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Abstract

Small world and scale–free network topologies commonly
exist in natural and artificial systems. Many mechanisms for
producing these topologies have been presented in the litera-
ture. We present an artificial regulatory network model gen-
erated by a duplication / divergence process on a randomly
generated genetic string and show that networks with small
world and scale–free topologies can be produced with some
regularity.

Introduction
Recently, there has been significant interest in small world
and scale–free network topologies and potential methods or
processes which may generate them (Romualdo et al., 2003;
Valverde et al., 2002; Barabasi et al., 2001; Barabasi and
Albert, 1999). In the majority of these contributions, the
mechanisms for generating such topologies are based on
preferential attachment (Romualdo et al., 2003; Valverde
et al., 2002; Barabasi and Albert, 1999). In this contribu-
tion we work within the framework of a model of an artifi-
cial regulatory network first presented by Banzhaf (Banzhaf,
2003a; Banzhaf, 2003b) generated by a duplication / diver-
gence process similar to that presented in (Romualdo et al.,
2003). However, their model operates directly on the nodes
and edges of the model, bypassing any genetic–type repre-
sentation of the network.

Here, we show that scale–free and small world network
topologies appear with some regularity in the gene–protein
network interaction diagram generated by parameterizing
the networks by the degree of matching between genes and
proteins and discuss possible implications. Duplication and
divergence are performed directly on the genetic–string, not
on the actual nodes and edges of the interaction network.

It has also been shown that this model can reproduce phe-
nomena found in natural genetic regulatory networks such
as heterochrony (Banzhaf, 2003a). As such, this model can
relate changes in the timing and intensity of gene expression
to tiny pattern changes on bit strings which could possibly
provide the algorithmic “ missing link ” between genotypes
subject to constant evolutionary changes and the remarkably
stable phenotypes found in the real world.

Background
Regulatory Networks
Regulatory networks are an important new research area in
biology (Bower and Boulouri, 2001; Davidson, 2001; Ki-
tano, 2001). With the realization that in higher organisms
only a tiny fraction of DNA is translated into proteins, the
question of what the rest of the DNA is actually doing be-
comes all the more pressing. Regulation appears to be a
very reasonable answer for a functional role for unexpressed
DNA. According to Neidthardt et al. (Neidhardt, 1996),
88% of the genome of the bacteriumE. Coli is expressed
with 11% suspected to contain regulatory information (also
see Thomas (Thomas, 1999)).

In addition, it has been recognized that the DNA informa-
tion controlling gene expression is the key to understanding
differences between species and thus to evolution (Hood and
Galas, 2003).

The three major genetic mechanisms, all tied to regulation
(Davidson, 2001) which allow such a variety of reactions of
living organisms to the pressure for survival are:

1. Interactions between the products of genes

2. Shifts in the timing of gene expression (heterochrony)

3. Shifts in the location of gene expression (spatial pattern-
ing)

These mechanisms allow nature to set up and control
the mechanisms of evolution, development and physiology.
Since many evolutionary effects can be traced back to their
regulatory causes, regulatory networks mediate between de-
velopment and evolution thus unfolding the patterns and
shapes of organism morphology and behaviour (Davidson,
2001; Banzhaf, 2003b).

Studying models of regulatory networks can help us un-
derstand some of these mechanisms providing lessons for
biology and in the area of artificial evolution.

Scale–Free Network Topologies
It has been found that a high degree of self–organization may
characterize the large–scale properties of complex networks



(Barabasi and Albert, 1999). Many researchers have shown
that the probabilityP(k) that the number of nodes connected
to k (vertex degree) other nodes in a network decays as a
power law, following: P(k) ∼ k−γ in systems as diverse as
the internet (Faloutsos et al., 1999), protein interaction net-
works (Wuchty, 2001), the electrical power grid of the west-
ern United States of America (Watts, 2003), the neuronal
network of the wormCaenorhabditis Elegans(Watts, 2003),
and the network of citations of scientific papers (Barabasi
et al., 2002).

It has thus been suggested that scale–free networks
emerge in the context of a dynamic network with the ad-
dition of new vertices connecting preferentially to vertices
which are highly connected in the network (Barabasi and
Albert, 1999), as well as through explicit optimization
(Valverde et al., 2002).

Small World Network Topologies

Small world graphs can be defined as any graph withn
vertices and average vertex degreek that exhibits L ≈
Lrandom(n,k) ∼ ln(n)

ln(k) , andC � Crandom∼ k
n for n � k �

ln(n) � 1 (Watts, 2003). C is referred to as the clus-
tering coefficient (if vertex v haskv neighbors, C =
2
n

∑n
v=1

(
kv(kv−1)

2

)
) of the network whileL is the character-

istic path–length of the network (average number of links
connecting two nodes).Lrandom andCrandom refer respec-
tively to the characteristic path–length and clustering coef-
ficient for a completely random graph with the samek and
n.

Like scale–free network topologies, the small world
topology has also been noted in many networks (including
those with scale–free topology) such as the electrical power
grid of the western United States of America (Watts, 2003),
the neuronal network of the wormCaenorhabditis Elegans
(Watts, 2003), and the network of film actors who have acted
in the same films (Watts, 2003).

Artificial Regulatory Network Model
Our artificial regulatory network (ARN) model is based on
work by Banzhaf (Banzhaf, 2003a; Banzhaf, 2003b). In this
model, the ARN consists of a genome represented by a bit
string with direction (i.e. 5’→ 3’ in DNA) and mobile “pro-
teins” which are equipped with bit patterns for interactions
with the genome. The proteins are able to wander about in
order to interact with the genome, notably at “regulatory”
sites located upstream (3’→ 5’ direction) from genes. At-
tachment to these sites inhibits or activates the production of
the corresponding protein thereby demonstrating the mech-
anisms of activation and inhibition.

Creation of the genome commences with the generation
of a random 32–bit string. This string is then used in a se-
ries of whole length duplications similar to those found in
nature (Wolfe and Shields, 1997) followed by mutations in

order to generate a genome of lengthLG. A “promotor”
bit sequence of 8–bits was then arbitrarily selected to be
“01010101”. In a genome generated by randomly choos-
ing “0” s and “1” s, this one–byte pattern can be expected
to appear with probability 2−8 = 0.39%. Since the promotor
pattern itself is repetitive, overlapping promotors or periodic
extensions of the pattern are not allowed, i.e. a bit sequence
of “0101010101” (10–bits) is detected as a single promotor
site starting at the first bit. The promotor signals the begin-
ning of a gene on the bit string which is analogous to an open
reading frame (ORF) on DNA - a long sequence of DNA that
contains no “stop” codon and therefore encodes all or part
of a protein. This gene is set to a fixed length oflgene= 5
32–bit integers which results in an expressed bit pattern of
160 bits for each gene. Therefore, genes can thus be created
by complete duplications of previously created genes, muta-
tion, and / or combinations of the end and starting sequences
of the genome during duplication.

Immediately upstream from the promotor exist two 32–bit
segments which represent the enhancer and inhibitor sites.
As previously mentioned, attachment of proteins to these
sites results in changes to protein production for the corre-
sponding genes. In this model, we assume only one regu-
latory site for the expression and one site for the suppres-
sion of protein production. This is a radical simplification
since natural genomes may have 5–10 regulatory sites that
may even be occupied by complexes of proteins (Davidson,
2001; Banzhaf, 2003b).

The model presented here completely disregards pro-
cesses such as transcription, and neglects elements such as
introns, RNA–like mobile elements and translation proce-
dures resulting in a different alphabet for proteins. This last
mechanism is replaced as follows: Each protein is a 32–bit
sequence which results from a many–to–one mapping of its
corresponding gene which contains five 32–bit integers. The
protein sequence is created by performing the majority rule
on each bit position of these five integers so as to arrive at
a 32–bit protein. Ties (not possible with an odd number for
lgene) for a given bit position are resolved by chance.

These proteins may then be examined to see how they
may “match” with the genome. This comparison is imple-
mented by using the XOR operation which returns a “1” if
both inputted bits are complementary. In this scheme, the
degree of match between the genome and the protein bit pat-
terns is specified by the number of bits set to “1” during an
XOR operation. In general it can be expected that a Gaus-
sian distribution results from measuring the match between
proteins and bit sequences in the random genome (Banzhaf,
2003b).

If we make the simplifying assumption that the occupa-
tion of two regulatory sites per gene modulates the expres-
sion of the corresponding protein, we may deduce an inter-
action network comprising the different genes and proteins
which can be parameterized by strength of match.



By examining the interaction networks at different match-
ing strengths (thresholds) we may obtain different network
topologies for the same connected network components. An
example is shown in Figs. 1 and 2. Each node in the dia-
gram represents a gene found in the genome along with its
corresponding protein forming a gene–protein pair. Edges in
the diagram represent some form of influence of one gene’s
protein on another gene. For the diagrams presented, a ran-
dom genome was created by the previously mentioned dupli-
cation and mutation procedure with the network interaction
diagrams being created at thresholds of 21 and 22.

It must be stressed that although the actual genome has
not changed, by simply changing the threshold parameter,
we have obtained a different network topology. It may be
noted by the more astute reader that the diagrams in Figs. 1
and 2 possess different numbers of genes and proteins. This
is due to the fact that only connected gene–protein pairs are
displayed in the diagrams. Should a change in the parame-
terized threshold lead to the creation of an isolated node, it
is deleted from the diagram. Also note that only the largest
network of interactions is displayed.

It is possible to have multiple clusters of gene–protein in-
teractions that are not interconnected. This is likely to occur
as the threshold level is increased. As connections between
gene–protein pairs are lost due to the threshold, each clus-
ter of gene–protein pairs begins to become isolated from the
others. This often occurs abruptly indicating a phase transi-
tion between sparse and full network connectivity.

Figure 1: Gene-protein interaction network for a random
genome at a threshold of 21 bits.

Figure 2: Gene-protein interaction network for a random
genome at a threshold of 22 bits.

Results
At mutation rates of 1% and 5%, 200 genomes were gener-
ated by 12 duplication events per genome leading to individ-
ual genomes of lengthLG = 131072. From these genomes,
the number of genes were then determined based on the
number of promotor patterns present. The distribution of the
number of genes present in the genome of sizeLG is shown
in Figs. 3 & 4.
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Figure 3: Histogram of the number of genes in each genome
(200 genomes) fitted to a power law:P(g) ∼ g−γ for a mu-
tation rate of 1.0%. γ was calculated to be 0.9779.
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Figure 4: Histogram of the number of genes in each genome
(200 genomes) fitted to a power law:P(g) ∼ g−γ for a mu-
tation rate of 5.0%.

It can be observed that the distribution of the number of
genes in Fig. 3 follows a power–law distribution. As well, if
we turn the mutation rate lower to 0.1% (results not shown)
the distribution of the number of genes again shows a scale–
free like distribution.

However, in Fig. 4 the apparent distribution is disrupted.
This is attributed to the higher rate of mutation. At such a



mutation rate, the rewiring of the network becomes so preva-
lent that it begins to disrupt the duplication of nodes leading
to a randomly connected network. For an 8 bit promotor, the
probability that it remains intact after one duplication event
is only 66% at a mutation rate of 5%. Therefore, it can be ex-
pected that many of the genes copied during the duplication
process will be subsequently destroyed in later duplication
steps. However, there will also be other genes which arise
from this higher mutation rate. But, these new genes will
also be easily destroyed via mutation. Genomes which start
with very large numbers of genes are disrupted early on in
the duplication process by mutation, while those with few
genes obtain additional genes through mutation.

To test this explanation, we created genomes of lengthLG

completely at random without the use of duplication / diver-
gence. The distribution of these completely randomly gen-
erated networks are shown in Fig. 5. As can be seen, this
distribution is quite similar to that generated in Fig. 4 lend-
ing additional support to the hypothesis that at 5% mutation
the network topology becomes randomized. Therefore, we
may use the distribution of the number of genes in networks
generated by duplication / divergence as an estimate of the
effect of mutation rate on the network as compared to ran-
domly generated genomes.
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Figure 5: Histogram of the number of genes in 200 genomes
whose bits have been chosen at random.

In general, the duplication process, despite being per-
formed directly on the genetic string can be considered to
be similar to the mechanism of preferential attachment.

Consider the duplication process on a string which con-
tains multiple genes while neglecting the effects of mutation.
For the case of this argument, we also assume that no addi-
tional genes are created from a duplication event by joining
the end and beginning of one genome string. We start with a
network of 5 gene–protein pairs connected as shown on the
left side of Fig. 6 and proceeding through a single duplica-
tion event generating the network shown on the right side.
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Figure 6: An example of the effect of two duplication events.
Highly connected (shaded) nodes become even more higly
connected (preferential attachment). Each node represents
a gene / protein pair; each edge represents an interaction
between gene / protein pairs.

It can be seen that the more highly connected nodes on
the left, nodes 1 and 2 and their copies 6 and 7 (shown in
gray), become even more highly connected after a single du-
plication event. This can again be seen in the third diagram
which shows the result of another duplication event. As the
number of duplication events increases, the difference in the
number of connections between highly connected nodes and
less connected nodes increases. This can be thought of as a
form of preferential attachment since nodes that are already
highly connected will become even more so after subsequent
duplication events. Preferential attachment has been shown
to be a mechanism which can generate scale–free networks
(Barabasi and Albert, 1999; Romualdo et al., 2003).

However, this neglects the mechanism of mutation. Muta-
tion may be thought of as an operator which reorganizes the
network. If mutations should occur on a gene, this may ei-
ther change the gene–protein pair’s binding site, or the gen-
erated protein thus reorganizing a portion of the network.
The other possibilities are that mutations may either disrupt
the promotor pattern in effect deleting a gene–protein pair
from the network, or create a new gene-protein pair by cre-
ating a new promotor site.

With these considerations in mind, we may then exam-
ine the networks generated by these genomes to see whether
their topologies may be considered scale–free and / or small
world.

The network of gene–protein interactions was parameter-
ized by the threshold value leading to a maximum of 32 pos-
sible networks for each genome. The histograms of the prob-
ability of being connected withk components were fitted to
the equationαk−γ for each threshold value using the sum of



least squares method. The threshold value which produced
a γ value closest to 2.5 was kept. It has been found that a
large number of networks which have displayed scale–free
behaviour exhibit values of 2< γ≤ 3 (Goh et al., 2002).

Values for the parameterγ characterizing scale–free net-
works were also calculated for each of the genomes and are
shown in Figs. 7 & 8.
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Figure 7: Distribution of values ofγ for the best fit ofP(k)∼
k−γ with a mutation rate of 1.0%.

It can be seen that there exist many genomes created at
random which may be considered to satisfy the definition of
a scale–free network. In Fig. 7 there is a large number of
networks whose coefficientγ is close to zero. This can be
attributed to the fact that since the mutation rate is low, the
probability of discovering new promotor patterns through
subsequent duplication / divergence steps is not high. There-
fore, if there were few promotors in the initial starting string,
there will often be few genes in the overall genome. With a
small number of genes, the scale–free coefficientγ will often
be of small magnitude.
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Figure 8: Distribution of values ofγ for the best fit ofP(k)∼
k−γ with a mutation rate of 5.0%.

For each network the clustering coefficient, C, and the
characteristic path length, L, were calculated and compared

to the corresponding metric for a randomly connected net-
work of the same size and vertex degree distribution. The
threshold value that produced a network with the smallest
absolute difference| L− Lrandom | that also satisfiedC �
Crandom were taken to be those most characteristic of the
small world network topology. The additional constraint that
L > 1.3 was also enforced so as to try to exclude graphs that
were close to being fully connected. The distributions for
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Figure 9: Scatter plot and histograms of values ofCCrandom
and

Lrandom−L
Lrandom

for each of the randomly generated genomes (200
genomes) with a mutation rate of 1.0%.
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Figure 10: Scatter plot and histograms of values ofCCrandom

and Lrandom−L
Lrandom

for each of the randomly generated genomes
(200 genomes) with a mutation rate of 5.0%.

the clustering coefficient and the characteristic path length
obtained from the 200 genomes for both rates of mutation
are shown in Figs. 9 & 10.



From these figures, it can be seen that in the majority
of genomes, there exists a threshold at which the interac-
tion network approaches or satisfies the definition of a small
world network topology.

Conclusions
A model of an artificial regulatory network model has been
presented. The construction of such a network using a sim-
ple whole genome duplication process directly on a genetic–
string representation of the genome produces a network con-
struction scheme similar to preferential attachment. The ad-
dition of a mutation operator introduces a kind of rewiring
of the network topology by changing activation / inhibition
sites, creating / destroying gene–protein pairs and chang-
ing the configuration of proteins which the genes code for.
Examining networks generated in this way by varying the
threshold at which genes and proteins may interact shows
that many of these regulatory networks display the charater-
istics of small world and scale–free network topologies with
some regularity.

Note that we have assumed that duplication proceeds by
duplicating the whole genome which occurs relatively rarely
in nature (Wolfe and Shields, 1997; Nadeau and Sankoff,
1997). Future work may include investigating the effects
of shorter length duplication events on regulatory network
topologies.

Acknowledgements
The authors would like to kindly thank François Kép̀es of
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