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Abstract The use of correlation as a fitness function is explored in symbolic regres-
sion tasks and its performance is compared against a more typical RMSE fitness
function. Using correlation with an alignment step to conclude the evolution led to
significant performance gains over RMSE as a fitness function. Employing correla-
tion as a fitness function led to solutions being found in fewer generations compared
to RMSE. We also found that fewer data points were needed in a training set to
discover correct equations. The Feynman Symbolic Regression Benchmark as well
as several other old and recent GP benchmark problems were used to evaluate per-
formance.

1 Introduction

Symbolic Regression (SR) has long been a hallmark of Genetic Programming appli-
cations. Already in John Koza’s first book on GP it features prominently among the
problems of program induction that he mentions as problems Genetic Programming
can attempt to solve, on in the first table on page 15 [1]. Among themany applications
listed in that table, optimal control, empirical discovery and forecasting, symbolic
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integration or differentiation, inverse problems, and discovering mathematical iden-
tities could be easily coached in terms of symbolic regression. To cite the author:
“[...], symbolic regression involves finding a model that fits a given sample of data”.
Themodel is constructed frommathematical functions and their numeric coefficients
“that provides a good, best or perfect fit”.

In the absence of substantial progress on the automatic programming front in the
early years of GP, symbolic regression and its Machine Learning (ML) cousin of pat-
tern classification have taken on extremely important roles in Genetic Programming.
In fact, regression and classification are now often used as the classical application
examples of Genetic Programming, recognizing the contributions GP has made to
those fields in the preceding decades.

The textbook on Genetic Programming by one of the authors of this chapter [2]
argued strongly in favor of the view that GP can be considered part of the Machine
Learning field. To apply GP to those tasks seemed to us at the time a low-hanging
fruit, and the success andwidespread use ofGP in these applications today proves that
point. However, the second and probably more ambitious goal of GP is automatic
programming in the general sense, which comprises program synthesis, program
repair, probably program analysis, etc. We pointed out this ambition at the time,
but did not see how to proceed until evolutionary and genetic improvement [3, 4]
came around. These two techniques have now thoroughly paved the way for the more
general goal of GP, but it remains to be seen what results can be harvested from these
techniques and re-invigorated approaches of GP to automatic programming.

Turning back to symbolic regression, Affenzeller et al. [5] explain the key task of
SR as finding a [symbolic, mathematical] relationship between a dependent variable
y (output) and a set of specified independent (input) variables x

y = f (x, a) + ε (1)

with f the functional relationship, a some coefficients to modify the functional
structure, and ε a noise term. Here we have taken the liberty to modify the authors
equation by introducing a vector notation for inputs and coefficients (note that these
vectors have different dimensionality). We would also like to emphasize that the
additive noise is but one type of possible noise in the system, as well as that the task
could comprise the finding of relationships for more than one output variable y, thus
rendering both y and f as vectors. Both input and target values are normally given
as data points, perhaps produced by measurements of a system, with the expectation
that the SR algorithm produces a mathematical model that is able to reproduce those
data points and both interpolate among them and extrapolate beyond them.

In recent years, a number of different non-GP symbolic regression methods have
been proposed. One such method is the physics-inspired method by Udrescu and
Tegmark [6] which made use of physical knowledge to restrict the search space of
model creation in order to arrive at solutions in reasonable time. These authors also
proposed collections of 100 new benchmark datasets (including a set of further bonus
datasets) based on the known relationship of physical quantities and correspondingly
derived data. Among the physical knowledge injected into the search process were
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considerations of unit dimensionality, translational symmetry, andmultiplicative sep-
arability of the resulting models.

What struck us was the efficiency with which certain equations could be found,
sometimes even with 10 data points. At the same time, we realized that the physical
inspiration, while a strength in terms of knowledge injection into the process, was
an ad hoc solution that could not be transferred easily to systems of an unknown
type. It seemed to us that the emphasis on global features of a model (rather than a
point-by-point comparison of data points) was hinted in these results. We also knew
that researchers had used other fitness functions with good outcomes, notably the
Pearson correlation coefficient.

In this chapter, we report on experiments with GP symbolic regression where the
fitness function, the traditional loss function called root mean square error (RMSE)
is given by

L =
√
√
√
√

1

N

N
∑

i=1

(yi − ŷi )2, (2)

where N is the number of data points i , yi is the target output, and ŷi , the output
calculated by the programunder consideration, is replaced by the correlation function

R =
∑N

i=1(yi − ȳ)(ŷi − ¯̂y)
√

∑N
i=1(yi − ȳ)2 × ∑N

i=1(ŷi − ¯̂y)2
(3)

of target versus program output.
This replacement is, however, not direct. First off, we try to maximize R2 (or min-

imize 1 − R2), but then, in a post-processing step, we align the resulting relationship
via a simple linear regression step, minimizing

argmin
a0,a1

N
∑

i=1

(|yi − (a1 ŷi + a0)|). (4)

The essential difference between these two fitness functions is the global con-
sideration the subtracted averages of Eq. (3) bring in. You can note that they are in
relation to their respective output data series (target or program). They are thus enter-
ing information about the shape of the entire curve into the fitness function while the
absolute scaling and translation is left to the linear regression post-processing step.
We could say that the correlation function looks at the relative position of data points
in the target dataset and compares that to the relative position in the program/model
produced dataset.

Correlation functions have been used in the past in genetic programming and
in other data analysis applications, but often for sorting out the independence and
therefore relevance of input features. Thus, it was used to identify dependent features
from the input and therefore fight the curse of dimensionality, certainly a legitimate
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application. But applying correlation as a fitness function to compare target and
program output yielded results on the AI Feynman benchmark datasets that were
surprising to us. In fact, when we submitted some results to GECCO 2022, reviewers
were incredulous and rejected the manuscript as a full paper. Frequently, the results
showed that three data points are sufficient to come up with the correct equation or
relationship between data points.

The book chapter presented here will examine the performance of the correlation
fitness function in more detail and compare it to the RMSE loss function along a
number of axes—number of data points required, noise level, and dimensionality of
the input.

2 Related Work

In [7], the authors develop a new fitting method relying on the maximization of
the correlation coefficient between two sets of data that could well be random or
systematically related. The correlation coefficient between two random variables X
and Y

R = cov(X,Y )

σXσY
, (5)

where X,Y take on values X1, ..., XN and Y1, ...,YN is a well-defined quantity
confined to the range [−1,+1]. If R is close to either 1 or –1, the data are very
strongly correlated to each other, if R is close to 0, there is virtually no correlation
between the two series. By minimizing

1 − R2 (6)

the goal of this optimization is the same as the more familiar mean square error
minimization. Using a continuous example (functions instead of data points and
integrals instead of sums) the authors can derive that the correlation-based fitting
method is orders of magnitude less sensitive than the MSE method. In other words,
finding a fit is much easier using the correlation-based method.

Expressed differently, by searching for the maximum correlation between two
curves/sets of points, we allow for an infinite set of possible solutions (irrespective
of translation and scaling), while by searching for the minimum of MSE, we allow
only one solution to be possible. More recent work by one of the same authors [8]
generalizes their sensitivity analysis to an entire family of fitting methods that are
based on different Lq norms.

Keijzer [9], revisited by [10], lays out an example of a symbolic regressionproblem
where the issue of (R)MSE becomes clearly visible. A simple target function

y = x2 (7)
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Fig. 1 Correlation as a fitness function can identify successful models that would not be identified
by RMSE. The red surface represents a model that was identified as good by the correlation fitness
function and the green surface is the same model after has been aligned. Orange points represent
the raw data, which consists of 100 points. Both the model and the aligned model have an R2 value
of 0.9999. The pre-aligned model has an RMSE value of 22.24 and the aligned model has an RMSE
value of 2.076 ∗ 10−14

and a modified target function
y = x2 + 100 (8)

are compared in terms of their performance under symbolic regression. The authors
comment that the simple addition of a constant was able to mislead their GP systems
in the search space, resulting in only 16% of their runs (with given representation and
parameters) being successful, compared to the unmodified regression problem,which
was solved by 98% of their runs. Keijzer suggests a linear scaling method, among
other measures like interval arithmetic, to address such problems.While useful under
special circumstances, the simple replacement by the MSE fitness function with a
correlation fitness function (plus its post-processing step) discussed here perfectly
solves this problem.

Figure1 demonstrates how correlation as a fitness function is capable of identi-
fying potentially good models that RMSE would not identify as a good model. This
is a result of correlation assigning fitness independent of a linear scaling and shift,
so it can identify a model that has the correct shape but may not yet be in the correct
location or at the correct scale.

3 Benchmarks

Anumber of different benchmarks have been proposed for symbolic regression tasks.
GP started out with the symbolic regression problems used in Koza’s first book [1].
Over time some more complex problems were added culminating in the suggestion
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by White et al. [11] to consider these as new standard benchmarks. Korns [12–14]
has given a series of presentations at GPTP on systematically more difficult symbolic
regression problems and their solution, increasingly relying on hybrid algorithms to
solve them. Finally, Udrescu and Tegmark have proposed a collection of physical
laws extracted from Feynman lectures [6] as a good benchmark suite for symbolic
regression algorithms.

In the following, we shall briefly discuss the former, giving examples of each,
before focusing on the latter, the so-called AI Feynman benchmark set.

3.1 Koza’s Benchmarks

Koza was the first to highlight the joys and sorrows of symbolic regression with
Genetic Programming. The quartic polynomial

x4 + x3 + x2 + x (9)

was the first discussed in [1], though one could argue that the bang-bang control
problem discussed in an earlier section was close. This problem later proliferated to
the following problems:

x4 − x3 + x2 − x (10)

x4 + 2x3 + 3x2 + 4x (11)

x6 − 2x4 + x2. (12)

Many more problems of different types were proposed in the book (e.g., symbolic
derivatives and symbolic integration, equivalence relationships, roots of equations,
etc.).

3.2 New Benchmark Standards

Keijzer extended the benchmark set studied in [9] to the Keijzer instances which
were further expanded by Vladislavleva et al. [15] and Nguyen et al. [16]. Typical
examples are Keijzer-5:

30xz

(x − 10)y2
(13)

Vladislavleva-1:
e−(x1−1)2

1.2 + (x2 − 2.5)2
(14)
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or Nguyen-5:
sin(x2)cos(x) − 1 (15)

just to name a few.
A 2012 community survey [17] revealed the mainly used benchmarks and was

summarized and standardized in [11].

3.3 The GPTP Benchmarks

While the term GPTP benchmarks is actually broader, we would like to focus here
on the series of contributions and problem suggestions by Korns and his co-authors
[12–14, 18–22].

Since this is a large set of problems, we are going to select only one here, Korns-8:

6.87 + 11
√

7.23x0x3x4 = 6.87 + 29.58
√
x0x3x4 (16)

out of five dimensions x0, ..., x4, where some variables (x1, x2) do not carry infor-
mation but only noise.

3.4 Feynman Symbolic Regression Benchmark

Here we shall mainly focus on the AI Feynman set of equations/data, lifted out of
the lectures of Richard Feynman [23–25].

4 Methods

Symbolic regression was performed using StackGP, a stack-based genetic program-
ming system. The parameters chosen for the system are shown in Table1. It is impor-
tant to note that the two sub-populations are evolved in parallel yet do not interact
until completion. Upon completion, the two populations are merged and the most
fit individuals in the combined population are then selected and returned as the final
population of a run.

To compare the performance of using RMSE against correlation as a fitness func-
tion,we explored hownoise, number of points, and dimensionality affect the resulting
fitnesses of the best individuals found during evolution.

For each problem and set of conditions (noise and number of points), a total of
100 repeated independent trials were conducted and the median fitness of the best
models from each trial was computed using the test data for the associated problem.
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Table 1 Evolution parameter settings

Parameter Setting

Mutation rate 79

Crossover rate 11

Spawn rate 10

Elitism rate 10

Crossover method 2-point

Tournament size 5

Population size 300

Independent runs 100

Sub-populations 2

Termination criteria 2 Min. (wall time)

To make for a simple comparison, both models trained using RMSE and correlation
as their fitness functions were evaluated using RMSE on the test data. The test data
consisted of 200 points generated without noise added to determine how close the
evolved models are to the true generating equation.

4.1 Noise Introduction

Uniformly distributed multiplicative random noise was introduced to the response
data y = f (x) by supplying a percentage to a noise generating function:

y = f (x)(1 + ε), (17)

where

ε ∈
[

− R

2
,
R

2

]

(18)

is a uniformly distributed random variable from the interval [− R
2 , R

2 ].

4.2 Varying Number of Points

For most problems, between 3 and 193 points were used to determine how changing
the number of data points affects the success of the search. This was performed by
initially testing with 3 points, then adding 20 points until a total of 193 points were
tested. For some of the Feynman problems, the number of points varied from 3 to
19 points incrementing by 2 to observe how small changes in the number of points
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impacts method performance. In each independent repeated trial, the points used
were generated randomly anew.

4.3 Dimensional Sensitivity

Sensitivity to dimensionality was explored by observing the variation in success
between the different problems which vary from 1 dimension up to 9 dimensions.

4.4 Sensitivity to Constants

The sensitivity to identifying equations correctly when constants are introduced was
explored by introducing constants of varying magnitude and determining how the
error is affected by the magnitude of constants.

5 Results

5.1 The Keijzer-5 Benchmark

The results of comparing the correlation-based fitness function to the usual RMSE
on the new benchmark standards with 20–200 points and 10% noise are shown in
Fig. 2. The results show that correlation finds more accurate models than RMSEwith
10% noise for the Keijzer-5 benchmark problem.

In Fig. 3, noise sensitivity was explored with 2,000 points with noise between 0
and 20% on Keijzer-5. While the correlation approach is sensitive to multiplicative
noise and gradually deteriorates as the amplitude of noise is increased, the correlation
approach generally finds more accurate models even with noise as high as 20%.

5.2 The Korns-8 Benchmark

Figure4 nowcompares the results of runs using correlation andRMSEasfitness func-
tions to try to solve the Korns-8 benchmark problem, ranging from 3 to 193 training
data points with no (0%) noise. The correlation-based fitness function consistently
finds essentially perfect solutions with more than 3 points, while the RMSE-based
fitness function performed relatively poorly for all numbers of data points, with only
a slight improvement as the number of points increases.
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Fig. 2 Comparing using RMSE and correlation as the fitness function on Keijzer-5 with 10% noise

Fig. 3 Comparing using RMSE and correlation as the fitness function on Keijzer-5 with varying
noise to determine noise tolerance when using 2,000 training points

The noise tolerance of correlation and RMSE was also explored on Korns-8 by
varying noise from 0 to 20% using 200 and 2,000 training points. The results are
shown in Figs. 5 and 6, respectively. With 200 data points (Fig. 5) the correlation
approach stops outperforming RMSE when 12% or more noise is included in the
data. When the data has 2,000 training points, however, as shown in Fig. 6, we see
that while the correlation approach shows sensitivity to the amount of noise present,
it still finds better models with data that has 20% noise, demonstrating that more data
can effectively counter noise with a correlation fitness function.

What is interesting to note is that when comparing the R2 values between the two
approaches with using 2,000 points, it can be seen in Fig. 7 that R2 values for all
models found using correlation are 1, up to 20% noise. This indicates that the correct



Correlation Versus RMSE Loss Functions in Symbolic Regression Tasks 41

Fig. 4 Comparing using RMSE and correlation as the fitness function on Korns-8 with 0% noise

Fig. 5 Comparing using RMSE and correlation as the fitness function onKorns-8 as noise increases
from 0 to 20% with 200 training points. With 12% noise or more the correlation approach becomes
comparable or worse than RMSE

model form was still found in all cases and points to the alignment step as the part
that is sensitive to noise. An example solution is shown in Eq. (19), on comparing to
original function (Eq.16):

949.216 + 21.536
√
x0x3x4. (19)

When looking at the R2 values from the 200 point cases, we can see there is a very
clear threshold where the signal-to-noise ratio becomes too small and the quality of
models drops off significantly by using the correlation approach. The behavior of the
correlation fitness (green dots) in Fig. 8 looks like a phase transition at around 10%
noise. The functional relationship evolved before the transition (e.g., at 2% noise) is
still correct:
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Fig. 6 Comparing using RMSE and correlation as the fitness function onKorns-8 as noise increases
from 0 to 20% with 2000 training points

Fig. 7 Comparing using RMSE and correlation as the fitness function onKorns-8 as noise increases
from 0 to 20% with 2,000 training points using R2 as the metric for comparison

564.468 + 23.315
√
x0x3x4. (20)

However, with 14% noise (after the transition) the functional relationship is not any
more correct with:

1406.43 + 0.133x0x3x4. (21)

The correct variables are still found, but the square root function is not any more
present.
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Fig. 8 Comparing using RMSE and correlation as the fitness function onKorns-8 as noise increases
from 0 to 20% with 200 training points using R2 as the metric for comparison

5.3 The Vladislavleva-1 Benchmark

Figure9 compares the performance of using correlation and RMSE as fitness func-
tions on the Vladislavleva-1 benchmark problem, ranging from 20 to 200 training
data points with no noise. The correlation approach shows that it is able to consis-
tently find models with better performance than when using RMSE as the fitness
function.

Figure10 explores how the two approaches vary in their sensitivity to noise. Both
methods were given 200 training points and noise was varied from 0 to 20%. Corre-
lation was observed to outperform RMSE as a fitness function until the noise level
exceeded 6%. Beyond 6% the distributions of both methods widened significantly
and the average performance of correlation as a fitness function became worse than
RMSE at higher noise levels.

5.4 The Nguyen-5 Benchmark

The performance of correlation and RMSE as fitness functions was also compared
using the Nguyen-5 benchmark problem. Figure11 shows how they compare when
no noise is present when training on varying number of points from 20 to 200.
Correlation was observed to outperform RMSE as a fitness function for all of the
cases between 20 and 200 points.

The noise tolerance of the two methods was also compared using the Nguyen-
5 benchmark problem. Noise was varied from 0 to 20% with 200 training points.
The results are shown in Fig. 12. The method using correlation as a fitness function
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Fig. 9 Comparing using RMSE and correlation as the fitness function on Vladislavleva-1 with 0%
noise as the number of points increases from 20 to 200

Fig. 10 Comparing using RMSE and correlation as the fitness function on Vladislavleva-1 as noise
increases from 0 to 20% with 200 training points using RMSE as the metric for comparison

performed best until around 6%noisewas present. Beyond 6%noise the twomethods
performed similarly with correlation having a slightly wider distribution of solutions.

5.5 Feynman Symbolic Regression Benchmark

The results of testing the performance of the two different fitness functions on the
Feynman Symbolic Regression Benchmark are summarized in Table2.
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Fig. 11 Comparing using RMSE and correlation as the fitness function onNguyen-5 with 0% noise
as the number of points varies from 20 to 200

Fig. 12 Comparing using RMSE and correlation as the fitness function on Nguyen-5 as noise
increases from 0 to 20% with 200 training points using RMSE as the metric for comparison

With just 3 data points and no noise, the correlation approach found better models
in 38 of the 100 cases and tied in performancewith the RMSE approach in 11 cases. A
total of 21 problemswere perfectly solvedwith just 3 data points using the correlation
approach and 10 of those 21 were not perfectly solved using the RMSE approach
with just 3 data points.

For example, Fig. 13 shows RMSE over generations on Eq. (22) (# 8 in [6]) when
using correlation fitness.

μ × Nn. (22)
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Table 2 Feynman symbolic regression benchmark summary performance comparison of correla-
tion against RMSE

Number of
points

Noise % Better Tied Perfectly
solved

Perfectly
solved where
RMSE failed

3 0 38 11 21 10

3 10 27 0 0 0

20 0 82 17 41 24

20 10 78 0 0 0

200 0 81 17 46 29

200 10 79 0 0 0

Fig. 13 The error of best individuals over generations is shown for Eq. (22) (# 8 in [6]) when
using correlation as the fitness function. We can see that Eq. (22) is trivial and is solved almost
immediately

RMSE converges to 0 very quickly in a sample evolutionary run, demonstrating that
this equation is trivial to solve.

As another example, we take Eq. (23) (# 59 in [6]) as one where RMSE fitness
does not converge to 0, see Fig. 14.

ε × E2

2
. (23)

As opposed to that, using the correlation fitness function results in runs like that
depicted in Fig. 15.Aswe can see from the equations, these are very simple functional
relationships. We shall examine more complicated ones later, but for now will look
at noise.
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Fig. 14 The error of best individuals over generations is shown for Eq. (23) (# 59 in [6]) when
using RMSE as the fitness function. We can see that progress seems to get stuck at a local minima
and stops progressing around generation 200

Fig. 15 The error of best individuals over generations is shown for Eq. (23) (# 59 in [6]) when
using correlation as the fitness function. We can see that this problem now becomes trivial and is
solved by the second generation when using correlation instead of RMSE as the fitness function

With just 3 data points and 10% noise added, the correlation approach does never
converge to a perfect solution, but found better models in 27 of the 100 problems. On
the other hand, RMSE is able to withstand the noise better and is able to converge
to perfect solutions 13 times.
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Fig. 16 Comparing using RMSE and correlation as the fitness function on Eq. (24) with 10% noise

Given that three data points really is an absolute minimum, it is no wonder that
reviewers reacted incredulous to our results. But this seems more to be a reflection of
the benchmark datasets, rather than the approach to solve it. In many cases, RMSE
does also solve the problem perfectly with 3 data points (see Tables4 and 5 in the
appendix).

So while on trivial cases there might not be a difference between the performance
of RMSE and correlation as a fitness function, in other cases, there is a difference,
often a substantial one. With 20 points and no noise the correlation approach found
better models in 82 of the 100 cases and was tied in another 17 cases. This means that
the correlation approach beat or matched the performance of RMSE in 99 of the 100
cases of the Feynman benchmarks. Aswell, the correlation approach perfectly solved
41 of the problems. Of those 41, 24 were not solved using the RMSE approach.

With 10% noise added to the 20 data points, the correlation approach found better
models in 78 of 100 cases. Here again, RMSE is better able to withstand the noise
and converge to a perfect solution in 17 cases.

Finally,with 200 points and no noise, the correlation approach found bettermodels
than the RMSE approach in 81 of the 100 cases andwas tied in 17 cases. This totals to
98 cases where the correlation approach either beat or matched the RMSE approach.
A total of 46 cases were solved perfectly using the correlation approach. Of those 46
cases, 29 of them were not perfectly solved using the RMSE approach.

With 200 points and 10% noise added, the correlation approach found better
models in 79 of the cases.

Figures16, 17, and 18 show three examples of noisy data and the behavior of
fitness functions depending on number of data points. These are non-trivial cases not
perfectly solved by either of the methods even with 200 points. However, we can
clearly see the progress by correlation as opposed to RMSE.
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Fig. 17 Comparing using RMSE and correlation as the fitness function on Eq. (25) with 10% noise

Fig. 18 Comparing using RMSE and correlation as the fitness function on Eq. (26) with 10% noise

The three equations used are

e
−θ2

2√
2π

(24)

e
−(θ/σ )2

2√
2πσ

(25)
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Table 3 Sensitivity to constants in (22). Feynman Equation # 8

Constant Number of Points Noise % RMSE Correlation

1 20 10 0 1.35

1 20 0 0 0

5 20 10 261.69 8.74

5 20 0 276.76 0

50 20 10 3520.43 68.07

50 20 0 2151.56 0

and
e

−((θ−θ1)/σ )2

2√
2πσ

. (26)

5.6 Sensitivity to Constants

It was observed that Eq. (22) with 10% noise was able to be found with 0 error when
using RMSE as the fitness function compared to an RMSE value of 1.35 when using
correlation as the fitness function when trained with 20 points. The R2 values from
both approaches were 1, which indicates that they both found the correct general pat-
tern in the data, but the scaling or position was off as a result of the alignment when
using correlation as fitness function. To see if the problem difficulty was altered by
introduction of a constant, Eq. (22) from the Feynman symbolic regression bench-
mark was modified by introducing a constant initially valued at 5 and then 50. The
results are shown in Table3.With no noise, the problem becomesmuchmore difficult
for the RMSE fitness function as the constant gets larger, while the problem difficulty
does not change relative to the constant size when using correlation as the fitness
function (recall Keijzer’s observation mentioned earlier). When multiplicative noise
is added, the performance when using correlation does get worse as the size of the
constant increases, yet it strongly outperforms when compared to using RMSE as
fitness function.

6 Discussion

Symbolic regression has been studied sinceGenetic Programmingwas inventedmore
than 30 years ago. Numerous refinements have been proposed and examined, new
benchmark datasets have been subjected to algorithmic variants, and results have
been derived and considered in multiple forms. However, no measure has proven so
efficient than simply replacing the fitness function based on absolute function values
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with a fitness measure that considers relative distance and leaves the absolute align-
ment of a functional model to a linear regression step in post-processing. Equipped
with such a fitness function, many of the benchmark problems used (among them
about half of the AI Feynman problems) can be safely removed from consideration
as too easy. If 3 data points are sufficient to deduce the functional form of a model,
then this is not a problem worthy of much attention.

For other problems, correlation didwidely outperformRMSEas a fitness function,
and should be the function of first choice in all regression problems. It remains to be
seen whether there are some other factors that allow the algorithm discussed here to
shine at solving the benchmark problems considered. For example, it could be that
StackGP is particularly well suited for the task and the same might not be said of
other GP systems.

7 Conclusions

What is clear is that the fitness function in any evolutionary algorithm has an
extremely important role to play as far as the performance of the algorithm is con-
cerned. Lessons derived from the success of correlation-based fitness in symbolic
regression might transfer to other tasks, like classification problems. At the very
least, it could facilitate the solution of harder problems in other domains, by training
a researcher’s eye on the essential functions of a system that need to be tuned to
arrive at feasible solutions.
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8 Appendix

This appendix lists all 100 AI Feynman problems and their solution using corre-
lation and RMSE as fitness functions, for 0 and 10% noise levels at 3 data points
only (Tables 4 and 5).More performance results are available online at https://tinyurl.
com/stackGPGPTP.

https://tinyurl.com/stackGPGPTP
https://tinyurl.com/stackGPGPTP


52 N. Haut et al.

Table 4 The resulting RMSE values on test data when using correlation or RMSE as the fitness
function during training for first 50 Feynman equations. Three random training data points were
used with either 0 or 10% noise
Filename Correlation RMSE Correlation RMSE

EQ # 3 Pts 0% 3 Pts 0% 3 Pts 10% 3 Pts 10%

I.6.20a 1. 0.032 0.304 0.12 0.35

I.6.20 2. 0.41 0.53 0.41 0.43

I.6.20b 3. 0.68 0.83 0.57 0.61

I.8.14 4. 21.71 21.61 11.2 15.66

I.9.18 5. 2.02 2.09 2.15 2.24

I.10.7 6. 2.29 1.63 2.74 1.95

I.11.19 7. 155.4 137.08 145.9 142.88

I.12.1 8. 0. 0. 3.74 0.

I.12.2 9. 291.77 235.69 302.15 244.97

I.12.4 10. 1.29 1.17 1.25 0.95

I.12.5 11. 0.29 0.26 0.29 0.26

I.12.11 12. 0. 0. 4.48 0.

I.13.4 13. 311.99 382.06 380.01 378.98

I.13.12 14. 123.88 123. 131.49 121.92

I.14.3 15. 0. 0. 16.67 0.

I.14.4 16. 0. 29.75 9.03 29.53

I.15.3x 17. 9.06 6.44 9.83 7.16

I.15.3t 18. 2.15 1.81 2.31 2.1

I.15.1 19. 4.34 3.57 4.91 3.54

I.16.6 20. 7.26 8.16 8.41 9.61

I.18.4 21. 5.2 6.38 5.73 6.4

I.18.12 22. 39.64 81.53 88.04 0.

I.18.14 23. 289.04 269.43 312.51 294.09

I.24.6 24. 186.77 103.88 172.39 111.05

I.25.13 25. 0. 0. 0.61 0.

I.26.2 26. 1.44 0. 4.78 0.

I.27.6 27. 4.59 3.53 3.47 3.82

I.29.4 28. 0. 0. 0.88 0.

I.29.16 29. 42.96 39.75 44.78 39.01

I.30.3 30. 170.3 47. 56.17 45.07

I.30.5 31. 0. 0. 1.07 0.

I.32.5 32. 10.48 11.09 11.02 10.95

I.32.17 33. 58.75 62.13 74.19 63.58

I.34.8 34. 118.78 117.31 152.25 112.47

I.34.1 35. 12.5 12.39 12.833 12.611

I.34.14 36. 9.69 6.41 9.27 8.09

I.34.27 37. 0. 0. 4.64 0.

I.37.4 38. 45.37 53.82 34.71 44.55

I.38.12 39. 809.61 764.83 797.34 766.62

I.39.1 40. 0. 33.53 6.12 49.26

I.39.11 41. 40.23 22.69 32.95 29.32

I.39.22 42. 57.45 109.84 136.6 116.42

I.40.1 43. 3.21 × 1012 3.12 × 1012 2.3 × 1015 9.67 × 1014

I.41.16 44. 31.63 29.5 31.62 30.15

I.43.16 45. 93.43 123.12 140.63 113.85

I.43.31 46. 0. 0. 15.21 0.

I.43.43 47. 24.15 20.21 23.18 19.87

I.44.4 48. 315.51 278.57 299.86 265.23

I.47.23 49. 5.43 6.32 7.34 4.88

I.48.2 50. 30.91 17.23 136.99 29.78
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Table 5 The resulting RMSE values on test data when using correlation or RMSE as the fitness
function during training for the second set of 50 Feynman equations. Three random training data
points were used with either 0 or 10% noise
Filename Correlation RMSE Correlation RMSE

EQ # 3 Pts 0% 3 Pts 0% 3 Pts 10% 3 Pts 10%

I.50.26 51. 32.39 32.81 35.81 33.07

II.2.42 52. 96.89 67.68 111.34 93.28

II.3.24 53. 0. 0.22 0.044 0.328

II.4.23 54. 0. 0.29 0.339 0.357

II.6.11 55. 0.27 0.28 0.279 0.362

II.6.15a 56. 5.59 4.05 5.01 4.11

II.6.15b 57. 40.16 39.29 29.19 28.66

II.8.7 58. 1.06 1.24 1.106 1.116

II.8.31 59. 0. 35.63 9.68 23.01

II.10.9 60. 2.97 1.52 2.74 1.79

II.11.3 61. 1.135 1.155 1.25 1.08

II.11.17 62. 27.32 24.32 20.98 22.98

II.11.20 63. 118.25 94.68 103.66 95.24

II.11.27 64. 5.24 2.61 4.21 2.71

II.11.28 65. 0.012 0.2 0.77 0.52

II.13.17 66. 0.3047 0.3393 0.36 0.3

II.13.23 67. 2.12 1.59 2.68 1.93

II.13.34 68. 3.9 2.76 5.75 3.76

II.15.4 69. 67.4 88.35 95.53 83.07

II.15.5 70. 63.28 80.92 94.52 92.21

II.21.32 71. 0.714 0.656 0.67 0.66

II.24.17 72. 1.72 2.31 2.405 2.963

II.27.16 73. 0. 0. 79.1 0.

II.27.18 74. 0. 0. 17.51 0.

II.34.2a 75. 0. 5.86 4.33 5.04

II.34.2 76. 0. 47.1 9.4 45.

II.34.11 77. 65.58 62.45 73.52 63.65

II.34.29a 78. 0. 3.07 1.98 2.996

II.34.29b 79. 569.68 454.52 534.74 460.95

II.35.18 80. 4.73 5.1 4.99 5.36

II.35.21 81. 65.37 49. 58.39 48.6

II.36.38 82. 18.52 16.24 18.7 15.76

II.37.1 83. 136.845 46.77 92.81 45.08

II.38.3 84. 122.17 114.56 148.47 98.47

II.38.14 85. 0.76 0.99 0.88 1.09

III.4.32 86. 11.23 7.24 9.05 8.04

III.4.33 87. 41.59 27.14 42.31 33.12

III.7.38 88. 0. 50.43 55.54 54.95

III.8.54 89. 3.68 4.38 4.1 4.6

III.9.52 90. 45.78 38.94 46.29 39.17

III.10.19 91. 69.8 54.84 72.05 56.28

III.12.43 92. 0. 0. 4.08 0.

III.13.18 93. 1152.36 1107.82 1206.76 1089.88

III.14.14 94. 109.04 98.87 110.38 97.74

III.15.12 95. 105.83 105.45 107.98 109.96

III.15.14 96. 8.06 7.1 7.84 7.08

III.15.27 97. 0. 33.66 28.29 35.75

III.17.37 98. 88.19 72.66 90. 74.54

III.19.51 99. 0.61 0.72 0.59 0.86

III.21.20 100. 126.007 131.52 144.83 132.95
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