
MOAZ: A Multi-Objective AutoML-Zero Framework
Ritam Guha

guharita@msu.edu
Michigan State University

East Lansing, Michigan, USA

Wei Ao
aowei@msu.edu

Michigan State University
East Lansing, Michigan, USA

Stephen Kelly
kellys32@mcmaster.ca
McMaster University

Hamilton, Ontario, Cananda

Vishnu Boddeti
vishnu@msu.edu

Michigan State University
East Lansing, Michigan, USA

Erik Goodman
goodman@msu.edu

Michigan State University
East Lansing, Michigan, USA

Wolfgang Banzhaf
banzhafw@msu.edu

Michigan State University
East Lansing, Michigan, USA

Kalyanmoy Deb
kdeb@egr.msu.edu

Michigan State University
East Lansing, Michigan, USA

ABSTRACT
Automated machine learning (AutoML) greatly eases human efforts
in architecture engineering. However, mainstream AutoML meth-
ods like neural architecture search (NAS) are customized for well-
designed search spaces wherein promising architectures are densely
distributed. In contrast, AutoML-Zero builds machine-learning al-
gorithms using basic primitives and can explore novel architectures
beyond human knowledge. AutoML-Zero shows the potential to
deploy machine learning systems by not taking advantage of ei-
ther feature engineering or architectural engineering. In its current
form, it only optimizes a single objective like accuracy and has no
mechanism to ensure that the constraints of real-world applica-
tions are satisfied. We propose a multi-objective variant of AutoML-
Zero called MOAZ, that distributes solutions on a Pareto front by
trading off accuracy against the computational complexity of the
machine learning algorithm. In addition to generating different
Pareto-optimal solutions, MOAZ can effectively explore the sparse
search space to improve search efficiency. Experimental results on
linear regression tasks show MOAZ reduces the median complexity
by 87.4% compared to AutoML-Zero while accelerating the median
target performance achievement speed by 82%. In addition, our pre-
liminary results on non-linear regression tasks show the potential
for further improvements in search accuracy and for reducing the
need for human intervention in AutoML.

KEYWORDS
AutoML, Evolutionary Algorithms, Multi-objective search.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590391

ACM Reference Format:
Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik Goodman, Wolf-
gang Banzhaf, and KalyanmoyDeb. 2023.MOAZ: AMulti-Objective AutoML-
Zero Framework. In Genetic and Evolutionary Computation Conference
(GECCO ’23), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3583131.3590391

1 INTRODUCTION
Two broad considerations guide design of Machine Learning (ML)
algorithms—building predictive models that: 1) optimize an objec-
tive function, while 2) minimizing computational complexity. While
a model’s predictive power is the primary measure of quality, the
energy required to build and deploy the model is a common en-
gineering constraint for real-world systems and, from a broader
societal perspective, is a critical consideration given the current
climate crisis [32]. Efficiency is especially critical in the develop-
ment of deployable algorithms because 1) each model is executed
multiple times at scale, and 2) for models deployed on low-power
embedded hardware [15], it is critical to consider the computational
complexity of the model. So, it is important to treat ML development
as a multi-objective problem, where one objective is the predictive
accuracy of a model and the other objective is its computational re-
quirement. Additional objectives can also be introduced depending
on the application area.

In recent years, ML has benefited greatly from a transition from
feature engineering [10] to architecture engineering [11]. For ex-
ample, ResNets [22], Transformers [14], and Graphical Neural Net-
works [24] are designed for processing vision, language, and graph-
ical data, but designing the associated architecture is a trial-and-
error procedure which requires much human effort. Automated
machine learning (AutoML) [13, 16, 17] is proposed to reduce this
need for human effort. The goals of AutoML are to make ML more
accessible to non-ML experts, improve the efficiency of ML systems,
and accelerate research in Artificial Intelligence (AI) application
development [18]. Automating a search through the vast space of al-
gorithms is a daunting task well suited to Evolutionary Algorithms
(EAs), in particular, Genetic Programming (GP) [3, 20], and a vari-
ety of powerful methods have recently appeared in the literature
[7, 21, 23, 26, 28]. AutoML-Zero (AZ) [28] has shown how, starting

485

https://orcid.org/0000-0002-1375-777X
https://orcid.org/0000-0003-1449-936X
https://orcid.org/0000-0002-6071-4705
https://orcid.org/0000-0002-8918-9385
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0001-7402-9939
https://doi.org/10.1145/3583131.3590391
https://doi.org/10.1145/3583131.3590391
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590391&domain=pdf&date_stamp=2023-07-12


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik Goodman, Wolfgang Banzhaf, and Kalyanmoy Deb

with only basic mathematical operations as building blocks, EAs
can build complete machine learning algorithms that incorporate
widely-used, expert-designed techniques such as backpropagation.
The method has initially been demonstrated under simple regres-
sion problems and well-known image classification benchmarks
such as CIFAR-10. The objectives of this study are to expand the
breadth of real-life applicability for AZ by showing how the method
can be applied to ML problems and explicitly address computation
simplicity and efficiency in the search process. The effect of multi-
objective AutoML has also been studied by Pfisterer et. al in [25]
which proposed a multi-objective income prediction pipeline with
the two objectives of misclassification error and fairness.

We have replaced the search algorithm of AZ with a modified
version of NSGA-II [9]. The basic version of NSGA-II was updated to
support the needs of algorithm development in the AZ framework.
We have named the new frameworkMulti-Objective AZ (MOAZ). In
this paper, we demonstrate that making the search algorithm multi-
objective yields two improvements over AZ: 1) the complexity of the
resulting algorithms becomesmuch smaller compared to algorithms
discovered by AZ, and 2) the success rate of the algorithm search
improves significantly. In each iteration of a multi-objective search,
it maintains a diversity of the discovered solutions in terms of
different objectives, which in turn improves the search efficiency
and helps to discover better solutions than single-objective variants
with a similar amount of effort.

The rest of the paper is organized as follows: Section 2 gives a
brief introduction to the AZ framework. The main modifications
over AZ used to build MOAZ are provided in Section 3. The experi-
mental analysis of the application of MOAZ on a linear regression
problem and some preliminary results on a non-linear regression
problem is presented in Section 4. Finally, the paper is concluded
in Section 5.

2 AUTOML-ZERO (AZ) APPROACH
In this section, we have described the AZ approach, which is a
precursor to this work, in a generic AutoML setting. The AZ pro-
cess introduced by Real et. al in [28] exhibits the power of EAs
to discover from scratch fully functional ML algorithms by using
simple operations. Any AutoML process can be defined by its solu-
tion representation, search space, search process, and evaluation
strategy. We can define AZ in this format as follows:

Solution Representation: Any solution in AZ is an ML algo-
rithm represented by virtual register machine instructions like in
Linear Genetic Programming [4], but manipulating more complex
data structures (scalars, vectors, or matrices). Following the ba-
sic structure of supervised ML algorithms, it divides an algorithm
into three components: Setup, Predict, and Learn. The job of the
search algorithm is to populate these components with appropriate
instructions.

Search Space: The AZ search space consists of 65 fundamen-
tal operations like addition, subtraction, multiplication, etc. These
instructions are used in sequence to construct each of the compo-
nents of an AZ solution. A list of all the operations is mentioned
in the supplementary material. The search algorithm must be ef-
ficient enough to combine those simple operations to synthesize
complicated ML algorithms.

Search Algorithm: The authors of [28] have used Regularized
Evolution (RE) [27], which is a popular EA for single-objective
optimization tasks.

Evaluation: As AZ attempts to synthesize ML algorithms, the
resulting algorithms should have the ability to learn from existing
data and generalize to new data. To evaluate the generalization abil-
ity of the searched algorithms over regression, AZ creates multiple
train and test datasets with random data samples. Each solution
algorithm is trained and tested on each of these datasets and its
mean test accuracy serves as the fitness for the solution algorithm.

3 MULTI-OBJECTIVE AUTOML-ZERO (MOAZ)
APPROACH

There are several improvements to the existing AZ approach that
can be achieved through a multi-objective formulation, which we
discuss in the following:
• The AZ framework uses a single-objective evolutionary
algorithm called Regularized Evolution (RE) [27]. However,
most real-world problems are multi-objective (2 − 3 objec-
tives) [8] or many-objective (> 3 objectives) [12] in nature.
As RE is dealing with a single objective, there is no explicit
operation to maintain diversity in the population. So, it can
easily get stuck in local optima and the only way to avoid
it is to restart the process. AZ typically uses several restarts
to escape from local optima.
• The ultimate goal of developing such algorithmic search pro-
cedures is to reduce the need for human intervention. It is
a well-known fact that the stochasticity of GP leads to re-
dundancy in final solutions [1, 2, 20, 31]. In linear GP (LGP)
systems, algorithms exist to extract the relevant semantics of
a genetic program [4]. This can be done for each individual
prior to execution and saves computational effort. However,
in earlier work on AZ this was not done, either because it
is more complicated due to the structure or considered not
worthwhile. As a result, the final algorithms hadmany re-
dundant instructions which had to be manually analyzed
and removed from the algorithms before determining their
functions. This final step requires significant human inter-
vention. While there are also some post-processing tools
for LGP [6, 30] that can analyze the syntax and semantics
of resulting algorithms and remove ineffective instructions
after a final algorithm has been discovered, here we pursue
a different avenue and develop a multi-objective approach.

The goal of the method proposed here is to modify the basic
AZ framework to make it applicable to more realistic situations
involving multiple conflicting objectives and also to reduce the
computational load and redundancy of the discovered algorithms.
For this purpose, we have replaced the search algorithm in AZ with
a modified version of NSGA-II.

3.1 Formulating Multiple Objectives
When we are dealing with a single-objective optimization problem,
the optimizer considers only one objective. So, two solutions having
the same objective scores are treated in exactly the same way. For
example, if a simple algorithm and a complicated algorithm are
providing the same accuracy, they cannot be differentiated and the

486



MOAZ: A Multi-Objective AutoML-Zero Framework GECCO ’23, July 15–19, 2023, Lisbon, Portugal

search process might arbitrarily choose the complicated algorithm.
For this reason, in the proposed approach, we are adding a new
objective to the search process which is a measure of the computa-
tional complexity of the algorithms. Thus, the problem turns into
a bi-objective optimization problem. Adding an additional objec-
tive has more than one benefit. Past work [5, 19] have shown that
converting a single-objective optimization problem into a multi-
objective version can be more efficient in avoiding local optima and
improving the speed of reaching optimal solutions.

3.2 Objective Definition
The two objectives used for the search process are accuracy and
computational complexity, where we want to maximize the accu-
racies and minimize the computational complexities of the ML
algorithms. As a standard practice in multi-objective optimization,
we convert both objectives to minimization objectives by replacing
the accuracy with the error rate. The final optimization formulation
then becomes:

min
𝑥∈𝑆

{𝑒𝑟𝑟𝑜𝑟 (𝑥), 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑥)},

subject to lb𝑒𝑟𝑟𝑜𝑟 ≤ 𝑒𝑟𝑟𝑜𝑟 (𝑥) ≤ ub𝑒𝑟𝑟𝑜𝑟 ,
lb𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 ≤ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝑥) ≤ ub𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 .

(1)

where lberror and uberror represent the lower and upper bounds on
the acceptable error of the ML algorithms, while lbcomplexity and
ubcomplexity represent lower and upper bounds on the acceptable
complexity. These constraints on the objectives become important
formulti-objective optimization becausewe are not really interested
in solutions having very high errors or complexity. So we add these
constraints to generate more solutions in the region of interest. It is
not necessary to add lower bounds for the objectives that we have
used, but we wanted to make the formulation more generalistic
as other objectives might benefit from having a lower bound. In
order to compute the complexity of the ML algorithms, we first
approximate the FLOPs required by every basic operation. Then
the model complexity can be defined as the sum of the FLOPs used
by the operations of an algorithm.

3.3 Search Algorithm
MOAZ uses the same search space and solution representation
as AZ, but when we are working with multiple objectives, we
need more sophisticated algorithms to maintain a diversified set
of solutions to find trade-off points along all the objectives. NSGA-
II is one of the most popular multi-objective optimization algo-
rithms in the literature. It is a modular algorithm with different
components which can interact independently of each other. This
property makes it highly customizable and extendable to different
problems. In this work, we have customized NSGA-II’s selection
operation—more specifically, the dominance checking operation,
and the crossover operator, to make it applicable in MOAZ. Typi-
cally, mutation serves as a local search process and in most cases,
the child solutions are close to the parent solutions after mutation.
In order to maintain sufficient diversity in the population, we need
to add a crossover operation along with mutation. In the following
subsections, we have explained the modifications suggested for
NSGA-II to make it applicable to the MOAZ framework.

3.3.1 Domination Checking. Domination checking is one of the
most important operations in NSGA-II. It is used extensively across
the algorithm for comparing candidate solutions and dividing them
into different quality fronts. In the context of MOAZ, we need to
compare two ML algorithms with respect to two criteria: error and
complexity. One of the interesting intuitions we used to modify
the search is that out of the three components of AZ algorithms,
the Predict component is called most often, followed by Learn
and finally Setup. In deployment, when the setup and learning
are over, the trained algorithm is just used for inference over mul-
tiple inputs and the Predict component is the only component
that gets used after deployment. So, we can assign importance
to reduce the complexity of these components in the following
order: Predict → Learn → Setup. Intuitively, a working algo-
rithm with simpler Predict will be desired over another working
algorithm with more complex Predict because Predict is used
much more often than the other components. That is why we have
added a lexicographic comparison for the complexities of the dif-
ferent components. The constraint violations for each algorithm
are computed using Algorithm 1, where the ⟨𝑥⟩ operator indicates
max(𝑥, 0). Algorithm 2 illustrates the strategy to perform lexico-
graphical complexity comparison between a pair of algorithms.
Finally, the overall constrained domination check is performed ac-
cording to Algorithm 3. In Lines 4-15, we compare two algorithms
when at least one of them is violating constraints mentioned in
Equation (1). If one of the algorithms is violating constraints and
the other one is not, the latter algorithm is said to dominate the
former one. If both the algorithms are violating constraints, the
algorithm with the lower constraint violation score obtained from
Algorithm 1 is said to dominate the other one. Lines 16-32 represent
the situation when both algorithms are not violating any constraint.
Then if one algorithm has better objective values compared to the
other one, the first algorithm is said to dominate the other one, else
both of them become non-dominating to each other.

3.3.2 Component Crossover. As different instructions in an algo-
rithm are linked together, it is important to maintain the linkage and
come up with a recombination operation (crossover+mutation) that
can maintain the associativity among the instructions (instruction-
level linking) as well as across different components (component-
level linking). If we use a crossover at the instruction level (e.g.
crossing instruction 5 of parent 1 with instruction 5 of parent 2), it
becomes difficult to maintain both linkages because we do not know
if the instructions being recombined are doing similar functions
in the two algorithms. Moreover, the sizes of the algorithms can
be different and this makes it difficult to perform instruction-level
crossovers. One approach to maintaining the linkage among in-
structions and ensuring that the sizes of the models do not become
an issue is to perform crossover at the component level. The idea
for the component-level crossover is to cross components from
different parents (e.g. Setup from parent 1 with the Setup from
parent 2). This ensures that instruction-level linkage in a single
component function remains unaltered. On the other hand, as the
component functions are having similar goals for both algorithms,
the component-level linkage is better compared to a purely posi-
tional approach.We expect the mutation operator to take care of the
instruction-level linkage. MOAZ uses the same mutation strategies

487



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik Goodman, Wolfgang Banzhaf, and Kalyanmoy Deb

as AZ (e.g. insert instructions, remove instructions, alter parame-
ters, etc.). So for example, if a particular instruction is not useful in
an algorithm, it can be removed using a mutation operation.

Algorithm 1 Constraint Violation Computation (𝐶𝑉𝐶) . ⟨𝛼⟩ = 𝛼 ,
if 𝛼 > 0; zero, otherwise.
Input: 𝑓 𝑖𝑡 , lb𝑒𝑟𝑟𝑜𝑟 , ub𝑒𝑟𝑟𝑜𝑟 , lb𝑐𝑜𝑚𝑝 , ub𝑐𝑜𝑚𝑝

Output: 𝑐𝑣
Initialization: 𝑐𝑣 ← 0

1: 𝑐𝑣 ← 0
2: 𝑐𝑣 ← 𝑐𝑣 + ⟨𝑓 𝑖𝑡 .𝑒𝑟𝑟𝑜𝑟 − ub𝑒𝑟𝑟𝑜𝑟 ⟩ + ⟨lb𝑒𝑟𝑟𝑜𝑟 − 𝑓 𝑖𝑡 .𝑒𝑟𝑟𝑜𝑟 ⟩
3: 𝑐𝑣 ← 𝑐𝑣 + ⟨𝑓 𝑖𝑡 .𝑐𝑜𝑚𝑝 − ub𝑐𝑜𝑚𝑝 ⟩ + ⟨lb𝑐𝑜𝑚𝑝 − 𝑓 𝑖𝑡 .𝑐𝑜𝑚𝑝⟩
4: return 𝑐𝑣

Algorithm 2 Lexicographic Comparison of Complexity (𝐿𝐶𝐶)
Input: 𝐶1, 𝐶2 {𝐶𝑖 denotes complexity of algorithm 𝑖}
Output: 𝑓 𝑙𝑎𝑔

1: if 𝐶1 .Predict < 𝐶2 .Predict then
2: 𝑓 𝑙𝑎𝑔← 1
3: else if 𝐶1 .Predict > 𝐶2 .Predict then
4: 𝑓 𝑙𝑎𝑔← −1
5: else
6: if 𝐶1 .Learn < 𝐶2 .Learn then
7: 𝑓 𝑙𝑎𝑔← 1
8: else if 𝐶1 .Learn > 𝐶2 .Learn then
9: 𝑓 𝑙𝑎𝑔← −1
10: else
11: if 𝐶1 .Setup < 𝐶2 .Setup then
12: 𝑓 𝑙𝑎𝑔← 1
13: else if 𝐶1 .Setup > 𝐶2 .Setup then
14: 𝑓 𝑙𝑎𝑔← −1
15: else
16: 𝑓 𝑙𝑎𝑔← 0
17: end if
18: end if
19: end if
20: return 𝑓 𝑙𝑎𝑔

4 EXPERIMENTS
In this section, we have explained some of the empirical results we
obtained while applying the MOAZ framework to linear regression
problems. The results obtained are mainly compared with those of
the basic AZ framework. Finally, we also show some results on a
non-linear problem 1.

4.1 Linear Regression Problem Setup
For testing MOAZ, we have formulated an d-dimensional linear
regression problem. The dataset for the linear regression problem
is created by sampling some random d-dimensional data points
and corresponding d-dimensional weight vectors from the standard
Gaussian distribution N(0, 1). The weights are then multiplied by
the corresponding data points to create the actual labels of the
1Implementation details for these experiments can be found in the following Github
repository: https://github.com/Ritam-Guha/moaz.

Algorithm 3 Customized dominance check
Input: 𝑓 𝑖𝑡1, 𝑓 𝑖𝑡2, lb𝑒𝑟𝑟𝑜𝑟 , ub𝑒𝑟𝑟𝑜𝑟 , lb𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 , ub𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

Output: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒

# run Algorithm 1 over the fitnesses to compute the constraint
violations.

1: 𝑐𝑣1 ← 𝐶𝑉𝐶 (𝑓 𝑖𝑡1, lb𝑒𝑟𝑟𝑜𝑟 , ub𝑒𝑟𝑟𝑜𝑟 , lb𝑐𝑜𝑚𝑝 , ub𝑐𝑜𝑚𝑝 )
2: 𝑐𝑣2 ← 𝐶𝑉𝐶 (𝑓 𝑖𝑡2, lb𝑒𝑟𝑟𝑜𝑟 , ub𝑒𝑟𝑟𝑜𝑟 , lb𝑐𝑜𝑚𝑝 , ub𝑐𝑜𝑚𝑝 )

# run Algorithm 2 over the fitnesses to get the lexicographic
comparison results.

3: 𝑙𝑒𝑥_𝑐𝑜𝑚𝑝 ← 𝐿𝐶𝐶 (𝑓 𝑖𝑡1 .𝑐𝑜𝑚𝑝, 𝑓 𝑖𝑡2 .𝑐𝑜𝑚𝑝)
# compare the algorithms for deciding dominance.

4: if 𝑐𝑣1 ≤ 0 and 𝑐𝑣2 > 0 then
5: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 1
6: else if 𝑐𝑣1 > 0 and 𝑐𝑣2 ≤ 0 then
7: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← −1
8: else if 𝑐𝑣1 > 0 and 𝑐𝑣2 > 0 then
9: if 𝑐𝑣1 = 𝑐𝑣2 then
10: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 0
11: else if 𝑐𝑣1 < 𝑐𝑣2 then
12: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 1
13: else
14: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← −1
15: end if
16: else
17: if 𝑓 𝑖𝑡1 .𝑒𝑟𝑟𝑜𝑟 < 𝑓 𝑖𝑡2 .𝑒𝑟𝑟𝑜𝑟 then
18: if 𝑙𝑒𝑥_𝑐𝑜𝑚𝑝 = 1 | | 𝑙𝑒𝑥_𝑐𝑜𝑚𝑝 = 0 then
19: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 1
20: else
21: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 0
22: end if
23: else if 𝑓 𝑖𝑡1 .𝑒𝑟𝑟𝑜𝑟 = 𝑓 𝑖𝑡2 .𝑒𝑟𝑟𝑜𝑟 then
24: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 𝑙𝑒𝑥_𝑐𝑜𝑚𝑝

25: else
26: if 𝑙𝑒𝑥_𝑐𝑜𝑚𝑝 = −1 | | 𝑙𝑒𝑥_𝑐𝑜𝑚𝑝 = 0 then
27: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← −1
28: else
29: 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 ← 0
30: end if
31: end if
32: end if
33: return 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒

regression problem. The number of training examples and valida-
tion examples for each dataset is pre-specified as 1,000 and 100,
respectively. The process is run on 10 such datasets to further an-
alyze the generalization capabilities of the found algorithms. The
final performance of an algorithm is defined as the mean of the
test errors computed over the 10 datasets. For our experiments, we
initially used the linear regression dimension as d=4.

For both MOAZ and AZ, the process stops when an algorithm
is discovered in a run that provides a mean target error (𝑒𝑇 ) of
10−1. If no such algorithm is found in a run, the process is restarted
with a different initial random population. At most 9 such restarts
are allowed for the process, making the maximum number of runs
10. The success rate (S𝑟 ) of a process is defined as the percentage
of times the process is able to find an acceptable algorithm. The

488

https://github.com/Ritam-Guha/moaz


MOAZ: A Multi-Objective AutoML-Zero Framework GECCO ’23, July 15–19, 2023, Lisbon, Portugal

number of evaluated algorithms to success (S𝑐 ) is the number of
algorithms evaluated before discovering an acceptable algorithm
for the first time.

4.2 Application to Linear Regression
4.2.1 AZ Solution. If we use one run for the basic AZ framework
for solving the linear regression problem, we obtain the solution
shown in Figure 1 that has a complexity of 136 as computed by
the proposed complexity measurement process. Although it is a
perfectly working solution, the question to ask is whether the
algorithm needs that many instructions to solve a simple linear
regression problem. The main objective function driving the search
in AZ is the error of the algorithm. If two algorithms having differ-
ent complexities are evaluated, they will have the same objective
value. So, there is no added incentive to bias the search toward low-
complexity solutions. That is why the final solution of the process
ends up looking unnecessarily complicated. Moreover, upon careful
observation, it is clear that this solution includes many redundant
operations and is much harder to analyze due to this complexity.

4.2.2 MOAZ Solution. For applying MOAZ to linear regression,
we must specify upper and lower bounds for complexity and error
values. We have used an upper bound of 0.6 for error and 100 for
complexity. The lower bounds are set as 0 for both. At the end of
each run, we expect to get a set of algorithms having errors in the
range [0, 0.6] and complexities in [0, 100].

After obtaining the Pareto front for the run, we select the solution
with the least complexity with sufficient error as the preferred
solution for the problem. One of these solutions can be represented
in an algorithmic format as shown in Figure 2. The complexity of the
algorithm is 28, which is much lower than the solution obtained by
AZ. Even for this solution, there are some redundant operations that
can be removed after manual analysis. But as we are now dealing
with an algorithm of complexity 28, it becomes easier to analyze
than in the AZ scenario. We can clearly see that the algorithm
has incorporated a backpropagation-like structure in the Learn
component. It uses a learning rate of 0.32291 which is stored in 𝑠3.
The algorithm computes the error between the prediction (𝑠1) and
label (𝑠0) and stores it in 𝑠2 memory. The corresponding gradients
get stored in 𝑣2which then gets added to the weight vector 𝑣1 in the
weight update stage. As the complexity of the resulting algorithm
is low, it was easier to analyze.

4.3 Analysis on Multiple Runs
In the case of EAs, it is standard practice to apply the process
multiple times to the same problem and to draw conclusions from
multiple runs, due to the stochasticity of the process. In the present
situation, both AZ and MOAZ have been applied to the linear
regression problems 30 times. We have combined all the algorithms
obtained for AZ and MOAZ in Figure 3 and Figure 4, respectively.
The final non-dominated points are colored differently. From the
plots, it can be seen that both frameworks can provide workable
solutions in the end, but MOAZ solution complexities are lower
compared to those of AZ. The solutions for both AZ and MOAZ
have been compared in Table 1. There we can see that AZ is able to
converge (discover an algorithm with ≤ 10−1 error) approximately
67% (S𝑟 = 66.67) of the time, whereas MOAZ is able to get success

# sX/vX: scalar/vector memory
# at address X.
def Setup():
v2 = s2 * v0
s3 = s0 * s0
s2 = dot(v1, v2)
s2 = dot(v1, v1)
s1 = 0.0323415
s2 = -0.885379
s2 = s0 * s2
s3 = s2 * s0
s2 = dot(v2, v1)

def Predict(v0):
v2 = v2 + v1
s3 = dot(v2, v2)
v1 = v0 + v2
v1 = s3 * v0
s1 = dot(v2, v0)
s1 = dot(v0, v2)
s2 = dot(v1, v2)
s2 = dot(v0, v1)
v1 = s0 * v1
s3 = dot(v1, v0)

def Learn(v0, s0):
s3 = dot(v2, v1)
s3 = s2 - s1
v1 = v1 + v2
s3 = s1 - s0
s1 = dot(v1, v1)
v2 = v2 + v1
v2 = v2 + v2
s2 = -0.127324
v2 = s3 * v0
v2 = s2 * v2

Figure 1: Illustration of one of the linear regression algo-
rithms found by the basic AZ framework with a complexity
of 136. Both the training and testing error for this algorithm
is 0.

100% of the time (S𝑟 = 100). Moreover, the median complexities of
the resulting algorithms are much higher in the case of AZ. The
number of evaluated algorithms before achieving success (S𝑐 ) for
AZ is calculated only for the runs where it could find an acceptable
algorithm. Even then, MOAZ was able to get an improvement of
approximately 82% in S𝑐 . So, we can clearly see that MOAZ is
consistently outperforming AZ in terms of both complexities of the
resulting algorithms and success. One aspect to note here is that
MOAZ does not compromise anything in terms of error, which is
clear from the swarm plot represented in Figure 5. This plot shows
the distributions of errors for all the algorithms obtained by both
AZ and MOAZ. We can see that MOAZ has a wider distribution
of errors, between 0 and 0.6, as these two values were set as the
bounds on the error in MOAZ. In the case of AZ, the distribution is
more concentrated toward zero error solutions, which is expected
as AZ only focuses on reducing error. On the other hand, if we look
at the swarm plot for the complexity of the resulting algorithms
in Figure 6, we can see that MOAZ algorithms are concentrated
towards the lower end of the spectrum (between 20 and 60), whereas
AZ algorithms are distributed between 60 and 140. These plots make

489



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik Goodman, Wolfgang Banzhaf, and Kalyanmoy Deb

# sX/vX: scalar/vector memory
# at address X.
def Setup():
s2 = s0 - s3
s1 = s2 * s1
s1 = s1 * s3
s3 = s2 * s1
s1 = s0 * s2

def Predict(v0):
# v0: data sample
s1 = s0 - s0
s2 = s2 * s3
s1 = dot(v0, v1) # prediction
s2 = s3 - s1
s3 = 0.32291

def Learn(v0, s0):
# v0: data sample
# s0: label
s2 = s0 - s1 # compute error
s3 = s2 * s3
v2 = s3 * v0 # gradient
v1 = v2 + v1 # weight update
s3 = s0 - s2

Figure 2: Illustration of one of the linear regression algo-
rithms found by the MOAZ framework with a complexity of
28. This algorithm also has 0 training and test errors.

Table 1: Comparison of median complexity (C) of the discov-
ered algorithms, number of algorithms evaluated before suc-
cess (S𝑐 ), and success percentages (S𝑟 ) for 30 runs of AZ and
MOAZ framework. The standard deviations are also shown
in parentheses.

Criterion AZ MOAZ
C 79.5 (16.8) 30 (2.17)
S𝑐 8.9×105 (6.95×105) 1.6 × 105 (1.8 × 105)
S𝑟 66.67 100

it clear that MOAZ is able to provide consistent algorithms with
the required error and complexity values.

60 70 80 90 100 110 120 130
complexity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r AZ non-PF solutions
AZ PF

Figure 3: Combined results of AZ runs. Here PF refers to the
Pareto Front of the combined results of AZ.

25 30 35 40 45 50
complexity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro

r MOAZ non-PF solutions
MOAZ PF

Figure 4: Combined results of MOAZ runs. Here PF refers to
the Pareto Front of the combined results of AZ.

MOAZ AZ
framework

0.0

0.1

0.2

0.3

0.4

0.5

0.6

er
ro
r

framework
MOAZ
AZ

Figure 5: Swarm Plot comparison between AZ and MOAZ for
error. In this plot, if the algorithms have equal errors, they
are placed on the same line side-by-side.

MOAZ AZ
framework

20

40

60

80

100

120

140

co
m
pl
ex
ity

framework
MOAZ
AZ

Figure 6: Swarm Plot comparison between AZ and MOAZ
for complexity. In this plot, if the algorithms have equal
complexity, they are placed on the same line side-by-side.

4.3.1 Search Speed. AZ uses multiple restarts to search for an
algorithm that is sufficiently good in terms of the error to stop
processing. If it was not able to find a working solution (defined
by a sufficient fitness measure) within a fixed number of algorithm

490



MOAZ: A Multi-Objective AutoML-Zero Framework GECCO ’23, July 15–19, 2023, Lisbon, Portugal

evaluations, it stops and restarts the search with a different initial
population. We were interested in determining the number of algo-
rithm evaluations (S𝑐 ) required to find the first solutions that meet
the requirement of sufficient error. Clearly, a lower S𝑐 is always
preferred.

MOAZ AZ
framework

0.0

0.5

1.0

1.5

2.0

2.5


c

1e6
framework

MOAZ
AZ

Figure 7: Comparison of the number of algorithm evalua-
tions before success (S𝑐 ) for AZ and MOAZ for the linear
regression problem. MOAZ values are more concentrated to-
wards the lower end of the spectrum. This figure does not
include approximately 33% of the points for which AZ could
not achieve success.

A comparison of the number of algorithm evaluations required
before success for AZ and MOAZ over 30 runs is shown in Figure 7.
It can be seen that the values for MOAZ are more concentrated
towards the lower end of the spectrum. The figure does not contain
runs of AZ for which it could not achieve any success. Again, MOAZ
is showing more consistent results than AZ for the linear regression
problem. MOAZ is able to converge or find acceptable solutions
earlier than AZ. This phenomenon can be attributed mainly to
the nature of the diversity maintained in the population of MOAZ.
As it is trying to optimize two conflicting objectives, it is able to
better preserve diversity in the population. AZ solutions are losing
diversity faster because a locally optimal solution has the tendency
to attract other solutions, and eventually, the population collapses.
MOAZ is able to avoid this collapse to local optima by maintaining
diversity because of its multi-objective character. For this reason,
MOAZ requires fewer restarts than AZ. A Wilcoxon Signed-Rank
test revealed that the MOAZ results on error, algorithm complexity,
and the number of evaluated algorithms to success were statistically
significant compared to AZ results with p-values of 0.02, 1.9× 10−9
and 0.002, respectively.

4.4 Scaling Experiment
So far, we have experimented with a fixed number of features d=4.
To extend this to more dimensions, we have tested with d=8, 16, 32
for 30 runs of each of the frameworks. As we increase the number
of dimensions for the linear regression problem, the search com-
plexity becomes more difficult and we can expect to get less success
rate for both AZ and MOAZ. How different is the performance of
AZ and MOAZ as the number of dimensions is increased? We have
compared the two frameworks in terms of the success rates, for

4 8 16 32
# features

20

40

60

80

100

su
cc

es
s r

at
e 

(in
 %

)

AZ
MOAZ

Figure 8: Rate of success (S𝑟 ) for AZ and MOAZ for varying
dimensions of features for linear regression.

multiple runs and for varying dimensionality. From Figure 8, we can
see that the performance of AZ is quite arbitrary as the success rate
is not always decreasing as the dimensions go up. For example, AZ
got more success when the feature size is 16, as compared to when
the size is 8. On the other hand, MOAZ is showing very consistent
results. The number of convergences drops as the dimensions in-
crease. At d=32, it is still able to get approximately 80% success rate,
whereas AZ solutions achieve less than 20% success.

4.5 Non-linear Regression
While testing on the linear regression problem, we have seen that
MOAZ is able to clearly outperform AZ in simple tasks. So, we
wanted to extend the experiments to check if the performance
holds for more complicated tasks like non-linear regression. The
same non-linear regression tasks used in [29] are utilized for these
experiments where the data is generated using a teacher neural
network and the process needs to find the code for the teacher
neural network2. The Pareto fronts for both AZ and MOAZ are
displayed in Figure 9, showing that MOAZ is able to find a distri-
bution of solutions within an [0, 0.35] error range while reducing
the complexity to some extent. The teacher algorithm has a com-
plexity of 75 and in an ideal scenario, we should obtain a solution
algorithm exactly matching that number. AZ found a close solution
having a complexity of 107, while MOAZ found a close solution
having a complexity of 95. MOAZ has a further advantage: It has
found multiple approximations for the teacher network with some
of them even having lesser complexities than the original neural
network, trading off simplicity/complexity for error. This makes it
a more powerful tool.

5 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a multi-objective version of the
basic AutoML-Zero framework, which we called MOAZ. It has
incorporated the capability of handling two conflicting objectives:
the error rate of an algorithm and the corresponding complexity
computed as a count of FLOPs. As MOAZ attempts to minimize the
complexity of the algorithms, the final results are simpler and more
2Please refer to the supplementary materials for more information about the non-linear
regression problem.

491



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik Goodman, Wolfgang Banzhaf, and Kalyanmoy Deb

50 60 70 80 90 100 110 120
complexity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

er
ro

r

MOAZ PF solutions
AZ PF solutions

Figure 9: MOAZ and AZ PF for a non-linear problem under
consideration.

interpretable. These algorithms require less human intervention
in terms of final processing (redundancy reduction) by offering
progress toward the goal of AutoML: removing human designers
from the loop for developing machine learning algorithms. Even
though the current implementation of MOAZ uses the complexity
of the algorithms as a secondary objective, it can be replaced with
other objectives, such as deployability or energy efficiency.

For the linear regression problem, we have observed that MOAZ
is able to perform better than AZ in two ways: smaller complex-
ity of achieved algorithms with simultaneously reduced required
number of evaluations before success. MOAZ is able to achieve an
87.4% reduction in the median complexity and 82% improvement
in the number of evaluations required before success for a four-
dimensional linear regression problem. Even when we have scaled
up the dimensions of the linear regression problem, MOAZ has
shown better and more consistent success achievement capability
compared to AZ. Finally, we have also shown some preliminary
results on a non-linear regression problem. Multiobjectivizing a
problem, with a secondary but functionally helpful objective, has a
clear advantage, as demonstrated in this paper. In the future, MOAZ
can be applied to other more difficult problems, such as logistic
regression, reinforcement learning, etc. MOAZ can also be extended
to handle more objectives in the future.

REFERENCES
[1] Peter John Angeline. Genetic programming and emergent intelligence. Advances

in genetic programming, 1:75–98, 1994.
[2] Wolfgang Banzhaf and William B. Langdon. Some considerations on the reason

for bloat. Genetic Programming and Evolvable Machines, 3:81–91, 2002.
[3] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. Genetic

Programming—An Introduction: On the Automatic Evolution of Computer Programs
and Its Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1998. ISBN 155860510X.

[4] Markus Brameier and Wolfgang Banzhaf. Linear Genetic Programming. Springer,
2007.

[5] Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E Taylor, Daniel Kudenko,
and Ann Nowé. Multi-objectivization of reinforcement learning problems by
reward shaping. In 2014 international joint conference on neural networks (IJCNN),
pages 2315–2322. IEEE, 2014.

[6] Mauro Castelli, Leonardo Vanneschi, and Sara Silva. Semantic search-based
genetic programming and the effect of intron deletion. IEEE transactions on

cybernetics, 44(1):103–113, 2013.
[7] John D. Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Sergey Levine, Quoc V.

Le, Honglak Lee, and Aleksandra Faust. Evolving reinforcement learning algo-
rithms. CoRR, abs/2101.03958, 2021. URL https://arxiv.org/abs/2101.03958.

[8] Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages
403–449. Springer, 2014.

[9] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on
Evolutionary Computation, 6(2):182–197, 2002.

[10] Guozhu Dong and Huan Liu. Feature engineering for machine learning and data
analytics. CRC Press, 2018.

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. The Journal of Machine Learning Research, 20(1):1997–2017,
2019.

[12] Peter J Fleming, Robin C Purshouse, and Robert J Lygoe. Many-objective op-
timization: An engineering design perspective. In International conference on
evolutionary multi-criterion optimization, pages 14–32. Springer, 2005.

[13] Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl,
and Joaquin Vanschoren. An open source automl benchmark. arXiv preprint
arXiv:1907.00909, 2019.

[14] Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. Transformer
networks for trajectory forecasting. In 2020 25th international conference on
pattern recognition (ICPR), pages 10335–10342. IEEE, 2021.

[15] Walid A. Hanafy, Tergel Molom-Ochir, and Rohan Shenoy. Design considerations
for energy-efficient inference on edge devices. In Proceedings of the Twelfth ACM
International Conference on Future Energy Systems, e-Energy ’21, page 302–308,
New York, NY, USA, 2021. Association for Computing Machinery.

[16] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-
art. Knowledge-Based Systems, 212:106622, 2021.

[17] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl
for model compression and acceleration on mobile devices. In Proceedings of the
European conference on computer vision (ECCV), pages 784–800, 2018.

[18] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine
Learning - Methods, Systems, Challenges. Springer, 2019.

[19] Joshua D Knowles, Richard A Watson, and David W Corne. Reducing local
optima in single-objective problems by multi-objectivization. In International
conference on evolutionary multi-criterion optimization, pages 269–283. Springer,
2001.

[20] John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992. ISBN 0262111705.

[21] Michael A. Lones. Evolving continuous optimisers from scratch. Genetic Pro-
gramming and Evolvable Machines, 22(4):395–428, Dec 2021.

[22] Ishrat Zahan Mukti and Dipayan Biswas. Transfer learning based plant dis-
eases detection using resnet50. In 2019 4th International conference on electrical
information and communication technology (EICT), pages 1–6. IEEE, 2019.

[23] Mihai Oltean. Evolving Evolutionary Algorithms Using Linear Genetic Program-
ming. Evolutionary Computation, 13(3):387–410, 09 2005.

[24] Laurent Pagnier and Michael Chertkov. Physics-informed graphical neural
network for parameter & state estimations in power systems. arXiv preprint
arXiv:2102.06349, 2021.

[25] Florian Pfisterer, Stefan Coors, Janek Thomas, and Bernd Bischl. Multi-objective
automatic machine learning with autoxgboostmc. arXiv preprint arXiv:1908.10796,
2019.

[26] Rong Qu, Graham Kendall, and Nelishia Pillay. The general combinatorial opti-
mization problem: Towards automated algorithm design. IEEE Computational
Intelligence Magazine, 15(2):14–23, 2020.

[27] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized
evolution for image classifier architecture search. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages 4780–4789, 2019.

[28] Esteban Real, Chen Liang, David So, and Quoc Le. AutoML-zero: Evolving
machine learning algorithms from scratch. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 8007–8019. PMLR,
13–18 Jul 2020.

[29] Esteban Real, Chen Liang, David So, and Quoc Le. Automl-zero: Evolvingmachine
learning algorithms from scratch. In International Conference onMachine Learning,
pages 8007–8019. PMLR, 2020.

[30] Dong Song, Malcolm I Heywood, and A Nur Zincir-Heywood. A linear genetic
programming approach to intrusion detection. In Genetic and Evolutionary
Computation—GECCO 2003: Genetic and Evolutionary Computation Conference
Chicago, IL, USA, July 12–16, 2003 Proceedings, Part II, pages 2325–2336. Springer,
2003.

[31] Terence Soule and Robert B Heckendorn. An analysis of the causes of code
growth in genetic programming. Genetic Programming and Evolvable Machines,
3:283–309, 2002.

[32] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy
considerations for deep learning in NLP. CoRR, abs/1906.02243, 2019. URL
http://arxiv.org/abs/1906.02243.

492

https://arxiv.org/abs/2101.03958
http://arxiv.org/abs/1906.02243

	Abstract
	1 introduction
	2 AutoML-Zero (AZ) Approach
	3 Multi-Objective AutoML-Zero (MOAZ) Approach
	3.1 Formulating Multiple Objectives
	3.2 Objective Definition
	3.3 Search Algorithm

	4 Experiments
	4.1 Linear Regression Problem Setup
	4.2 Application to Linear Regression
	4.3 Analysis on Multiple Runs
	4.4 Scaling Experiment
	4.5 Non-linear Regression

	5 Conclusion and Future Work
	References

