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ABSTRACT
Active learning for genetic programming using model ensemble

uncertainty was explored across a range of uncertainty metrics

to determine if active learning can be used with GP to minimize

training set sizes by selecting maximally informative samples to

guide evolution. The choice of uncertainty metric was found to

have a significant impact on the success of active learning to inform

model development in genetic programming. Differential evolution

was found to be an effective optimizer, likely due to the non-convex

nature of the uncertainty space, while differential entropy was

found to be an effective uncertainty metric. Uncertainty-based ac-

tive learning was compared to two random sampling methods and

the results show that active learning successfully identified infor-

mative samples and can be used with GP to reduce required training

set sizes to arrive at a solution.

CCS CONCEPTS
• Computing methodologies→ Representation of mathemat-
ical functions; Supervised learning by regression; Genetic
programming; Active learning settings.
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1 INTRODUCTION
Active learning is a method used in conjunction with machine learn-

ing to actively select new training data with the goal of selecting

data points that will maximally inform the machine learning model

[1]. Various forms of active learning (AL) exist, with three types

dominating: pool-based AL, stream-based AL, and membership

query synthesis [5]. Pool-based and stream-based methods both

have a set of training samples to choose from, with the goal of
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selecting and training on only a small subset of maximally infor-

mative cases. The key difference between stream and pool-based

methods is that stream-based methods check each potential train-

ing case in order one by one and only admit them to the training

set if data points are "informative". Pool-based methods differ by

searching a set of data points for the ones that are most informa-

tive. Membership query synthesis approaches do not have a set

of already existing training samples to choose from, instead, they

search a training space to find and synthesize new training data

points that are expected to maximally inform the machine learning

model. Once synthesized, a new data point is then labelled by the

researcher via experimentation or expert knowledge.

In this contribution, we apply active learning strategies for ge-

netic programming used in symbolic regression tasks. The goal

is to exploit some of the features of GP, in particular its reliance

on a population of models. More specifically, we want to utilize

uncertainty and diversity measures to accelerate the discovery of

models (physics equations in our study). The idea is to look for

disagreement among high-quality individuals in the population as

a guide to locate informative data points to add to the training set

and thus reduce the required size of the training set.

2 METHODS
2.1 Active Learning
We use uncertainty-based active learning for symbolic regression

with GP to accelerate the development of models for the Feynman

Symbolic Regression Dataset [6]. Uncertainty-based AL utilizes

an ensemble of diverse, high-quality models from a population to

search for regions in the search space with high uncertainty or

disagreement between the models.

Several different uncertainty metrics are implemented to deter-

mine their respective impact on the success of the task. Success of

active learning by maximizing uncertainty would indicate that the

diversity of the population can be exploited to guide the collection

of informative data.

The GP implementation used was the python version of StackGP

[3] and is available here [2] along with the active learning code.

The parameters used to run the GP system with active learning

are shown in Table 1. Note that the tournament selection method

used is Pareto tournament selection [4], where accuracy (𝑅2) and

complexity (stack lengths) are the two objectives.

2.1.1 Maximizing Uncertainty. Several different uncertainty met-

rics were explored to determine how different measures impact the

success of active learning. Success is determined by how few train-

ing points are required to find a solution for each problem. As an

overview, each approach begins by selecting an ensemble of models,
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then a function that uses the specific uncertainty metric along with

the ensemble and current training set is created. This function is

then fed to an optimizer to search for regions of relatively high

uncertainty. The most uncertain point found is then returned and

added to the training set. In total there were 6 different approaches

tested which varied in how they quantified disagreement, whether

outlier predictions are considered, and which optimizer was used.

The steps and methods will be described in greater detail below

and the entire process is depicted in Algorithm 2.

Generating the ensemble is the first step in uncertainty-based ac-

tive learning. The goals for generating the ensemble were to capture

diverse, high-quality individuals from the population while keeping

the size of the ensemble relatively small so that the computational

cost of optimizing uncertainty is reasonable. The diversity goal is

essential to the success of active learning since disagreement be-

tween models is a necessary requirement for selecting informative

points to minimize training set size. The method chosen to capture

both diversity and quality from the model population works by

clustering the training data using the input space and selecting a

model that best fits each cluster, ensuring no model is selected more

than once. If a model is already selected by another cluster, the next

best unselected model is chosen. The minimum number of clusters

is set to 3 and the maximum is set to 10. Thus, 3-10 models are

chosen for inclusion in an ensemble. Data clustering was chosen

with the intent to capture diversity by focusing on models that

have biases for different regions of the training space. Quality in

the population would be captured since only models with the best

fitness were selected for each cluster. The algorithm to generate

the ensemble is described in detail in Algorithm 1.

Algorithm 1 Ensemble generation process to select diverse high-

quality models.

procedure EnsembleSelect(𝑚𝑜𝑑𝑒𝑙𝑠 ,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎,𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐷𝑎𝑡𝑎)
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 ← [] ⊲ Initialize ensemble

𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ←𝑚𝑖𝑛 (𝑙𝑒𝑛 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎), 10) ⊲ Determine number of clusters

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝐾𝑀𝑒𝑎𝑛𝑠 (𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ) .𝑓 𝑖𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎)
for 𝑖 = 0;𝑖 + +; 𝑖 < 𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do ⊲ Loop over data clusters

𝑚𝑜𝑑𝑒𝑙𝐸𝑟𝑟𝑜𝑟𝑠 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑟𝑟𝑜𝑟 (𝑚𝑜𝑑𝑒𝑙𝑠, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 [𝑖 ] )
𝑠𝑜𝑟𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝑠𝑜𝑟𝑡𝐵𝑦 (𝑚𝑜𝑑𝑒𝑙𝑠,𝑚𝑜𝑑𝑒𝑙𝐸𝑟𝑟𝑜𝑟𝑠 )
𝑗 = 0

while 𝑠𝑜𝑟𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 [ 𝑗 ] in 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 do ⊲ Find best unselected model

𝑗 + +
end while
𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 = 𝑗𝑜𝑖𝑛 (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠, 𝑠𝑜𝑟𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 [ 𝑗 ] ⊲ Add to ensemble

end for
return 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑀𝑜𝑑𝑒𝑙𝑠 ⊲ Return ensemble

end procedure

The second step of this method is to utilize the specified uncer-

tainty function with both the current training data and the selected

ensemble to find a new point with high information content to add

to the training set. The optimizer is given the uncertainty function

and search space boundaries to find a point of relatively high un-

certainty. In the case that an already selected point is re-selected, a

new search is initiated within a random sub-region until a unique

point is selected. This ensures that new information is added in

each iteration.

In total 5 different uncertainty metrics were used, shown by

Equations 1 to 5. The two methods used for optimization were

Scipy Optimize’s minimize and differential evolution functions.

Table 1: StackGP & Active learning Parameter Settings

Parameter Setting

Mutation Rate 79

Crossover Rate 11

Spawn Rate 10

Elitism Rate 10

Crossover Method 2 Pt.

Tournament Size 5

Population Size 300

Selection Rate 20

Parallel Runs 4

Generations 1000

Δ =
Std(EnsembleResponses)

Mean(Abs(EnsembleResponses)) (1)

Δ =
TrimmedStd(EnsembleResponses, 0.3)

TrimmedMean(Abs(EnsembleResponses), 0.3) (2)

Δ =
Std(EnsembleResponses)

TrimmedMean(Abs(EnsembleResponses), 0.3) (3)

Δ = Std(EnsembleResponses) (4)

Δ = DifferentialEntropy(EnsembleResponses) (5)

Algorithm 2 Active Learning Process Using Uncertainty

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 ← 3𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡𝑠 ⊲ Generate initial random training data

𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑜𝑑𝑒𝑙𝑠 ⊲ Generate initial random models

𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐸𝑣𝑜𝑙𝑣𝑒 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎,𝑀𝑜𝑑𝑒𝑙𝑠 ) ⊲ Train models on starting data

while 𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙𝐸𝑟𝑟𝑜𝑟 ≠ 0 do ⊲While perfect model not found

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ← 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑆𝑒𝑙𝑒𝑐𝑡 (𝑀𝑜𝑑𝑒𝑙𝑠 ) . ⊲ Select ensemble of models

𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ← 𝑀𝑎𝑥𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ) ⊲ Find point of max uncertainty

if 𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ⊂ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 then ⊲ If point already selected

𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ← 𝑀𝑎𝑥𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝑆𝑢𝑏𝑆𝑝𝑎𝑐𝑒 (𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ) ) ⊲ Search a subspace

end if
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 ← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎, 𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ) ⊲ Add new point

𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐸𝑣𝑜𝑙𝑣𝑒 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎,𝑀𝑜𝑑𝑒𝑙𝑠 ) ⊲ Evolve new models with new data using

best models to seed evolution

end while

2.1.2 Benchmark Testing. Each active learning approach was com-

pared on a benchmark set of 35 out of the 100 equations from the

Feynman Symbolic Regression Dataset [7]. Of the 100 problems, 37

are uninteresting for active learning since in a previous study it was

found that those equations needed just 3 data points to be solved

[3]. Of the remaining 63 problems, we chose 35 to test the efficacy

of active learning, while keeping computational costs reasonable.

These 35 problems were selected since initial testing without active

learning showed they could frequently be solved with 4 to 1000

training points.

2.2 Random Sampling
As a baseline, we used random sampling of data points from uniform

and normal distributions to determine if an active learning method

improves learning progress over a naive sampling of training data.

To create a fair comparison against the active learningmethods, a

simple substitution wasmade where instead of using active learning
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tomaximize uncertainty a random point was added in each iteration.

Beyond that substitution, the algorithm remains the same.

3 RESULTS & DISCUSSION
The results of comparing the different uncertainty-based active

learning methods are shown in Table 2. The results in this table rep-

resent approximately 65,000 compute hours on Xeon 6148, 40 core

CPUs (or their equivalent across the cluster). The table compares

each method to both uniform and normally distributed random

sampling. Each experiment was repeated 100 times and the median

performance used for comparison. The data shows that the active

learning approaches that rely on differential entropy perform best

compared to the other uncertainty metrics, with differential en-

tropy using differential evolution as the optimizer working best.

This indicates that differential entropy as an uncertainty metric

best correlates to the informativeness of selected data points. The

fact that differential evolution improves the performance of active

learning when using differential entropy indicates that the search

space is likely very rigid or non-convex and difficult to search using

other optimization strategies. It is also interesting to note that the

simplest uncertainty metric, standard deviation, performs reason-

ably well, which makes it an appealing method since it is simple to

implement and computationally light.

The success of active learning seems dependent on the problem.

For example, active learning worked very well on the problem with

the formulation

𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 (6)

where the uniform and normal random sampling approaches re-

quired 88.5 and 82 data points while all the active learning methods

required significantly fewer ranging from 21 to 52.5 points. For

many of the problems, where active learning did not outperform

random sampling, the difference was not very significant, generally

requiring only a few more points on average. There is one problem

though with the formulation

𝑛 ∗ 𝐸𝑥𝑝 [(𝑚 ∗ 𝑔 ∗ 𝑥)/(𝑘 ∗𝑇 )] (7)

where normal random sampling actually performed best by a sig-

nificant margin requiring just 82 points on average compared to the

active learning methods which ranged from 144-876 pts on average.

It is interesting to note that uniform sampling required 453 points,

so all but one of the active learning methods did still outperform

the uniform sampling on that problem. Looking at the formula it

seems likely that the difficulty comes from the fact that the equa-

tion can produce responses of significantly different magnitudes

considering there are 5 terms in the exponent.

Looking at the formulations for some of the uncertainty metrics

we can see that it is possible to have asymptotic behavior in the

uncertainty spaces when the mean ensemble prediction averages

to 0 in Equations 1, 2, and 3. This could potentially lead to regions

being marked as having high uncertainty in cases where all models

in the ensemble actually correctly predict a value around 0. An

example of this is shown in Figure 1, where asymptotic behavior is

shown due to the mean prediction of the ensemble being 0. This

could also potentially be why some of the active learning methods

performed poorly on problem 14, which can evaluate to 0 anytime

𝑟1 and 𝑟2 are equal. The formulation for problem 14 is

𝐺 ∗𝑚1 ∗𝑚2 ∗ (
1

𝑟1
− 1

𝑟2
). (8)

These 3 metrics could possibly be improved by preventing the de-

nominator from ever evaluating to 0 or values near 0. Maybe a

threshold of 1 as a minimum could be included to avoid asymptotic

behavior caused by the denominator while still allowing the uncer-

tainty metric to be a measure of relative uncertainty. Equation 4 for

example avoids the issue of 0 denominators but loses the potential

benefit of being a relative uncertainty measure. We can see an exam-

ple of an uncertainty space for the same problem (problem 2) when

using Equation 4 instead of 3 in Figure 2. Asymptotic behavior is

avoided here, but we can see another type of bias, which is the

bias for high uncertainty near the borders of the training space as

a result of models being unconstrained outside of the boundaries.

This bias seems potentially unavoidable since uncertainty should

always be high outside of the training space since the models have

no knowledge of regions outside of the training space. A potential

way to remedy this bias could be by implementing a secondary met-

ric such as data diversity to be used for active learning, that would

help ensure that regions of the training space aren’t oversampled

as a results of the biases of the uncertainty metrics.

Figure 1: A sample ensemble uncertainty space is shown us-
ing an ensemble selected from a model population trained
for problem 2. Problem 2 has 2 input variables, represented in
the figure as 𝑥1 and 𝑥2. The vertical axis represents the uncer-
tainty. The red regions represent high uncertainty while blue
regions represent low uncertainty. The uncertainty metric
used to generate this was Equation 3. This figure demon-
strates the possibility of asymptotic behavior (seen in the
right corner), which could be misleading for the active learn-
ing process and lead to larger training sets. Note: Active learn-
ing is searching for the high uncertainties (red regions).

4 CONCLUSION
A total of 6 different uncertainty-based active learning methods

were compared to determine how well each approach is able to

maximize the information gain of selected training samples and re-

duce training set sizes. The results showed that active learning was

consistently able to reduce the required size of training sets, with

589



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Haut, et al.

Table 2: Shown are the performances of each approach compared to both uniform random sampling and normally distributed
random sampling. The number indicated is the number of problems of 35 where the active learning method matched or
performed better than the random sampling method being compared with. Each method is indicated by the equation number
and an abbreviated form of the equation. Note (DE) indicates differential evolution was used as the optimizer instead of Scipy
Minimize for that method.

EQ 1 EQ 2 EQ 3 EQ 4 EQ 5 EQ 5 (DE)

Std/Mean TrStd/TrMean Std/TrMean Std DE DE (DE)

Compared to U. Sampling 19 20 24 27 31 33

Compared to N. Sampling 22 20 20 22 29 30

Figure 2: A sample ensemble uncertainty space is shown for
the same problem as Figure 1. The red regions represent high
uncertainty while blue regions represent low uncertainty.
Some common trends can be seen here, such as higher uncer-
tainty near the boundaries and the fact that the search space
is non-convex. The uncertainty metric used was Equation 4.

differential entropy as an uncertainty metric outperforming the

methods that rely on the standard deviation and mean predictions

of the ensembles. This indicates that the measure of differential

entropy best correlates to information gain when selecting new

training samples.When using differential evolution as the optimizer

with differential entropy we saw a slight improvement over using

Scipy Optimize’s minimize function indicating that differential evo-

lution is better suited for exploring the ensemble uncertainty space.

The bias for selecting points near the borders of the training regions

was identified, which will lead to future work on how to avoid that

bias to improve sampling. As well, the potential for the relative

uncertainty metrics to display asymptotic behavior was identified

as a result of ensemble mean predictions of 0 being included in the

denominator. This is another potential bias that future work will

address.

Further, the method for ensemble design could be reconsidered

to potentially improve how ensemble uncertainty translates into

informing development of model populations during the active

learning iterations. The model ensemble method being used was

developed with the goal of selecting diverse high-quality models

from the population, with the intended use-case being to generate

deployable models that will remain stable under new conditions. It

could potentially improve the active learning process if an ensemble

generation method was developed with active learning in mind

and how the uncertainty of the ensemble would translate into

informativeness for model development.

Overall, the synergy between active learning and genetic pro-

gramming seems promising with these results showing that a good

uncertainty metric can improve informativeness of training data

while minimizing training set sizes. This is useful in scenarios where

collecting data is expensive, so minimizing the need to collect data

could accelerate the work while reducing costs. It could also be use-

ful in scenarios where a large training sample is available but maybe

heavily biased, so extracting only the interesting points would lead

to developing models resistant to the bias of the data collection. Fu-

ture work to improve the uncertainty metric and ensemble design

could improve effectiveness of active learning. Genetic program-

ming also seems to be a very natural fit for active learning since

evolution can very easily be adapted to be interactive, which allows

active learning to be integrated so evolution can both guide model

development and collection of training samples simultaneously.

This potential could lead to development of new applications where

genetic programming systems could be used by researchers with

dual purpose to both guide experimental design and develop models

to provide insight into the system being studied.
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