Fast Genetic Programming and Artificial Developmental Systems on GPUs

Simon Harding and Wolfgang Banzhaf
Computer Science Department
Memorial University
Newfoundland, Canada
simonh, banzhaf @cs.mun.ca

Abstract

In this paper we demonstrate the use of the Graphics
Processing Unit (GPU) to accelerate Evolutionary Compu-
tation applications, in particular Genetic Programming ap-
proaches. We show that it is possible to get speed increases
of several hundred times over a typical CPU implemen-
tation, catapulting GPU processing for these applications
into the realm of HPC. This increase in performance also
extends to artificial developmental systems, where evolved
programs are used to construct cellular systems. Feasibil-
ity of this approach to efficiently evaluate artificial develop-
mental systems based on cellular automata is demonstrated.

1 Introduction

HPC has traditionally been executed on dedicated hard-
ware. Often, special-purpose processors were designed by
newly founded initiatives (see, for instance, [10], the history
of the Connection Machine, or IBM’s BlueGene project [1])
in order to produce the communication performance needed
in parallel machines.

In recent years, however, off-the-shelf hardware has
made inroads in this traditionally high-performance, high-
budget field. With the advent of the LINUX operating sys-
tem, it became possible to stack both inexpensive hardware
and software, and to deliver large amounts of CPU cycles,
as exemplified by the BEOWULF architecture [23]. Be-
owulf clusters are now installed around the world and pro-
vide a main driving force for information processing appli-
cations world-wide.

A new wave of commodity hardware is now on its way in
the form of mass-produced graphics processors. Recently
it has become possible to access the processing power of
these graphic processing units (GPU) which serve as co-
processors in most of the new generation desktop comput-
ers. For a general survey on algorithms implemented on

GPUs the reader is referred to [18].

Modern GPUs are extremely good at performing par-
allel mathematical operations [25]. For example, discrete
wavelet transformations [27], the solution of dense linear
systems [7], physics simulations for games, fluid simula-
tors [8], etc., have already been shown to execute faster on
GPUs. However, until recently it was cumbersome to use
this resource for general purpose computing. With the ad-
vent of easy-to-use programming tools for GPUs, a whole
set of applications is presently being tested on GPUs. In ef-
fect, these tools open up a new world for HPC computing
with commodity hardware.

The application area we are focussing on in this contri-
bution is Evolutionary Computation [5, 17], and specifically
Genetic Programming [2, 11]. In this field, it is well known
that fitness evaluation is the most time consuming part of the
process. This limits the types of problems that may be ad-
dressed by EC, and by GP in particular, as large numbers of
fitness cases make GP runs often impractical. In this paper
we demonstrate a method for using the GPU as an evaluator
for genetic programming expressions, and show that there
are considerable speed increases to be gained.

We briefly report on the evaluation of evolved mathemat-
ical expressions and digital circuits, as they are typically
used to evaluate the performance of a genetic programming
algorithm (a more detailed discussion can be found in [9]).
We also investigate the use of the GPU to evaluate GP ex-
pressions used in a form of indirect genotype to phenotype
mapping, called a developmental mapping. In a typical arti-
ficial cellular developmental system, there are a large num-
ber of cells, within an environment, that execute the same
evolved program to produce the next state for the system.

Because capable hardware and software are new, there is
relatively little previous work on using GPUs for evolution-
ary computation. For example [30] implements a evolution-
ary programming algorithm on a GPU, and finds that there
is a 5-fold speed increase. Work by [6] expands on this, and
evaluates expressions on the GPU. There all the operations
are treated as graphics operations, which makes implemen-

IEE I-'

COMPUTER
SOCIETY

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007 IEEE

tation difficult and limits the flexibility of the evaluations.
Yu et al [31], on the other hand, implement a Genetic Al-
gorithm on GPUs. Depending on population size, they find
a speed up factor of up to 20. Here both the genetic op-
erators and fitness evaluation are performed on the GPU.
Ebner et al, use human interaction to evolve aesthetically
pleasing shader programs[4]. Here, linear genetic program-
ming structures are compiled into shader programs. The
shader programs were then used to render textures on im-
ages, which were selected by a user. However, the technique
was not extended into more general purpose computation.

Any increase in the evaluation of evolved expressions
will also benefit the emerging field of artificial developmen-
tal systems. In such systems, large numbers of the evolved
expression might be executed in parallel, as an analogy to
the cellular structure of organisms. In developmental sys-
tems, large multi celled solutions grow from smaller “em-
bryo” systems.

The overview of the paper is as follows: Section 2 out-
lines the architecture of GPUs, Section 3 discusses the
most important programming approaches to GPU process-
ing. Section 4 briefly explains how Genetic Programming
can be implemented on a GPU. Section 5 reports on run-
ning GP benchmarks on a GPU. In section 6 we show that
cellular computation and chemical diffusion can be imple-
mented efficiently using the GPU. Finally in section 7, we
demonstrate the use of 2D ceullar automata on the GPU for
generating high quality random numbers. This addresses an
issues identified by [6], and would allow a complete evolu-
tionary system to be executed on the GPU hardware, pro-
viding further performance gains.

2 The Architecture of Graphics Processing
Units

Graphics processors are specialized stream processors
used to render graphics. Typically, the GPU is able to per-
form graphics manipulations much faster than a general pur-
pose CPU, as the graphics processor is specifically designed
to handle certain primitive operations. Internally, the GPU
contains a number of small processors that are used to per-
form calculations on 3D vertex information and on textures.
These processors operate in parallel with each other, and
work on different parts of the problem. First the vertex pro-
cessors calculate the 3D view, then the shader processors
paint this model before it is displayed. Programming the
GPU is typically done through a virtual machine interface
such as OpenGL or DirectX which provide a common in-
terface to the diverse GPUs available thus making develop-
ment easy. However, DirectX and OpenGL are optimized
for graphics processing, hence other APIs are required to
use the GPU as a general purpose device. There are many
such APIs, and section 3 describes several of the more com-

mon ones.

For general purpose computing, we here wish to make
use of the parallelism provided by the shader processors,
see Figure 1. Each processor can perform multiple float-
ing point operations per clock cycle, meaning that perfor-
mance is determined by the clock speed and the number
of pixel shaders and the width of the pixel shaders. Pixel
shaders are programmed to perform a given set of instruc-
tions on each pixel in a texture. Depending on the GPU,
the number of instructions may be limited. In order to use
more than this number of operations, a program needs to
be broken down into suitably sized units, which may im-
pact performance. Newer GPUs support unlimited instruc-
tions, but some older cards support as few as 64 instructions.
GPUs typically use floating point arithmetic, the precision
of which is often controllable as less precise representations
are faster to compute with. Again, the maximum precision
is manufacturer specific, but recent cards provide up to 128-
bit precision.

Vertex Scheduler

A Cuctarm ebI .)
GP System (CPU)

& Al
<5
La -
o A
=9
& A4
Textures
(GPU)
%H

Pixel Shaders

Figure 1. Arrays, representing the test cases,
are converted to textures. These textures are
then manipulated (in parallel) by small pro-
grams inside each of the pixel shaders. The
result is another texture, which can be con-
verted back to a normal array for CPU based
processing.

The graphics card used in these experiments is a NVidia
GForce 7300 Go, which is a GPU optimized for laptop use.
It is underpowered compared to cards available for desktop
PCs. Because GPUs are parallel and have very strict pro-
cessing models, the computational ability of the GPU scales
well with the number of pixel shaders. We would therefore
expect to see major improvements to the performance of the
benchmarks given here if we were to run it on such a GPU.
According to [28], “an NVIDIA 7800 GTX 512 is capable

IEE I-'

COMPUTER
SOCIETY

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007 IEEE

of around 200 GFLOPS. ATT’s latest X1900 architecture has
a claimed performance of 554 GFLOPS”. Since it is now
possible to place multiple GPUs inside a single PC chassis,
this should result in TFLOP performance for numerical pro-
cessing at low cost. A further advantage of the GPU is that
it uses less power than a typical CPU. Power consumption
has become an important consideration in building clusters
as it increases running costs and requires the use of air con-
ditioning, or other cooling, increasing costs further.

3 Programming a GPU

In this section we provide a brief overview of some of
the general purpose computation toolkits for GPUs that are
available. This is not an exhaustive list, but is intended to
act as a guide to others.

SH Sh is an open source project for accessing the GPU
under C++ [19, 13]. Many graphics cards are supported,
and the system is platform independent. Many low level
features can be accessed using Sh, however these require
knowledge of the mechanisms used by the shaders. The Sh
libraries provide typical matrix and vector manipulations,
such as dot products and addition-multiplication operators.

Brook: Brook is another way to access the features on
the GPU [22]. Brook takes the form of extensions to the
C programming language, adding support for GPU specific
data types. Applications developed with Brook are com-
piled using a special C compiler, which generates C++ and
Cg code. Cg is a programming language for graphics, that
is similar to C. One major advantage of Brook is that it can
target either OpenGL or DirectX, and is therefore more plat-
form independent than other tools. However, code must be
compiled separately for each target platform. Brook appears
to be a very popular choice, and is used for large applica-
tions, such as folding@home.

Accelerator: Recently a .Net assembly called Acceler-
ator was released that provides access to the GPU via the
DirectX interface [24]. The system is completely abstracted
from the GPU, and presents the end user with only arrays
that can be operated on in parallel. Unfortunately, the sys-
tem is only available for the Windows platform due to its
reliance on DirectX. However, the assembly can be used
from any .Net programming language.

This tool differs from the previous interfaces in that it
uses lazy evaluation. Operations are not performed on the
data until the evaluated result is requested. This enables
a certain degree of real time optimization, and reduces the
computational load on the GPU. In particular, optimisation
of common sub expressions, which will reduce the creation
of temporary shaders and textures. The movement of data to
and from the GPU can also be efficiently optimized, which
reduces the impact of the relatively slow transfer of data out
of the GPU. The compilation to the shader model occurs

at run time, and hence can automatically make use of the
different features available on the supported graphics cards.

In this paper we use the Accelerator package. The total
time required to reimplement an existing parser tree based
GP parser was less than two hours, which we would expect
to be considerably less than using any of the other solutions
presented here. As with other implementations, Accelera-
tor is based on arrays implemented as textures. The API
then allows one to perform parallel operations on the arrays.
Conversion to textures, and transfer to the GPU is handled
transparently by the API, allowing the developer to concen-
trate on the implementation of the algorithm. The avail-
able function set for operating on parallel arrays is similar
to the other APIs. It includes element-wise arithmetic op-
erations, square root, multiply-add, and trigonometric oper-
ations. There are also conditional operations and functions
for comparing two arrays. The API also provides reduction
operators, such as the sum, product, minimum or maximum
value in the array. Further functions perform transforma-
tions, such as shift and rotate on the elements of the array.

The other systems described here present different vari-
ations on these functions, and generally offer functionality
that allows different operations to be applied to different
parts of the arrays.

4 Parsing a GP Expression

Typically parsing a GP expression involves traversing
the expression tree in a bottom-up, breadth first manner.
At each node visited the interpreter performs the specified
function on the inputs to the node, and outputs the result as
the node output. The tree is re-evaluated for every input set.
Hence, for 100 test cases the tree would be executed 100
times.

Using the GPU we are able to parallelize this process,
which means that in effect the tree only has to be parsed
once - with the function evaluation performed in parallel.
Even without the arithmetic acceleration provided by the
GPU, this results in a considerable reduction in computa-
tion. Our GP interpreter uses a case statement at the evalua-
tion of each node to determine what function to apply to the
input values. If run on the GPU, the tree needs only to be
executed once - removing the need for repeatedly access-
ing the case statement. The use of the GPU is illustrated
in Figure 1. The population and genetic algorithm run on
the CPU, with evaluations run on the GPU. The CPU con-
verts arrays of test cases to textures on the GPU and loads
a shader program into the shader processors. The Accelera-
tor tool kit compiles each individuals GP expression into a
shader program. The program is then executed, and the re-
sulting texture is converted back in to an array. The fitness
is determined from this output array.

The GP parser used here is written in Ct, and compiled

IEE |-:

COMPUTER
SOCIETY

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007 IEEE

using Visual Studio 2005. All benchmarks were done using
the Release build configuration, and were executed on CLR
2.0 on Windows XP. The GPU is an NVidia GeForce 7300
GO with 512Mb video memory. The CPU used is an Intel
Centrino T2400 (running at 1.83Ghz), with 1.5Gb of system
memory.

5 Benchmarks

In this experiment, we investigate the speed up on both
toy and real world problems, using a GP representation we
chose to use here is Cartesian GP[16], but similar results
should be obtained from other representations. Using CGP
allowed us to strictly limit the length of the expressions,
while retaining evolvabilty. This allowed us to vary the
length of the expressions, and determine the effect on eval-
uation time. The evaluation time is the total time required
to perform an evaluation, and therefore includes any set up
time, moving of information to the GPU and the actual pro-
cessing itself.

We implemented several types of fitness function, and
then ran an evolutionary algorithm for 200 generations. The
evolved expressions were evaluated on the CPU and then
on the GPU, and each evaluation was timed for evaluation
purposes. The results show the average number of times
the GPU is faster at evaluating a given expression than the
CPU. Results less than 1 mean that the CPU was faster at
evaluating the expression, values above 1 indicate the GPU
performed better.

5.1 Regression

We evolved functions that regressed over 2 — 22* + 22
[11]. We tested the evaluation difference using a number of
test cases. In each instance, the test cases were uniformly
distributed between -1 to +1. We also changed the maxi-
mum length of the CGP graph. Hence, expression lengths
could range anywhere from 1 node to the maximum size of
the CGP graph. GP was run for 200 generations to allow for
convergence. The function set comprised of 4, —, * and /.
In Ct, division by zero on a float returns “Infinity”, which
is consistent with the result from the Accelerator library.

Fitness was defined as the sum of the absolute errors of
each test case and the output of the expression. This can
also be calculated using the GPU. Each individual was eval-
uated with the CPU, then the GPU and the speed difference
recorded. Also the outputs from both the GPU and CPU
were compared to ensure that they were evaluating the ex-
pression in the same manner. We did not find any instances
where the two differed.

Table 1 shows results that for smaller input sets and small
expressions, it was more efficient to evaluate them on the

Test Cases
\ 100 \ 1000 \ 2000

Max Expression Length || 10

10 0.02 | 0.08 | 0.7 1.22
100 0.07 | 0.33 | 2.79 | 5.16
1000 042 | 1.71 | 1529 | 87.02
10000 04 | 1.79 | 16.25 | 95.37

Table 1. Results for the regression experi-
ment. The results show the number of times
faster evaluating evolved GP expressions is
on the GPU, compared to CPU implementa-
tion. The maximum expression length is the
number of nodes in the CGP graph.

. However, X it iz
CPU. However, for the larger test and expression sizes the
performance increase was dramatic.

5.2 Classification

In this experiment we attempted the classification prob-
lem of distinguishing between two spirals, as described in
[11]. This problem has two input values (z and y coordi-
nates of a point on a spiral) and has a single output indicat-
ing which spiral the point is found. In [11], 194 test cases
are used. In these experiments, we extend the number of
test cases to 388, 970 and 1940. We also extended the func-
tion set to include sin, cos, \/z, ¥ and a comparator. The
comparator looks at the first input value to the node, and
if it is less than or equal to zero returns the second input, 0
otherwise. The relative speed increases can be seen in Table
2. Again we see that the GPU is superior for larger numbers
of test cases, with larger expression sizes.

5.3 Classification in Bioinformatics

In this experiment we investigate the behaviour on an-
other classification problem, this time a protein classifier as
described in [12]. Here the task is to predict the location
of a protein in a cell, from the amino acids in the particular
protein. We used the entire dataset as the training set. The
set consisted of 2427 entries, with 19 variables each and 1
output. We investigated the performance gain using several
expression lengths, and the results can be seen in Table 3.
Here, the large number of test cases used results in con-
siderable improvements in evaluation time, even for small
expressions.

6 Cellular Developmental Systems

There are many forms of artificial developmental sys-
tem, but here we limit our investigation to ones based on

IEE I-'

COMPUTER
SOCIETY

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007 IEEE

Number of cells
Length || 256 \ 4096 \ 65536 \ 262144 \ 1048576

Test Cases
Max Expression Length || 194 \ 388 \ 970 \ 1940
10 0.15 | 0.23 | 0.51 | 1.01
100 0.38 | 0.67 | 1.63 | 3.01
1000 1.77 | 3.19 | 9.21 | 22.7
10000 1.69 | 3.21 | 8.94 | 22.38

Table 2. Results for the two spirals classifica-
tion experiment. The results show the num-
ber of times faster evaluating evolved GP ex-
pressions is on the GPU, compared to CPU
implementation. The maximum expression
length is the number of nodes in the CGP
graph.

Test Cases
Expression Length || 2427
10 3.44
100 6.67
1000 11.84
10000 14.21

Table 3. Results for the protein classifcation
experiment. The results show the number of
times faster evaluating evolved GP expres-
sions is on the GPU, compared to CPU imple-
mentation. The maximum expression length
is the number of nodes in the CGP graph.

Number of cells || GPU Speed Up

256 0.21
4096 2.39
65536 20.54
262144 20.41
1048576 34.63

Table 4. Results showing the number of times
faster evaluating diffusion on the GPU com-
pared to the CPU.

10 0.73 | 1.01 | 5.99 14.94 22.26
25 0.75 | 1.02 | 5.58 14.54 23.23
50 0.77 | 1.04 | 5.76 14.13 23.97

100 0.79 | 1.11 | 5.91 15.47 28.12
1000 142 | 1.71 | 6.19 16.46 26.64

Table 5. Results showing the number of times
faster evaluating the cellular automata rules
using the GPU is than using the CPU. The
cellular automata is a 2D square. The length
is the maximum expression length of the
CGP graph, and hence the maximum length
of the expression. Where the speed up is
above 1, the GPU is faster. We see that for
large cellular automata, with large expres-
sions that there is a significant increase in
performance.

a cellular structure [3, 15, 20]. In cellular developmental
systems, there are typically several cellular automata in op-
eration. One executes rules evolved using genetic program-
ming to simulate the cellular processes, others simulate the
diffusion of chemicals. We show that using the GPU, both
these types of cellular automata can be simulated with high
performance gains.

Both cellular automata are implemented in similar ways.
For each cell, a program (or set of rules) uses the current
state of a cell, and its neighbourhood, to calculate the next
state for that cell. Here we use a von Neumann neighbour-
hood of radius 1. For the diffusion cellular automata, each
cell contains an amount of a given chemical, here repre-
sented as a floating point number. The input to the up-
date program consists only of the values of its neighbouring
cells. The cell states are represented as integers, with one
value used to define an empty site. These programs require
the state information of neighbouring cells and the state in-
formation of the chemical environment, as illustrated in fig-
ure 2. The update rule for the cell states is an evolved CGP
program, in the same manner as used throughout this paper.

Each update program requires information about its
neighbourhood, however there are no array operations pro-
vided by the API that allow access to other arrays with an
offset. Therefore, several arrays are generated by shifting
the state array up, down, left and right. This realigns the
neighbouring cell information so that it can be conveniently
used by the built in array operations.

For these benchmarks we performed short evolutionary
runs (200 generations), using a simple fitness function (pro-
duce a specified cell pattern). Table 4 shows that for the
larger environments, execution on the GPU gives a substan-

COMPUTER
SOCIETY

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007 IEEE

Current cell

state, and
neighbour cell Next cell state
states
and released
chemicals
| GP
-n-—) EXPRESSION
O -
0—3 — O
Chemical
information
from

environment

Figure 2. Each cell in the developmental sys-
tem takes in information about its chemical
environment and the states of the neighbour-
ing cells. Using the evolved program, the
next state for that cell is calculated. Iterating
this process allows programs to grow into
larger structures.

tial improvement in performance. Executing the GP expres-
sion produces similar results to those in section 5, . The re-
sults in table 5 show that for a larger number of cells and for
longer programs, GPU execution is beneficial. We limited
the expression length of the CGP program to 1000 nodes.

7 Random numbers using Cellular Automata

One function missing from GPU is the ability to generate
random numbers. Random number generation is very im-
portant in evolutionary algorithms, as it forms the basis of
the selection and recombination operators. One approach,
used by [6], is for the CPU to produce randomly generated
textures and pass them to the GPU. This however is a bottle-
neck in the system. We therefore suggest the use of cellular
automata to produce high quality random numbers, directly
in the GPU. Random sequences of bits can be generated
using both 1D [29] and 2D[21, 14] cellular automata. We
implemented a 2D cellular automata as described in [14].
The update rule consists of 3 XOR operations and 1 OR
operation, that update the cells (a) for the next time step
t+1):

aiit = (((a;j ORa’E*l,j)XORa’t,jfl)

1,7 7

XORaj,, ;) XORa; ;,,

We found that producing the next state for a 1024x1024
texture using this cellular automata was 2.1 times faster than

producing the random texture (using the Cf standard ran-
dom library) on the CPU and transferring it to the GPU.
Random number generation took 42% of the CPU time,
demonstrating that there is a signficant overhead to moving
the information to the GPU.

8 Conclusions

This paper demonstrates that evaluation of genetic pro-
gramming expressions can strongly benefit from using the
graphics processor to parallelise the evaluations. With new
development tools, it is now very easy to leverage the GPU
for general purpose computation. However, there are a few
caveats. Here we have reported on tests using Cartesian GP,
however we expect similar advantages with other represen-
tations, such as tree and linear GP. We have also demon-
strated the feasibility of using the GPU for artificial cellular
developmental systems.

Few clusters are constructed with high performance
graphics cards, which will limit the immediate use of these
systems. It will require further benchmarking whether low
end GPUs found in most PCs today provide a speed advan-
tage. Given the computational benefits and the relatively
low costs of fast graphics cards, it is likely that GPU accel-
eration for numerical applications will become widespread
amongst lower priced installations.

Many typical GP problems do not have large sets of fit-
ness cases for two reasons: First, evaluation has always
been considered computationally expensive. Second, we
currently find it very difficult to evolve solutions to harder
problems. With the ability to tackle larger problems in rea-
sonable time we have to also find innovative approaches that
let us solve these problems. Traditional GP has difficulty
with scaling. For example, the largest evolved multiplier
has 1024 fitness cases [26]. In the same time it would take
a CPU implementation to evaluate an individual with that
many fitness cases, we could test more than 65536 fitness
cases on a GPU. This leads to a gap between what we can
realistically evaluate, and what we can evolve. Similarly
for the developmental systems, the size of the environment
used here is much larger than that typically found in the
literature. However, we believe this approach makes exper-
imentation using larger developmental systems more feasi-
ble.

For small sets of fitness cases, the overhead of transfer-
ring data to the GPU and for constructing shaders results in
a performance decrease. It can be imagined that one would
want to determine in practical applications when the advan-
tage of GPU computing occurs and switch execution to the
proper type of hardware. In this contribution, we have just
looked at the most trivial way of parallelizing a GP system
on GPU hardware. More sophisticated approaches to paral-
lelisation will have to be examined in the future.

IEE I-'

COMPUTER
SOCIETY

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007 IEEE

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
(1]

[12]

[13]

[14]

[15]

N. Adiga, G. Almasi, G. Almasi, Y. Aridor, R. Barik,
D. Beece, R. Bellofatto, G. Bhanot, R. Bickford, M. Blum-
rich, et al. An Overview of the BlueGene/L Supercomputer.
Supercomputing, ACM/IEEE 2002 Conference, pages 60—
60, 2002.

W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic
Programming - An Introduction. Morgan Kaufmann, San
Francisco, CA, USA, 1998.

K. L. Downing. Developmental models for emergent com-
putation. In A. M. Tyrrell, P. C. Haddow, and J. Torre-
sen, editors, International Conference on Evolvable Sys-
tems(ICES), volume 2606 of Lecture Notes in Computer Sci-
ence, pages 105-116. Springer, 2003.

M. Ebner, M. Reinhardt, and J. Albert. Evolution of vertex
and pixel shaders. In M. Keijzer, A. Tettamanzi, P. Col-
let, J. van Hemert, and M. Tomassini, editors, Proceedings
of the Eighth European Conference on Genetic Program-
ming (EuroGP 2005), Lausanne, Switzerland, pages 261—
270. Springer-Verlag, 2005.

A. Eiben and J. Smith. Introduction to Evolutionary Com-
puting. Springer, 2003.

K. L. Fok, T. T. Wong, and M. L. Wong. Evolutionary com-
puting on consumer-level graphics hardware. IEEFE Intelli-
gent Systems, to appear, 2005.

N. Galoppo, N. Govindaraju, M. Henson, and D. Manocha.
Lu-gpu: Efficient algorithms for solving dense linear sys-
tems on graphics hardware. Supercomputing, 2005. Pro-
ceedings of the ACM/IEEE SC 2005 Conference, pages 3—
3, 2005.

T. R. Hagen, J. M. Hjelmervik, K.-A. Lie, J. R. Natvig,
and M. O. Henriksen. Visual simulation of shallow-water
waves. Simulation Modelling Practice and Theory, 13:716—
726, 2005.

S. Harding and W. Banzhaf. Fast genetic programming on
gpus. In Proceedings EuroGP 2007, LNCS. Springer, 2007,
to appear.

W. Hillis. The Connection Machine. MIT Press, 1989.

J. Koza. Genetic Programming: On the Programming of
Computers by Natural Selection. MIT Press, Cambridge,
Massachusetts, USA, 1992.

W. B. Langdon and W. Banzhaf. Repeated sequences in
linear genetic programming genomes. Complex Systems,
15(4):285-306, 2005.

LibSh Wiki. Libsh sample code. http://www.libsh.
org/wiki/index.php/Sample Code.

M. Madjarova, M. Kakuta, T. Obi, M. Yamaguchi, and
N. Ohyama. Two-dimensional cellular automata for pseudo-
random pattern generators and for highly secure stream ci-
phers. Journal Optical Review.

J. E. Miller. Evolving a self-repairing, self-regulating, french
flag organism. In K. Deb, R. Poli, W. Banzhaf, H.-G.
Beyer, E. K. Burke, P. J. Darwen, D. Dasgupta, D. Floreano,
J. A. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spec-
tor, A. Tettamanzi, D. Thierens, and A. M. Tyrrell, editors,
GECCO (1), volume 3102 of Lecture Notes in Computer
Science, pages 129—139. Springer, 2004.

[16]

[17]

(18]

[19]
[20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

J. E. Miller and P. Thomson. Cartesian genetic program-
ming. In R. P. et al., editor, Proc. of EuroGP 2000, volume
1802 of LNCS, pages 121-132. Springer-Verlag, 2000.

M. Mitchell. An Introduction to Genetic Algorithms. Mit Pr,
1996.

J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A. Lefohn, and T. Purcell. A survey of general-purpose com-
putation on graphics hardware. Eurographics 2005, State of
the Art Reports, pages 21-51, 2005.

RapidMind Inc. Libsh. http://libsh.org/.

D. Roggen and D. Federici. Multi-cellular development: is
there scalability and robustness to gain? In X. Yao, E. Burke,
and J. L. et al., editors, proceedings of Parallel Problem
Solving from Nature 8, Parallel Problem Solving from Na-
ture (PPSN) 2004, pages 391-400, 2004.

B. Shackleford, M. Tanaka, R. J. Carter, and G. Snider.
Fpga implementation of neighborhood-of-four cellular au-
tomata random number generators. In FPGA ’02: Proceed-
ings of the 2002 ACM/SIGDA tenth international symposium
on Field-programmable gate arrays, pages 106112, New
York, NY, USA, 2002. ACM Press.

Stanford University ~ Graphics Lab. Brook.
http://graphics.stanford.edu/projects/
brookgpu/.

T. Sterling, J. Salmon, D. Becker, and D. Savarese. How to
build a Beowulf: a guide to the implementation and appli-
cation of PC clusters. MIT Press Cambridge, MA, USA,
1999.

D. Tarditi, S. Puri, and J. Oglesby. Msr-tr-2005-184 accel-
erator: Using data parallelism to program gpus for general-
purpose uses. Technical report, Microsoft Research, 2006.
C. Thompson, S. Hahn, and M. Oskin. Using Modern
Graphics Architectures for General-Purpose Computing: A
Framework and Analysis. In Proceedings of the 35th Inter-
national Symposium on Microarchitecture, Istanbul, pages
306 — 317. IEEE Computer Society Press, 2002.

J. Torresen. Evolving multiplier circuits by training set and
training vector partitioning. In ICES‘03:From biology to
hardware, volume 2606, pages 228-237, 2003.

J. Wang, P. A. H. T. T. Wong, and C. S. Leung. Discrete
wavelet transform on gpu. In Proceedings of ACM Work-
shop on General Purpose Computing on Graphics Proces-
sors, pages C—41, 2004.

Wikipedia. Flops — wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?
title=FLOPS&01did=84987291, 2006. [Online; ac-
cessed 1-November-2006].

S. Wolfram. Random sequence generation by cellular au-
tomata. Adv. Appl. Math., 7(2):123-169, 1986.

M. L. Wong, T. T. Wong, and K. L. Fok. Parallel evolution-
ary algorithms on graphics processing unit. In Proceedings
of IEEE Congress on Evolutionary Computation 2005 (CEC
2005), volume 3, pages 2286-2293, 2005.

Q. Yu, C. Chen, and Z. Pan. Parallel Genetic Algorithms on
Programmable Graphics Hardware. Lecture Notes in Com-
puter Science, 3612:1051, 2005.

IEE l-:

COMPUTER
SOCIETY

21st International Symposium on High Performance Computing Systems and Applications(HPCS'07)
0-7695-2813-9/07 $20.00 © 2007 IEEE

