset. Uncertainty was quantified by measuring disagreement between 
the models in an ensemble. To do this, an ensemble of 10 diverse models is selected 
from the population. The ensemble of models is then evaluated on every unselected 
training sample and the uncertainty on each sample is recorded by measuring the 
average difference between the predictions of each model in the ensemble. The 
sample with the highest uncertainty value is then selected and added to the training set. 
This method varies slightly from the original AL-GP approach in that the ensemble 
sizes are constant and the models are not selected by selecting best-fitting models on 
different data partitions. This change was made since we begin with a single training 
sample, which would result in one model selected for the first ensemble. A single 
model lacks any measure for uncertainty. 

3.4 AL-GP Applied to Decision Tree GP 

3.4.1 Decision Tree GP (DT-GP) 

Image segmentation and object classification were performed using an implemen-
tation of decision tree GP (DT-GP), where decision trees are evolved to consider 
which pixels are foreground or background for segmentation and to identify which 
class an object belongs to for object classification tasks. The decision trees can uti-
lize 3 types of operators: boolean operators, (in)equality operators, and numerical
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Fig. 3.3 Shown here is an example tree generated to segment the KOMATSUNA data set. Here 
delta is a placeholder for the data 

operators. Boolean operators can take in boolean values and return boolean values. 
Inequality and equality operators take in numeric values and return boolean values. 
Numeric operators can take in numeric vectors and return numeric scalars. 

The boolean operators available are And, Or, Not, Nand, Nor, and Xor. The inequal-
ity operators available are.≥,>,≤,<,=, and. /=. The numeric operators are average, 
median, max, min, difference, range, standardDeviation, getRed, getGreen, and get-
Blue. The last three operators listed simply grab the red, green, or blue values from 
pixels. The models can also contain randomly generated constants as floating point 
values from 0 to 1 since the RGB pixel values are stored as values from 0 to 1. 

To make the use of these operators meaningful, a hierarchical structure is enforced 
in the trees such that the boolean operators can only operate on inequality opera-
tors, and inequality operators can only operate on numeric operators and constants. 
Numeric operators are then restricted to the lowest levels of the decision trees where 
they can operate on numeric data. Trees can only be initialized in this form and then 
this form is enforced throughout evolution by restricting how mutation and crossover 
can be performed. 

An example of a tree generated to segment the KOMATSUNA plant data is shown 
in Fig. 3.3. Note that although this tree happens to be balanced, it is not enforced, so 
trees generated by DT-GP can potentially be heavily skewed. 

Subtree crossover, subtree mutation, and point mutation were used as the variation 
operators. The parameters used to run DT-GP with AL-GP are shown in Table 3.1.



3 Accelerating Image Analysis Research … 51

Table 3.1 DT-GP & Active learning parameter settings 

Parameter Setting 

Mutation rate 30 

Crossover rate 40 

Spawn rate 10 

Elitism rate 20 

Crossover method Subtree 

Mutation method Point & Subtree 

Tournament size 5 

Population size 20 

Generations 20 

Max tree depth 6 

3.4.2 Active Learning Implementation 

Active learning was used with DT-GP to select training images iteratively to maxi-
mally inform model populations. Uncertainty was quantified by measuring disagree-
ment between the models in an ensemble. To do this, each model in the ensemble was 
used to generate a predicted segmentation pattern on each potential image to be added 
to the training set. For each image, every pairwise pixel difference was computed 
for each model in the ensemble’s predicted segmentation pattern. This difference 
can be summarized as the total number of pixels where the two models disagree on 
its classification. The pairwise differences of all models in the ensemble are then 
averaged. The image that returns the largest uncertainty value is then selected and 
added to the training set. Evolution then resumes using the now expanded training 
set. 

The model ensemble is selected in a way that attempts to capture the diversity of 
the population while also containing primarily high-quality individuals. This is done 
by selecting the top 10 models from the population that have unique fitness values 
on the training set. 

3.4.3 KOMATSUNA Multi-image Results 

DT-GP was tested using the KOMATSUNA dataset to see how active learning impacts 
its ability to perform on a fairly simple dataset. Active learning was compared to 
random data selection by recording the test fitnesses after each iteration to see which 
method improves fitness on the test set quicker and which method arrives at better 
fitness values. In this case, a fitness of 1 is a perfect model and a fitness of 0 is the 
worst possible fitness. Each method was tested a total of 40 times with different
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Fig. 3.4 Active learning, random data selection, and ordered data selection using DT-GP are com-
pared with the distribution of test fitnesses shown after each round of learning. Each experiment 
was repeated 40 times, so each bar represents the distributions from 40 repeated trials. The data 
shows that active learning outperforms random data selection. The active learning method most 
quickly increases fitness. The right figure focuses on just AL and random data selection for easier 
visualization of the same results from the left figure 

randomly selected training and test sets of 250 images available to be selected for 
the training set and 50 images in the test set. 

The results of the 40 runs comparing active learning and random sampling are 
shown in Fig.  3.4. We can see that active learning more quickly improves its test 
fitness towards 1. We can see though that this is a fairly simple problem for DT-GP 
since even after just one round of learning the models from both active learning runs 
and random sampling runs are around 0.98. 

3.4.4 KOMATSUNA Single-Image Results 

DT-GP was also tested using individual images from the KOMATSUNA dataset 
where instead of using active learning to select full images to add to the training set 
we begin with a single pixel and add one pixel each round of learning. We compared 
active learning and random data selection. As before, we record the fitness on a test set 
after each round of learning. In this case, the test set is the full image and the training 
set is the subset of pixels selected by the learning strategy. Both active learning and 
random selection were tested 40 times. The results of the 40 independent trials for 
one image are shown in Fig. 3.5. The results show that active learning outperforms 
random selection by reducing error more quickly and more consistently, as well, we 
see that the active learning approach arrives at a lower error. The random selection 
approach seems to have gotten stuck in a local optima since the approach plateaus 
after around 20 rounds of learning and converges after 30 rounds of learning. The 
results of a sample run using active learning and random sampling are shown in 
Figs. 3.6 and 3.7. The figures show the original image, the sampled pixels, and the
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Fig. 3.5 Active learning and random data selection using DT-GP are compared on their ability 
to learn the segmentation of a single image by selecting one pixel each round of learning. Each 
experiment was repeated 40 times, so the plot shows the median fitness for each method surrounded 
by bands representing the upper and lower quartiles. The data shows that active learning outperforms 
random data selection. The active learning method most quickly reduces error and also does not get 
stuck on a local optima as the random selection approach does 

Fig. 3.6 The results of using pixel-based active learning on one of the KOMATSUNA images. The 
image is shown on the left. In the middle, the 40 sampled pixels are shown, as selected by active 
learning. On the right, the segmentation pattern is shown, which is nearly perfect 

segmentation pattern after 40 points are sampled. The active learning method arrives 
at a near perfect segmentation pattern while the random sampling approach results 
in a segmentation pattern that picks up a lot of background and is missing the centre 
of the plant.
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Fig. 3.7 The results of using pixel-based random selection on one of the KOMATSUNA images. 
The image is shown on the left. In the middle, the 40 sampled pixels are shown, as selected using 
random selection. On the right, the segmentation pattern is shown 

3.4.5 Cell Classification 

We applied DT-GP to automate the process of identifying cells in videos and deter-
mining which cells are co-transfected to help accelerate a research project where 
progress is slowed by time spent manually labelling every cell in each video frame. 
Co-transfected cells are those that express two different proteins of interest that the 
researcher instructed the cell to produce by inserting the genetic information into the 
cells. The task of labelling cells in images is currently done manually and occupies a 
significant amount of time since it requires cells to be outlined in each video frame as 
well as requires analysis of a second set of images to determine which of the cells in 
the video stream are co-transfected. This makes it an ideal task to be automated since 
automation could lead to significant time savings and enhance research productivity. 

The goal of this project is to utilize a GP system with an active learning strategy 
to develop models that can automate the process of identifying cells and labelling 
them as co-transfected or not. Two types of models are developed. The first being a 
model that can correctly identify all the viable cells in the image. The second type 
of model identifies which of the cells are co-transfected. The goal of applying active 
learning is to only require a few cells be labelled and then the developed models 
would be able to correctly select and classify the rest of the cells in that frame as 
well as additional frames if needed. Once all of the cells are labelled the researcher 
can focus on the analysis of the data sooner. 

The first stage of modelling classifies pixels as either being part of a cell or 
being background. The second stage then identifies if a cell is co-transfected or 
not by analyzing the two different images from different filters. Using the results 
from identifying which points are part of a cell or not, a clustering algorithm is 
used to associate connected points and identify them as individual cells. An active 
learning strategy was implemented to guide labelling of the cells. This is done by 
presenting the user with points or cells that have maximal disagreement between
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Fig. 3.8 These are the cells identified as co-transfected by the model developed with the GP system. 
Each box is supposed to fully encapsulate a co-transfected cell. Both the green and purple images 
have been combined here to show how both colors are present in the images 

their classifications amongst the models in an ensemble. The user can then provide 
a true label for the cell or point. That cell or point with the label is then added to the 
training set. 

Figure 3.8 shows some results where a developed model was tasked with iden-
tifying all the co-transfected cells in an image. The two images were overlayed so 
we can observe both the green and purple colors. It seems that generally, the purple 
color is more intense so it dominates most of the images. The initial segmentation 
is done on the green images, so despite the images appearing purple, green is in fact 
present in all of the cells displayed. 

Looking closely at how the points are grouped together as single cells in Fig. 3.9 
indicates that improvements could be made in how the clustering is done. There are 
regions where it is clear that two separate cells should be identified, yet they are 
grouped together as a single cell. Rather than just connecting all adjacent pixels that 
are identified as cell material, it may be necessary to fine-tune the method to look 
for indicators of a cell membrane to separate nearby cells. 

One of the cell classification models found is shown in Fig. 3.10. This model was 
able to correctly identify all the cells in a test set. The model can be interpreted as
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Fig. 3.9 Shown here are the outlines of each cell that result from the model selecting points that 
are either cell or non-cell material and connecting the adjacent ones. Looking near the bottom left 
corner we can see an example of where two cells are incorrectly identified as a single cell 

follows: If the max blue value minus the min blue value is greater than the average 
green value, then the cell is co-transfected, otherwise, it is not co-transfected. This 
interpretation ignores the left half of the tree since the left half of the tree reduces to 
a constant value of false. 

To make the use of AL-GP with DT-GP easy to use for this project, a simple GUI 
was developed that allows the user to fine-tune a pre-trained segmentation model 
and then supply labels for cells identified as uncertain by the classification models. 
A snapshot of the GUI in use is shown in Fig. 3.11. The use of this GUI allowed for 
automation of cell classification after labelling just a few cells, where previously it 
was necessary to manually label every cell in every video frame. 

3.5 AL-GP Applied to SEE-Segment 

3.5.1 SEE-Segment 

SEE-Segment was used to evolve a population of image segmenters. Each individual 
model consists of a segmentation strategy and 8 parameters. The parameters and 
strategy are optimized through generations. While each individual contains 8 param-
eters not all parameters are used by all strategies. Mutation and crossover are used 
as the variation operators. Tournament selection is utilized for selection. All models 
selected from tournament selection then have a 90% chance of crossover and then 
from those offspring, there is a 90% chance of a mutation. Elitism is also utilized 
by guaranteeing the hall of fame models (top 10 genotypically unique models) are
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Fig. 3.10 Here is a graphical representation of a model’s genotype that was evolved and able to 
correctly classify a test set. In the tree, “Range” is a function of the max value minus the min value 
in a specific color stream of the data. The data is stored with three values for each pixel, the red, 
green, and blue values in that order. So “Range” with the value 3, means the max minus the min 
value in the cell in the blue values. “Avg” is a function of the average value in a specific color. 
Looking at this tree we can see that the left side of the tree would always evaluate to false, so only 
the right side of the tree contains the effective code 

Fig. 3.11 The image shows the GUI developed to make easy use of AL-GP to develop models 
to classify cells. The slider allows the user to fine-tune a pre-trained segmentation model. The 
segmented cells are then shown to the user and when “Uncertain Cell” is clicked it presents the 
two image streams for the cell identified as most uncertain given the current classification models. 
The user can then select if the cell is co-transfected or not by selecting “Valid” or “Invalid”. Once 
a selection is made, the user can then click “Generate Models” to continue model development on 
the expanded training set. The fitness on the training set is displayed at the bottom to give the user a 
sense of the model quality on the training set. Once a few cells have been labelled by the user and a 
model of sufficient quality is achieved the model can then be deployed and applied to the remaining 
cells in each video frame
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Table 3.2 SEE-Segment parameter settings 

Parameter Setting 

Mutation rate 90 

Crossover rate 90 

Spawn rate 100-HoF-UniqueMods 

Hall of fame size 10 

Tournament size 4 

Population size 100 

Generations per AL iteration 100 

preserved across generations. The parameters used to run SEE-Segment are shown in 
Table 3.2. Spawn rate refers to the number of new models introduced in a generation. 
The number spawned each generation is the number required to bring the population 
size back up to 100 after including the hall of fame models and the unique individuals 
produced from mutation and crossover. Tournament size, population size, and gen-
erations are the only parameters modified from the default settings. Those settings 
were chosen since they allowed for sufficient model development while keeping 
computation time reasonable in each iteration of learning. 

3.5.2 AL Implementation for SEE-Segment 

Two active learning methods were implemented that vary in how they select the 
ensemble. The first method simply uses SEE-Segment’s hall of fame, which consists 
of the top 10 genotypically unique models. The second method goes further to ensure 
models are unique by selecting the top 10 phenotypically unique models. These 
ensemble selection methods differ from the original AL-GP approach since here we 
start with only a single image. The original approach relies on generating diverse 
data clusters and selecting models that best fit each data cluster. If that approach was 
utilized here, we would initially get an ensemble of one model, which would lack 
any sort of uncertainty metric. 

Using the selected ensemble we compute the average pairwise disagreement of all 
the models in the ensemble on each potential image. The image with the maximum 
average pairwise disagreement is selected for labelling and added to the training 
set. In the event of a tie, the first image found with the max value is selected. An 
overview of the active learning algorithm is shown in Algorithm 4 and the method 
for computing uncertainty is shown in Algorithm 5. The pairwise uncertainty on an 
image between two models is computed by utilizing SEE-Segment’s fitness function 
where instead of supplying the fitness function with a model’s predicted segmentation 
mask and a true mask, the predicted masks from both models are supplied. This leads 
to a reasonable measure of how different two model’s predicted masks are.
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Algorithm 4 Active Learning Process for SEE-Segment 
1: TrainingData  ← Random I mage ▷ Select 1 Random Image 
2: Evolver ← GeneticSearch.Evolver (TrainingData) ▷ Initialize evolver 
3: evolver.run() ▷ Evolve models with initial data 
4: while i ≤ i terations  do ▷ While max iterations not reached 
5: HoF  ← Evolver.hof ▷ Extract hall of fame 
6: Selected I mage ← MaximizeUncertainty(HoF, Data) ▷ Find image that maximizes uncertainty 
7: TrainingData  ← Append(TrainingData, Selected I mage) ▷ Add new image to training data 
8: Evolver.UpdateData(TrainingData) ▷ Update training data in evolver 
9: evolver.run() ▷ Evolve models with new data 
10: end while 

Algorithm 5 Uncertainty Computation SEE-Segment 
1: procedure Uncertainty(HoF ,Image) 
2: Uncertainties  ← [] ▷ Initialize uncertainties list 
3: Pairs  ← GeneratePairs(HoF) ▷ Generates all pairs of models in HoF 
4: for i 1 to len(Pairs) do 
5: Prediction1 ← EvaluateModel(Pairs[i][0], Image) ▷ Generate prediction of first model in pair 
6: Prediction2 ← EvaluateModel(Pairs[i][1], Image) ▷ Generate prediction of second model in pair 
7: UncertaintyV  al  ← Fitness Function(Prediction1, Prediction2) ▷ Compute uncertainty 
8: Uncertainties  ← Uncertainties.append(UncertaintyV  al) ▷ Append to list 
9: end for 
10: MeanUncertainty  ← mean(Uncertainties) ▷ Compute mean of uncertainties 
11: Return MeanUncertainty  
12: end procedure 

3.5.3 KOMATSUNA Results 

To determine the success of active learning on the KOMATSUNA data set, active 
learning was compared to two naïve image selection methods. The first method is 
ordered selection of training data, where the images are added to the training set in 
their natural order in the data set. Specifically, images in the KOMATSUNA data set 
are from a time series and labelled in order, so the order would be from first to last 
in the time series. The second method is random order selection, where a new image 
is added to the training set randomly. 

The KOMATSUNA data set contains 300 images. Of the 300 images, 50 of them 
were reserved as the test set and the remaining 250 were available to be selected for 
training. Each approach began with a single image in the training set and could select 
one new image to be added to the training set each iteration. 

The results of comparing active learning, random selection, and ordered selection 
are shown in Fig. 3.12. The results show that ordered selection performs very poorly, 
having the worst fitness values on average and also have the widest distribution of 
fitness values. This is not surprising since the data set is ordered as a set of several 
time series. Images nearby in the sequence will be very similar since they are of 
the same plant within a short period of time. This makes it challenging for models 
trained only using the beginning of the time series to predict the segmentation patterns 
correctly of plants that are much larger later in the time series. Random sampling and 
active learning both eventually achieve similar test errors as seen in Fig. 3.12, but  
active learning achieves low error in fewer iterations and converges more quickly. 
The ability of random sampling to achieve good fitness in relatively few iterations is
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Fig. 3.12 Two active learning methods are compared with ordered data selection and random data 
selection with the distribution of errors shown after each round of learning. Each experiment was 
repeated 40 times, so each bar represents the distributions from 40 repeated trials. The data shows 
that active learning outperforms both random data selection and ordered data selection. The active 
learning methods most quickly decrease error and then most quickly converge. On and after round 
5 we see that from the minimum to the 3rd quartile the active learning error distribution appears 
essentially as a flat line. AL (Div) represents AL when using a diverse ensemble and AL (HoF) 
represents AL when using the HoF as the ensemble. We see that using a diverse ensemble improves 
performance 

likely a result of the data set being very balanced, so a random sample that is large 
enough will contain data representative of the whole set. The key difference between 
active learning and random sampling is the rate at which low test error is achieved 
and the consistency of low error solutions in few rounds of learning. 

To determine how well active learning can overcome unbalanced data, the 
KOMATSUNA data set was modified to heavily oversample 3 images by dupli-
cating 3 random images 50 times and adding them back into the training set. The 
test set is still balanced since it was separated prior to the duplication of the images. 
The results of comparing the two active learning methods and random data selec-
tion are shown in Fig. 3.13. Ordered sampling was not included here since it already 
performed poorly with the balanced data. The results show that already after the 
second iteration both active learning approaches are beginning to converge to a good 
solution. By the third iteration the AL (Div) approach appears to have converged, 
and the AL (HoF) approach appears to converge by the 5th iteration. After the 6th 
round, random still has a fairly wide distribution compared to the active learning 
approaches. 

Figures 3.14 and 3.15 compare a sample run of active learning and ordered 
selection by tracking the segmentation pattern on a sample from their test sets.
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Fig. 3.13 Two active learning methods are compared with random data selection on the biased 
KOMATSUNA data. The distributions of errors are shown after each round of learning. Each 
experiment was repeated 40 times, so each bar represents the distributions from 40 repeated trials. 
The data shows that active learning outperforms random data selection. We also see that the active 
learning method using diverse ensembles performs better than the method using the hall of fame 

Figure 3.14 demonstrates how active learning develops a good model quickly and 
improves over iterations. Comparing this to Fig. 3.15, we see how there is risk when 
using suboptimal sampling strategies to overfit training data and perform poorly on 
test data. We see that the ordered selection method actually gets worse by the fifth 
iteration, indicating that it is overfitting a non-representative training set. Even by 
the 20th iteration ordered selection arrives at a rather poor model. 

3.6 Conclusions 

AL-GP was extended to two new machine learning systems, DT-GP and SEE-
Segment, for the purpose of accelerating the development of image processing 
models. It was shown that AL-GP can successfully be extended to tasks outside of 
symbolic regression and also to other population-based machine learning systems. 
When applying AL-GP to DT-GP we verified that active learning accelerates model 
development on the KOMATSUNA dataset, which is a simple dataset to model for 
DT-GP. Once verifying AL-GP is applicable to DT-GP we applied it to the task of 
cell classification to aid another lab at MSU accelerate their research by partially 
automating the task of classifying cells by using a human-in-the-loop method where 
the human researcher supplies labels for the cells identified as most informative by
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Fig. 3.14 Shown here is the progress from an example run using active learning on the KOMAT-
SUNA plant data. The top left image shows the original image and the top middle shows the ground 
truth segmentation pattern. The top right begins the active learning iterations and continues down 
then to the right. After the initial random image, we see that the best model is terrible on an image 
from the test set. We see quick improvement and convergence to a good solution. The segmentation 
patterns shown are from the 0th, 1st, 2nd, and 20th iterations of active learning, where the 0th 
represents training on the first randomly selected image used to seed the training set 

the GP system. This results in just a few samples requiring human labelling before 
finding models that could then be deployed to automatically label the rest of the cells. 

When applying AL-GP to SEE-Segment we explored how active learning com-
pares to random sampling and ordered sampling. We also explored how well it can 
overcome biased data and compared two different methods for selecting ensembles 
to be used in the uncertainty computation. We observed that both active learning 
methods outperformed random and ordered sampling by finding better solutions 
more quickly and consistently across 40 repeated trials. We also observed that bias-
ing the data did not have a significant impact on the active learning approaches, still 
outperforming random sampling in finding good solutions more quickly and con-
sistently. The ensemble selection method that used phenotypic diversity was found 
to perform better than the method that used genotypic diversity. This shows that a 
diverse ensemble is an essential part of the AL-GP approach. 

Additional work is currently underway exploring how AL-GP impacts SEE-
Segment’s model development on a more challenging dataset where near perfect
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Fig. 3.15 Shown here is the progress from an example run using ordered selection on the KOMAT-
SUNA plant data. The top left image shows the original image and the top middle shows the ground 
truth (GT) segmentation pattern. The top right begins the ordered selection iterations and continues 
down then to the right. After the initial random image, we see that the best model is actually not 
too bad. By the 5th iteration, we actually see that the performance on this example test image actu-
ally worsens significantly. By the 20th iteration, we see some improvement but the model is still 
performing poorly 

solutions are not achievable. The preliminary results indicate that AL is developing 
better models with fewer training samples, but more runs are still needed to confirm 
these results. 

This work confirms that AL-GP can be successfully applied to population-based 
ML systems outside of StackGP and further that AL-GP is not restricted to regression 
tasks. It also shows how AL-GP can be applied to help accelerate research projects 
by reducing the time and cost of collecting and labelling training samples. 
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