
Chapter 19
An Evolutionary System for Better Automatic
Software Repair

Yuan Yuan and Wolfgang Banzhaf

19.1 Introduction

Automatic software repair [13, 39, 49] aims to fix bugs in software automatically,
generally relying on a specification. When a test suite is considered as the speci-
fication, the paradigm is called test-suite based repair [39]. The test suite should
contain at least one negative (i.e., initially failing) test that triggers the bug to be
fixed and a number of positive (i.e., initially passing) tests that define the expected
program behavior. In terms of test-suite based repair, a bug is regarded to be fixed or
repaired, if a created patch makes the entire test suite pass. Such a patch is referred
to as a test-adequate patch [33] or a plausible patch [44].

Evolutionary repair approaches [49] are a popular category of techniques for
test-suite based repair. These approaches determine a search space potentially con-
taining correct patches, then use evolutionary computation (EC) techniques, partic-
ularly genetic programming (GP) [2, 4, 21], to explore that search space. A major
characteristic of evolutionary repair approaches is that they have high potential to
fix multi-location bugs, since GP can manipulate multiple likely faulty locations at
a time. However, GenProg [12, 25, 27, 51], the most well-known approach of this
kind, does not fulfill the potential in multi-location bug fixing according to large-
scale empirical studies [33, 44], partly due to the search ability of its underlying
GP [42,44,57]. To tackle this issue, our previous work introduced ARJA [57], which
uses a novel multi-objective GP approach with better search ability to explore the
search space. Although ARJA has achieved much improved performance and also

Yuan Yuan
BEACON Center for the Study of Evolution in Action and Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI, USA e-mail: yyuan@cse.msu.edu

Wolfgang Banzhaf
BEACON Center for the Study of Evolution in Action and Department of Computer Science and
and Engineering, Michigan State University, East Lansing, MI, USA e-mail: banzhaf@msu.
edu

385

yyuan@cse.msu.edu
banzhaf@msu.edu
banzhaf@msu.edu

386 Yuan Yuan and Wolfgang Banzhaf

demonstrated its strength in multi-location repair, major challenges [26] still remain
for evolutionary software repair.

The first challenge is how to construct a reasonable search space that is more
likely to contain correct patches. In this respect, GenProg and ARJA exploit the
statement-level redundancy assumption [36] (also called plastic surgery hypothe-
sis [3]). That is, they only conduct statement-level changes and use existing state-
ments in the buggy program for replacement or insertion. The problem here is that
fix statements randomly excerpted from somewhere in the current buggy program
may have little pertinence to the likely-buggy statement to be manipulated. Due to
this problem, GenProg usually generates patches overfitting the test suite or even
fails to fix a bug. To relieve the issue, Kim et al. [20] proposed PAR, which exploits
repair templates to produce program variants. Each template specifies one type of
program transformation and is derived from common fix patterns (e.g., adding a
null-pointer checker for an object reference) manually learned from human-written
patches. Compared to GenProg, PAR usually works in a more promising search
space, since the program transformations performed by PAR are more targeted.
Nevertheless, as can be inferred from the results in [57], the redundancy-based ap-
proaches can really fix some bugs that cannot be fixed by typical template-based
approaches (e.g., PAR and ELIXIR [46]) which implies that combining the redun-
dancy assumption and repair templates to generate fix statements could further im-
prove repair effectiveness.

The second challenge is how to design a search algorithm that can navigate the
search space more effectively. The combination of the statement-level redundancy
assumption and repair templates will lead to a much larger search space, thereby
making this challenge more serious. Recent studies [42, 57] have indicated that
compared to using GenProg’s patch representation, using a lower-granularity patch
representation that decouples the partial information of an edit can significantly im-
prove the search ability of GP in bug repair. However such representations are spe-
cially designed for statement-level edits and cannot be directly used for template-
based edits (usually occurring at the expression level). Besides the patch representa-
tion, the fitness function is another important factor that influences the search ability
of GP. In existing evolutionary repair approaches, the fitness function is generally
defined based on how many test cases a patched program passes. However this kind
of fitness function can only provide a binary signal (i.e, passed or failed) for a test
case and cannot measure how close a modified program is to pass a test case. In con-
sequence, there may be a large number of plateaus in the search space [11, 26, 44],
thereby trapping GP.

The third challenge is how to alleviate patch overfitting [47]. Evolutionary repair
approaches can usually find a number of plausible patches within a computing bud-
get. But most of these patches may be incorrect in general, by just overfitting the
given test suite. To pick correct patches more easily, it is necessary to include a post-
processing step for these approaches, which can filter out incorrect patches (i.e.,
overfit detection) or rank the plausible patches found (i.e., patch ranking). How-
ever, almost all existing evolutionary repair systems, including GenProg, PAR, and
ARJA, do not implement such a step.

19 An Evolutionary System for Better Automatic Software Repair 387

In this chapter, we describe ARJA-e, a new evolutionary repair system for Java
programs that aims to address the above three challenges. To determine a search
space that is more likely to contain correct patches, ARJA-e combines two sources
of fix ingredients (i.e., the statement-level redundancy assumption and repair tem-
plates) with contextual analysis based search space reduction, thereby leveraging
their complementary strengths. To encode patches in GP more properly, ARJA-e
unifies the edits at different granularities into statement-level edits, and then uses a
new lower-granularity patch representation that is characterized by the decoupling
of statements for replacement and statements for insertion. Furthermore, ARJA-e
uses a finer-grained fitness function that can make full use of semantic information
contained in the test suite, which is expected to better guide the search of GP. To
alleviate patch overfitting, ARJA-e includes a post-processing tool that can serve
the purposes of overfit detection and patch ranking.

19.2 Background and Motivation

19.2.1 Related Work

Our system belongs to the class of evolutionary repair approaches which explore
a repair search space using evolutionary algorithms. GenProg [25, 27], PAR [20],
GenProg with anti-patterns [48] and ARJA [57] all fall into this category. Their basic
ideas have been described in Section 19.1. ARJA-e organically combines the char-
acteristic components of all these approaches, making it distinctly different from
any of them. Several approaches employ other kinds of search algorithms, instead
of EAs, to traverse GenProg’s search space (e.g., RSRepair [43] uses random search
and AE [50] uses an adaptive search strategy).

Inspired by the idea of using templates [20], some repair approaches (e.g., SPR
[31] and ELIXIR [46]) employ a set of richer templates (or code transformations)
that are defined manually. Genesis [30] aims to automatically infer such code trans-
formations from successful patches. Cardumen [35] mines repair templates from the
program under repair. Similar to these approaches, ARJA-e uses templates extended
and enhanced from those in PAR.

Beyond the current buggy program and its associated test suite, some approaches
exploit other information to help the repair process. HDRepair [24] uses mined
historical bug fixes to guide its random search. ACS [55] uses the information of
javadoc comments to rank variables. SearchRepair [19] and ssFix [53] both use ex-
isting code from an external code database to find potential repairs.

A number of existing approaches infer semantic specifications from the test cases
and then use program synthesis to generate a repair that satisfies the inferred specifi-
cations. These are usually categorized as semantics-based approaches. SemFix [41]
is a pioneer in this category. Other typical approaches of this kind include Direct-
Fix [37], QLOSE [8], Angelix [38], Nopol [56], JFix [22] and S3 [23]. Recently,

388 Yuan Yuan and Wolfgang Banzhaf

machine learning techniques have been used in software repair. Prophet [32] uses
a probabilistic model to rank the candidate patches over the search space of SPR.
DeepFix [14] uses deep learning to fix common programming errors.

19.2.2 Motivating Examples

In this subsection, we take real bugs as examples to illustrate the key insights moti-
vating the design of ARJA-e.

Fig. 19.1 shows the human-written patch for bug Math85 from the Defects4J
[18] dataset. To correctly fix this bug, only a slight modification is required (i.e.,
change >= to >), as shown in Fig. 19.1. However, redundancy-based approaches
(e.g., GenProg [25, 27], RSRepair [43] and AE [50]) usually cannot find a correct
patch for this bug since the fix statement used for replacement (i.e., if (fa * fb

> 0){...}) or semantically equivalent ones do not happen to appear elsewhere in
the buggy program. In contrast, some template-based approaches (e.g., jMutRepair
[10, 34] and ELIXIR [46]) are very likely to fix the bug correctly since changing of
infix boolean operators is a specified repair action in such approaches. In addition,
GenProg can easily overfit the given test suite [44] by deleting the whole buggy if

statement: if (fa * fb >= 0){...}), leading to a plausible but incorrect patch.

1 public static double[] bracket (...) { ...
2 � if (fa ⇤ fb >= 0.0) {
3 + if (fa ⇤ fb > 0.0) {
4 throw new ConvergenceException (...) ; } ... }

Fig. 19.1: The human-written patch for bug Math85.

Fig. 19.2 shows the human-written patch for bug Math39 from Defects4J. To cor-
rectly repair the bug, an if statement with relatively complex control logic should
be inserted before the buggy code, as shown in Fig. 19.2. However, for approaches
only based on repair templates, the bug is hard to fix correctly, because this fix
generally does not belong to a common fix pattern and is difficult to be encoded
with templates. In contrast, approaches that exploit the redundancy assumption can
potentially find a correct patch for the bug, because the following if statement

if ((forward && (stepStart + stepSize > t)) || ((! forward) && (stepStart + stepSize <

t))) { stepSize = t � stepStart ; }

happens to be in the buggy program elsewhere, which is semantically equivalent to
the one inserted by human developers.

From the above examples, it can be seen that redundancy- and template-based
approaches potentially have complementary strengths in bug fixing. We aim to com-

19 An Evolutionary System for Better Automatic Software Repair 389

1 public void integrate (...) throws ... { ...
2 + if (forward) {
3 + if (stepStart + stepSize >= t) { stepSize = t � stepStart ; }
4 + } else {
5 + if (stepStart + stepSize <= t) { stepSize = t � stepStart ; } }
6 ... }

Fig. 19.2: The human-written patch for bug Math39.

bine both statement-level redundancy assumption and repair templates, to generate
potential fix ingredients. Such a combination will lead to a much larger search space,
posing a great challenge to the search algorithm. So we will also introduce several
strategies to properly reduce the search space and enhance the search algorithm with
a new lower-granularity patch representation.

19.3 Overview of ARJA-e

The input of ARJA-e is a buggy program associated with a JUnit test suite. ARJA-e
basically aims to make all these test cases pass by modifying the buggy program.
First, we use the fault localization technique called Ochiai [5] to select n likely-
buggy statements (LBSs) with the highest suspiciousness. For the j-th LBS, we
determine three sets denoted by R j, I j and O j. R j is the set of statements that can
be used to replace the LBS, I j is the set of statements that can be used for insertion
before the LBS, and O j is a subset of three operation types: “delete”, “replace” and
“insert”. To find simpler patches, we uses a multi-objective GP to explore the deter-
mined search space, with the guidance of a finer-grained fitness function. Through
evolutionary search, ARJA-e can usually find a number of plausible patches. How-
ever, many of these patches may overfit the test suite and would thereby be not
correct. To alleviate the patch overfitting issue, we develop a post-processing tool
which can identify overfitting patches or rank the plausible patches found by ARJA-
e.

In the following sections, we will detail how to shape the search space (i.e.,
determine R j, I j and O j, see Section 19.4), how to conduct multi-objective search
(see Section 19.5) and how to alleviate patch overfitting (see Section 19.6).

390 Yuan Yuan and Wolfgang Banzhaf

19.4 Shaping the Search Space

19.4.1 Exploiting the Statement-Level Redundancy Assumption

For each LBS selected, we first collect the statements within the package where the
LBS resides, and then ignore those statements that are not in-scope at the destination
of the LBS or violates the complier constraints. For each of the remaining statements
(denoted by s), we further check the program context. Our insight is that if replacing
the LBS with s is a promising manipulation, s should generally exhibit a certain
similarity to the LBS; and if it is potentially useful to insert s before the LBS, s
should generally have a certain relevance to the context surrounding the LBS. In the
following, we describe how to quantify such similarity and relevance.

Suppose Vs and VLBS are the sets of variables (including local variables and fields)
used by s and the LBS respectively. We define the similarity between s and the LBS
as the Jaccard similarity coefficient between sets Vs and VLBS:

sim(s,LBS) =
|VLBS \Vs|
|VLBS [Vs|

(19.1)

Note that when collecting fields used by a statement, we also consider the fields
accessed by invoking the methods in the current class.

In the method where the LBS resides, suppose Vbef and Vaft are the sets of vari-
ables used by k statements before and after the LBS, respectively, where k is set to
5 by default. We define the relevance of s to the context of LBS as follows:

rel(s,LBS) =
1
2

⇣ |Vs \Vbef|
|Vs|

+
|Vs \Vaft|

|Vs|

⌘
(19.2)

Eq. (19.2) indeed averages the percentages of the variables in Vs that are covered by
Vbef and Vaft.

If |VLBS [Vs| = 0, sim(s,LBS) is set to 1, and if |Vs| = 0, rel(s,LBS) is set to
0. So sim(s,LBS) 2 [0,1] and rel(s,LBS) 2 [0,1]. Only when sim(s,LBS) > bsim
can s be put into R j (i.e., the set of candidate statements for replacement), and only
when rel(s,LBS) > brel can s be put into I j (i.e., the set of candidate statements for
insertion), where bsim and brel are predetermined threshold parameters.

19.4.2 Exploiting Repair Templates

In ARJA-e, we also use 7 repair templates to manipulate the LBS, which are mainly
extended from templates used in PAR. These templates are described in Table 19.1.

Template ER replaces an abstract syntax tree (AST) node element in a LBS
with another compatible one. Table 19.2 lists the elements that can be replaced and
also shows alternative replacers for each kind of elements. This template generalizes

19 An Evolutionary System for Better Automatic Software Repair 391

Table 19.1: The Description of Repair Templates Used in this Study

No. Template Name Description

1 Null Pointer Add an if statement before a LBS to check whether
Checker (NPC) any object reference in this LBS is null

2 Range Checker Add an if statement before a LBS to check whether
(RC) any array or list element access in this LBS exceeds

the upper or lower bound.

3 Cast Checker Add an if statement before a LBS to assure that
(CC) the variable or expression to be converted in this LBS

is an instance of casting type.

4 Divide-by-Zero Add an if statement before a LBS to check whether
Checker (DC) any divisor in this LBS is 0.

5 Method Parameter Add, remove or reorder the method parameters in a LBS
Adjuster (MPA) if this method has overloaded methods.

6 Boolean Expression For a condition branch (e.g., if), add a term to its predicate
Adder or Remover (with && or ||), or remove a term from its predicate
(BEAR)

7 Element Replacer Replace an AST node element (e.g., variable or method name)
(ER) in a LBS with another one with compatible type

the templates “Parameter Replacer” and “Method Replacer” used in PAR. Several
replacement rules are inspired by recent template-based approaches (e.g., replacing
a primitive type with widened type follows ELIXIR [46] and replacing x with f(x)

follows the transformation schema in REFAZER [45]).

Table 19.2: List of Replacement Rules for Different Elements

Element Format Replacer

Variable x (i) The visible fields or local variables with
compatible type (ii) A compatible method
invocation in the form of f () or f (x)

Field access e.g., this .a The same as above

Qualified name a.b The same as above

Method name f (...) The name of another visible method with
compatible parameter and return types

Primitive type e.g., int A widened type, e.g., float to double

Boolean literal true or false The opposite boolean value

Number literal e.g., 1 or 0.5 Another number literal located in the same method

Infix operators e.g., + or > A compatible infix operator, e.g., + to �, > to >=

Prefix/Postfix operators e.g., ++ The opposite prefix/postfix operator, e.g., ++ to ��
Assignment operators e.g., += The opposite assignment operator, e.g., += to �=

Conditional expression a ? b : c b or c

392 Yuan Yuan and Wolfgang Banzhaf

Unlike PAR which applies templates on-the-fly (i.e., during the evolutionary pro-
cess), ARJA-e executes the above 7 repair templates in an offline manner. Specifi-
cally, we perform all the possible transformations defined by the templates for each
LBS before searching for patches. Then each LBS can derive a number of new state-
ments, each of which can either replace the LBS or be inserted before it. So vari-
ous template-based edits (usually at the expression-level) are abstracted into two
types of statement-level edits (i.e., replacement and insertion). These statements
for replacement and insertion are added into R j and I j respectively. For the LBS
a.callX(), Fig. 19.3 illustrates the way to exploit the templates in ARJA-e. Note
that we do not consider similarity and relevance as in Section 19.4.1 since the state-
ments generated by templates are highly targeted. Moreover, we only apply a tem-
plate to a single AST node at a time to avoid combinatorial explosion. For example,
we do not simultaneously modify a and callX in a.callX() using the template
ER.

The j-th LBS

a.callX();

1. Null Pointer Checker
2. Range Checker
3. Cast Checker
…
7. Element Replacer

Repair templates

1:
2:

b.callX();
c.callX();

For replacement

…
l: a.callY();

Rj

Ij
1:

2:

if (a == null)
return;

if (a == null)
break;

For insertion

…

m: if (a == null)
continue;

Fig. 19.3: Illustration of the offline execution of templates.

19.4.3 Initialization of Operation Types

The deletion operation should be executed carefully because it can easily lead to
the following two problems: It can (i) cause a compiler error of the modified code;
or (ii) generate overfitting patches [44]. To address the first problem, we use the
two rules defined in [57], that is, if a LBS is a variable declaration statement or a
return/throw statement which is the last statement of a method not declared void,
we disable the deletion operation for this LBS. To address the second problem, we
use the 5 anti-delete patterns defined in [48]. If a LBS follows any of these patterns,
we ignore the deletion operation. For example, according to one of the anti-delete
patterns, if a LBS is a control statement (e.g., if statement or loops), deletion of the
LBS is disallowed.

19 An Evolutionary System for Better Automatic Software Repair 393

19.5 Multi-Objective Evolution of Patches

19.5.1 Patch Representation

To encode a patch as a genome in GP, we first number the LBSs and the elements in
R j, I j and O j respectively, starting from 1, where j 2 {1,2, . . . ,n}. All the IDs are
fixed throughout the search.

A solution (i.e., a patch) to the program repair problem is encoded as x =

(b,u,p,q), which contains four different parts each being a vector of size n. In
the solution x, b j 2 {0,1} indicates whether the j-th LBS is to be edited or not;
u j 2 {1,2, . . . , |O j|} indicates the u j-th operation type in O j is used for the j-th
LBS; p j 2 {1,2, . . . , |R j|} means that if replace operation is used, the p j-th state-
ment in R j will be selected to replace the j-th LBS; and q j 2 {1,2, . . . , |I j|} means
that if insert operation is used, the q j-th statement in I j will be inserted before the
j-th LBS. Fig. 19.4 illustrates the new lower-granularity patch representation. Sup-
pose the j-th LBS is a.callX(); in this figure, then the edit on the j-th LBS is:
replace a.callX(); with b.callX();.

1 … 1 … 0 3 … 2 … 1 8 … 3 … 6 5 … 2 … 4

b
1 … j … n 1 … j … n 1 … j … n 1 … j … n

The j-th LBS
is to be edited

x

u p q

1:

2:

3:

set(a);

fun(a, b);

b.callX();

Rj

.

.

.

|Rj|: a.callY();

1:

2:

3:

a = fun(b);

a = b;
if (a == null)

return;

Ij

.

.

.

|Ij|: if (a == null)
continue;3:

1:

2:

Delete

Replace

Oj

Insert

Fig. 19.4: Illustration of the new lower-granularity patch representation.

19.5.2 Finer-Grained Fitness Function

To evaluate the fitness of an individual x, we still use a bi-objective function as in
the original ARJA [57]. The first objective (i.e., f1(x)) is the patch size, which is
exactly the same as that in ARJA. The second objective (i.e., f2(x)) is the weighted
failure rate. Different from that in ARJA, we compute f2(x) through finer-grained
analysis of test execution in this study, in order to provide smoother gradient for the
genetic search to navigate the search space. Since our repair system targets Java,
our implementation is based on the JUnit [7] framework. Specifically, we define a

394 Yuan Yuan and Wolfgang Banzhaf

metric to measure the degree of violation for each assertion, which we call assertion
distance. Suppose an assertion (denoted by e) asserting x and y are equal to within
a positive d : assertEquals(x, y, d), then the assertion distance d(e) is computed
as:

d(e) =

(
n(|x� y|�d), |x� y| � d

0, |x� y| < d
(19.3)

Here, n(x) is a normalizing function in [0,1] and we use the one suggested in [1]:
n(x) = x/(x+1).

After executing a program variant x over a test case t, we can compute a metric
h(x, t) 2 [0,1] to indicate how badly x fails the test case t by using the collected
assertion distances. This metric is defined as follows:

h(x, t) =
Âe2E(x,t) d(e)

|E(x, t)|
(19.4)

where E(x, t) is the set of executed assertions by x over t, and d(e) is the assertion
distance for the assertion e. Based on h(x, t), f2(x) can be formulated as follows:

f2(x) =
Ât2Tpos h(x, t)

|Tpos|
+w⇥

⇣Ât2Tneg h(x, t)
|Tneg|

⌘
(19.5)

where w 2 (0,1] is a parameter that can introduce a bias toward negative test cases.

19.5.3 Genetic Operators

Genetic operators, including crossover and mutation, are used to produce the off-
spring individuals in GP. Crossover is applied to each part of the patch representa-
tion separately, in order to inherit good genetic materials from parents. For all four
parts, we employ the half uniform crossover (HUX) operator.

We apply a guided mutation to the information of a single selected LBS. To be
specific, we first use roulette wheel selection to choose a LBS, where the j-th LBS is
chosen with a probability of susp j/Ân

j=1 susp j; suppose that the j-th LBS is finally
selected, then we apply bit flip mutation to b j and uniform mutation to u j, p j and q j
respectively. Fig. 19.5 illustrates the crossover and mutation operations, where only
a single offspring is shown for brevity.

19 An Evolutionary System for Better Automatic Software Repair 395

Guided Mutation

HUXHUX

Intermediate
offspring

Parent 2

Parent 1 1 0 0 0 2 1 3 1 3 9 8 2 5 2 1 6

1 1 0 1 1 1 2 3 1 5 7 4 2 6 4 3

1 0 0 1 2 1 2 3 3 5 7 2 5 6 1 3

1 1 0 1 2 3 2 3 3 8 7 2 5 4 1 3Offspring

HUX HUX

Fig. 19.5: Illustration of the crossover and mutation.

19.5.4 Multi-Objective Search

With the patch representation, fitness function and genetic operators designed above,
any multi-objective evolutionary algorithm can serve the purpose of searching for
patches. In this work, we basically employ NSGA-II [9] as the multi-objective
search framework. To initialize the population, we combine the fault localization
result and randomness: for the first part (i.e., b), b j is initialized to 1 with a proba-
bility of susp j ⇥ µ , where µ 2 (0,1) is a predefined parameter; and the remaining
three parts (i.e., u, p, q) are just initialized randomly. After population initialization,
the search algorithm iterates over generations until the stopping criterion is satisfied.

19.6 Alleviating Patch Overfitting

19.6.1 Overfit Detection

For overfit detection, we take a buggy program, a set of positive test cases and a
plausible patch as input, and determine whether or not this plausible patch is an
overfitting patch. Our approach is based on the assumption that the buggy program
will perform correctly on the test inputs encoded in the positive test cases.

Fig. 19.6 shows the overall process of this approach. First, given a plausible
patch and a buggy program, we can localize the methods where the statements will
be modified by the patch. Then we instrument the bytecode of these methods in the
buggy program. For each method, the instrumentation is conducted at its entry point
and all its possible exit points. At the entry point, we inject new bytecode to save
the input of the method, including all the method parameters and the current object
this (i.e., the object whose method is being called), into a file. At each exit point,
we inject new bytecode to save the output of the method, including the return value,
the current object this and the reference-type method parameters, into another file.
Note that if a method to be instrumented is a static method, we just ignore the
current object. To save the objects, we leverage the Java serialization technique.

396 Yuan Yuan and Wolfgang Banzhaf

This technique can convert object state to a byte stream that can be reverted back
into a copy of the object.

With the instrumented buggy program, we run the positive test cases so that we
can capture a number of input-output pairs for the localized methods. Suppose that
there are K such pairs, denoted by a set PA = {(In1,Out1),(In2,Out2), . . . ,(InK ,OutK)}.
According to our assumption, all these input-output pairs should reflect the correct
program behavior. In order to judge patch correctness, we will feed these inputs
In1, In2, . . . , InK into the corresponding methods in the patched program so as to see
whether the correct outputs can be obtained. Specifically, for each input-out pair
(Ini,Outi) 2 PA collected previously, we deserialize Ini from the file and use the
Java reflection technique to invoke the corresponding method in the instrumented
patched program with the deserialized input Ini, so that we can collect the method
output Out 0i . Lastly, we compare every Out 0i with the corresponding Outi, and if there
exists any difference, we identify the plausible patch as an overfitting patch that is
incorrect.

Output

Positive test
cases

Buggy
program

Plausible
patch

Localizer

Instrumenter Test executor

Reflection
executor

Patched
program

Methods
modified by

the patch

Instrumenter

Instrumented
buggy

program

Instrumented
patched
program

Patcher

Method
inputs

Method
outputs-I

Method
outputs-II

Output
comparer

Overfit
detection

result

Input

Module

Entity

Flow line

Fig. 19.6: The overview of our overfit detection approach.

19.6.2 Patch Ranking

ARJA-e can sometimes output more than one plausible patch (with the same patch
size) for a bug. As a post-processing step, we design a heuristic procedure to rank
these patches. For this ranking purpose, we first define three metrics for a patch.
The first metric, denoted by Susp, represents the summation of the suspicious-
ness for the LBSs modified by the patch. The second metric, denoted by Dist, is
based on our overfit detection approach. Recall that for the purpose of overfit de-
tection, we only need to know whether there is a difference between Outi and Out 0i ,

19 An Evolutionary System for Better Automatic Software Repair 397

where i = 1,2, . . . ,K. Here we want to quantify such a difference. To do this, we
deserialize Outi and Out 0i and extract all primitive data and string data contained
in the two outputs in a recursive way. Similar to the computing of assertion dis-
tance, we can easily compute the distance for each corresponding primitive/string
data and normalize it to [0,1]. Then Dist is calculated as the average of these nor-
malized distances for all outputs. Before defining the third metric, we determine a
preference relation of operation types in our system. We prefer the operation type
that is generally less likely to bring in side effects, and the preference relation is:
NPC/RC/CC/DC � MPA � ER � BEAR � SR/SI � SD. Here SR and SI mean
statement replacement and insertion based on the redundancy assumption respec-
tively, and SI means statement deletion. The others are all template-based opera-
tions that can be referred to in Section 19.4.2. We assign a preference score for each
operation type: SD is scored 1, SR and SI are scored 2, BEAR is scored 3 and so on.
With these scores, the second metric for a patch, denoted by Pre f , is defined as the
sum of scores of operation types contained in the patch. For Susp and Pre f , larger
is better; whereas for Dist, smaller is better.

When comparing two patches in the ranking, Susp, Dist and Pre f are considered
in sequence until the two patches can be distinguished. If all the three metrics cannot
distinguish the two patches, the patch found earlier is ranked higher.

19.7 Experimental Design

19.7.1 Research Questions

We intend to answer the following research questions:
RQ1: How effective is ARJA-e compared to state-of-the-art repair systems on

real bugs?
RQ2: Can ARJA-e fix bugs in a novel way compared to a human developer?
RQ3: How good is our overfit detection approach?

19.7.2 Dataset of Bugs

We perform the empirical evaluation on a database of real bugs, called Defects4J
[18], which has been extensively used for evaluating Java repair systems [6, 33, 46,
53, 55, 57]. We consider four projects in Defects4J, namely Chart, Time, Lang and
Math. Table 19.3 shows the descriptive statistics of the four projects. In total, there
are 224 real bugs: 26 from Chart (C1–C26), 27 from Time (T1–T27), 65 from Lang
(L1–L65) and 106 from Math (M1–M106).

398 Yuan Yuan and Wolfgang Banzhaf

Table 19.3: The descriptive statistics of Defects4J dataset

Project ID #Bugs #JUnit Tests Source Test
KLoC KLoC

Chart C 26 2,205 96 50
Time T 27 4,043 28 53
Lang L 65 2,295 22 6
Math M 106 5,246 85 19
Total 224 13,789 231 128

19.7.3 Parameter Setting

Table 19.4 shows the parameter setting for ARJA-e in the experiments. Note that
crossover and mutation operators presented in Section 19.5.3 are always executed,
so the probability (i.e., 1) is omitted in this table. Given the stochastic nature of
ARJA-e, we execute 5 random trials in parallel for each bug. Each trial of ARJA-e
is terminated after it reaches the maximum number of generations (i.e., 50) or its
execution time exceeds one hour.

Table 19.4: The parameter setting for ARJA-e

Parameter Description Value

N Population size 40
gmin Threshold for the suspiciousness 0.1
nmax Maximum number of LBSs considered 60
bsim Threshold for similarity 0.3
brel Threshold for relevance 0.3
w Refer to Section 19.5.2 0.5

19.8 Results and Discussions

19.8.1 Performance Evaluation (RQ1)

To show the superiority of ARJA-e over the state of the art, we compare ARJA-e
with 13 existing repair approaches in terms of the number of bugs fixed and cor-
rectly fixed. The 13 approaches are jGenProg [33, 34] (an implementation of Gen-
Prog for Java), xPAR (a reimplementation of PAR by Le et al. [24]), Nopol [56],
HDRepair [24], ACS [55], ssFix [53], JAID [6], ELIXIR [46], ARJA [57], Sim-
Fix [17], CAPGEN [52], SOFIX [29] and SKETCHFIX [16], which include almost
all published approaches that have ever been tested on Defects4J. Note that here we
use a strict criterion for judging whether a bug is correctly fixed by ARJA-e, that is,

19 An Evolutionary System for Better Automatic Software Repair 399

a bug is regarded as being correctly fixed only when the plausible patch ranked first
(using the procedure in Section 19.6.2) is correct.

Table 19.5: Comparison with Existing Repair Tools in terms of the Number of Bugs Fixed
and Correctly Fixed (Plausible/Correct). The Best Results are Shown in Bold

Project ARJA-e jGenProg xPAR Nopol HDRepair1 ACS ssFix

Chart 18/7 7/0 –/0 6/1 –/2 2/2 7/2
Lang 28/9 0/0 –/1 7/3 –/7 4/3 12/5
Math 51/21 18/5 –/2 21/1 –/6 16/12 26/7
Time 9/2 2/0 –/0 1/0 –/1 1/1 4/0

Total 106/39 27/5 –/3 35/5 –/16 23/18 49/14

Project JAID ELIXIR ARJA2 SimFix CAPGEN SOFIX SKETCHFIX

Chart 4/2 7/4 9/3 8/4 –/4 –/5 8/6
Lang 8/1 12/8 17/4 13/9 –/5 –/4 4/1
Math 8/1 19/12 29/10 26/14 –/12 –/13 8/7
Time 0/0 3/2 4/1 1/1 –/0 –/1 1/1

Total 20/4 41/26 59/18 48/28 –/21 –/23 21/15

“–” means the data is not available since it is not reported by the original authors.
1 HDRepair generated correct patches for 16 bugs, but only 10 of them were ranked first.
2 In ARJA, a bug is regarded as being fixed correctly if one of its plausible patches is

identified as correct.

Table 19.5 shows the comparison results. From Table 19.5, we can see that
ARJA-e outperforms all other approaches in terms of the number of fixed bugs
and correctly fixed bugs. We further compare ARJA-e with ACS, ssFix and Sim-
Fix by analyzing the overlaps among their repair results. ACS, ssFix and SimFix
are selected because they show prominent performance among the 13 compared ap-
proaches and the IDs of (correctly) fixed bugs are available for them [17,53,55]. Fig.
19.7 shows the intersection of fixed bugs (in Fig. 19.7(a)) and correctly fixed bugs
(in Fig. 19.7(b)) between ARJA-e, ACS, ssFix and SimFix, using Venn diagrams.
From Fig. 19.7(a), ARJA-e performs much better than the other three approaches
in terms of test-adequate bug fixing, and most of the bugs fixed by ACS, ssFix and
SimFix can also be fixed by ARJA-e. From Fig. 19.7(b), ARJA-e fixes the high-
est number of bugs correctly (i.e., 39), where 20 bugs cannot be fixed correctly by
any of the other three approaches. So ARJA-e indeed complements to the three ap-
proaches very well. But it should be noted that the three approaches also show good
complementarity to ARJA-e in terms of correct bug fixing. Specifically, ACS, ssFix
and SimFix can correctly fix 11, 9 and 16 bugs that cannot be correctly fixed by
ARJA-e, respectively. This may be the case because ACS and ssFix are quite differ-
ent from ARJA-e in technique. ACS aims at performing precise condition synthesis
while ssFix uses existing code from a code database. It seems possible to further
enhance the performance of ARJA-e by borrowing ideas from ACS and ssFix. For
example, we can use a method similar to ACS to generate more accurate conditions

400 Yuan Yuan and Wolfgang Banzhaf

for instantiating the template BEAR, or we can reuse the existing code outside the
buggy program like ssFix.

ssFix

ACS

SimFix

4

ARJA-e

0

1 4

0

7

17

6

13

117

6

4 3

43

(a) Test-adequate bug fixing

ssFix

ACS

SimFix

0

ARJA-e

0

0 1

0

6

4

5

7

11

10

4 10

20

(b) Correct bug fixing

Fig. 19.7: Venn diagram of repaired bugs by ARJA-e, ACS, ssFix and SimFix.

In summary, ARJA-e outperforms 13 existing repair approaches by a consid-
erable margin. Specifically, by comparison with the best results, ARJA-e can fix
79.7% more bugs than ARJA (from 59 to 106), and can correctly fix 39.3% more
bugs than SimFix (from 28 to 39). Moreover, ARJA-e is an effective approach com-
plementary to the state-of-the-art techniques.

19.8.2 Novelty in Generated Repairs (RQ2)

We found that ARJA-e can fix some bugs in a different way from the human devel-
oper. These patches are generally beyond a programmer’s expectations, showing the
surprising novelty [28]. In the following, we will present case studies to demonstrate
this point.

Fig. 19.8 shows a correct patch generated by ARJA-e for M94. The following
function wants to compute greatest common divisor (GCD) of two integers. Cer-
tainly, if one of the integer is 0, GCD is equal to the sum of the absolute values. The
bug is that if u or v is a large integer (e.g., u = 3145728 and v = 294912), then
u * v can be equal to 0 by mistake due to overflow. The human will just change u
* v == 0 to u == 0 || v ==0. But ARJA-e fixes it in a different way by changing
u to sign(u), where sign(u) is the sign function, to avoid the problem leading to
the bug.

Fig. 19.9 shows the correct patch generated by ARJA-e. A human developer fixes
this bug just by replacing line 5 with int len = size - strLen + 1;, where
size is the number of characters in the array buffer. Instead, the patch by ARJA-e
first replaces buffer in line 3 with toCharArray() which copies all characters in
buffer into a new array with length exactly equal to size. Now thisBuff.length

is equivalent to size. However, the value of len is still one less than the value it

19 An Evolutionary System for Better Automatic Software Repair 401

1 // MathUtils . java
2 public static int gcd(int u, int v) {
3 � if (u ⇤ v == 0) {
4 + if (u == 0 || v == 0) { // human�written patch
5 + if (sign (u) ⇤ v == 0) { // ARAJ�e patch
6 return (Math.abs(u) + Math.abs(v)) ;
7 }
8
9 }

Fig. 19.8: Human-written patch and correct patch generated by ARJA-e for bug M94.

should be, according to the human-written patch. To address this, ARJA-e further
changes i < len to i <= len, achieving semantic equivalence.

1 // StrBuilder . java
2 public int indexOf(String str , int startIndex) { ...
3 � char [] thisBuf = buffer ;
4 + char [] thisBuf = toCharArray() ;
5 int len = thisBuf . length � strLen;
6 � outer : for (int i = startIndex ; i < len; i++) {
7 + outer : for (int i = startIndex ; i <= len; i++) {
8 ... } ... }

Fig. 19.9: Correct patch generated by ARJA-e for bug L61.

Fig. 19.10 shows the correct patch generated by ARJA-e for bug M56. The
human-written patch fixes this bug by firstly deleting lines 3–9 and then replac-
ing line 10 with indices[last] = index - count;. Compared to this human-
written patch, the ARJA-e patch just does a slight modification (i.e., replacing idx

with MathUtils.sign(idx)). Since idx is positive, its sign MathUtils.sign(idx)
is always equal to 1. Hence after line 9, idx is just equal to index - count, where
count refers to its initial value at line 3. Consequently, the ARJA-e patch is seman-
tically equivalent to the human-written patch and is therefore correct.

Fig. 19.11 shows a plausible patch generated by ARJA-e for bug M104. This bug
is triggered because the maximum allowed numerical error (MANE) is too large.
To fix the bug, the loop should be terminated until Math.abs(an) reaches a smaller
value. So the human-written patch changes the initial value of of epsilon from
10e-9 to 10e-15 in order to ensure a smaller MANE. The ARJA-e patch shown
in Fig. 19.11 achieves a similar functionality in a different way, which changes the
method invocation abs to sqrt. Although this patch is not semantically equivalent
to the human-written patch, it can make the entire test suite pass and is also indica-
tive of the cause of the bug.

402 Yuan Yuan and Wolfgang Banzhaf

1 // MultidimensionalCounter . java
2 ...
3 int idx = 1;
4 while (count < index) {
5 � count += idx;
6 + count += MathUtils. sign (idx) ;
7 ++idx;
8 }
9 ��idx;

10 indices [last] = idx ;
11 return indices ;

Fig. 19.10: Correct patch generated by ARJA-e for bug M56.

1 // Gamma.java
2
3 � while (Math.abs(an) > epsilon && n < maxIterations) {
4 + while (Math.sqrt (an) > epsilon && n < maxIterations) {
5 n = n + 1.0;
6 an = an ⇤ (x / (a + n)) ;
7 sum = sum + an;
8 }

Fig. 19.11: Plausible patch generated by ARJA-e for bug M104.

19.8.3 Effectiveness of Overfit Detection (RQ3)

In this subsection, we will evaluate our overfit detection approach described in Sec-
tion 19.6.1. To demonstrate its effectiveness, we compare it with Xiong et al.’s ap-
proach (XA) [54], which is currently the state-of-the-art technique for overfit detec-
tion and shares certain similarities with our approach. To ensure a fair comparison,
we use the version without test case generation for XA. According to [54], this
simplified version has already achieved competitive performance compared to the
version relying on new test cases.

For the subjects, we consider the first plausible patch found by ARJA-e for each
bug (according to RQ1). In addition, we include the patches generated by jGen-
Prog and jKali, which are collected from Martinez et al.’s empirical study [33] on
Defects4J. In the end, we collect a dataset of 122 plausible patches by ignoring
unsupported patches, where 97 patches are incorrect and 25 patches are correct.
The correctness of ARJA-e patches is judged by ourselves, while the correctness
of jGenProg and jKali patches is according to Martinez et al.’s analysis [33]. Table
19.6 shows the statistics of this dataset.

Tables 19.7 show the comparison results on the dataset per tool. From Tables
19.7, for the patches of ARJA-e and jGenProg, our approach can filter out more

19 An Evolutionary System for Better Automatic Software Repair 403

Table 19.6: Dataset of Plausible Patches Used in RQ3

Project ARJA-e jGenProg jKali Total

Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct

Chart 9 3 6 0 6 0 21 3
Lang 16 4 0 0 0 0 16 4
Math 23 11 13 5 13 1 49 17
Time 7 1 2 0 2 0 11 1

Total 55 19 21 5 21 1 97 25

incorrect patches than XA, while for the patches of jKali, the two approaches can
identify the same number of incorrect patches. Moreover, our approach does not
filter out any correct patch obtained by jGenProg and jKali, while XA filters out
one correct patch (for bug M53) by jGenProg. Note that it was reported in [54] that
XA does not exclude any correct patch by jGenProg. This inconsistency may be due
to different computing environments. For the patches of ARJA-e, both approaches
exclude correct patches by mistake, but our approach only excludes 3 out of 19
correct patches whereas XA excludes 7.

Table 19.7: Comparison Between Our Approach and Xiong et al.’s Approach in Overfit Detection
(The Patches are Categorized by Repair Tools)

Tool Incorrect Correct
Incorrect Excluded Correct Excluded

Our XA Our XAApproach Approach

ARJA-e 55 19 28(50.91%) 27(49.09%) 3(15.79%) 7(36.84%)
jGenProg 21 5 11(52.38%) 8(38.10%) 0(0.00%) 1(20.00%)

jKali 21 1 9(42.86%) 9(42.86%) 0(0.00%) 0(0.00%)

Total 97 25 48(49.48%) 44(45.36%) 3(12.00%) 8(32.00%)

M40, M49, M71,
M78, M81, M95

C7, C13, T4C1, C25, M28,
M82, M84

6 5 3

Our Approach Xiong et al.
Approach

(a) jGenProg

M49, M78,
M81, M95

C15, C25, M32,
T4

C1, M28, M40,
 M82, M84

4 5 4

Our Approach Xiong et al.
Approach

(b) jKali

C(15, 25),
L(7, 27, 60),
M(7, 24, 40, 64,
68, 81, 95, 104)
T14

C(5, 19, 26),
L(1, 16, 46, 55),
M(62, 88)
T(9, 11, 20, 24)

C(1, 6, 7),
L(10, 58, 59) ,
M(28, 42, 44, 74,
82, 84), T(7, 17)

14 14 13

Our Approach Xiong et al.
Approach

(c) ARJA-e

Fig. 19.12: Intersection of incorrect patches identified by our approach and Xiong et al.’s
approach.

To further understand the performance difference between our approach and XA,
Fig. 19.12 shows the intersection of incorrect patches identified by the two ap-
proaches. It is interesting to see that our approach complements to XA very well.

404 Yuan Yuan and Wolfgang Banzhaf

Specifically, our approach can identify 6 incorrect patches by jGenProg, 4 incorrect
patches by jKali and 14 incorrect patches by ARJA-e, respectively, which cannot be
identified by XA. In addition, we note that none of the 8 correct patches excluded by
XA is also excluded by our approach. Given this strong complementarity, it is very
promising to further try to improve the accuracy of overfit detection by properly
combining the strength of the two approaches.

19.9 Conclusion

In this chapter, we have proposed a new repair system, called ARJA-e, for better
evolutionary software repair. By combining two sources of fix ingredients, ARJA-e
can conduct complex statement-level transformations, targeted code changes (e.g.,
adding a null pointer checker), and code changes at a finer-granularity than state-
ment level, which gives ARJA-e great potential to fix various kinds of bugs. To
reduce the search space and avoid nonsensical patches, ARJA-e uses a strategy
based on a light-weight contextual analysis, which can filter out unpromising re-
placement and insertion statements, respectively. In order to harness the potential
repair power of the search space, ARJA-e first unifies the edits at different granular-
ities into statement-level edits, so as to encode patches in the search space with
a lower-granularity patch representation that is characterized by the decoupling
of statements for replacement and insertion. With this new patch representation,
ARJA-e employs multi-objective GP to navigate the search space. To better guide
the search of GP, ARJA-e uses a finer-grained fitness function that can make full
use of semantic information provided by existing test cases. Moreover, ARJA-e in-
cludes a post-processing tool for alleviating patch overfitting. This tool can serve
the purposes of overfit detection and patch ranking.

We have conducted an extensive empirical study on 224 real bugs in Defects4J.
The evaluation results show that ARJA-e outperforms 13 existing repair approaches
by a considerable margin in terms of both the number of bugs fixed and correctly
fixed. Interestingly, we found that ARJA-e can fix some bugs in a creative way,
which is usually beyond the exceptions of human programmers. In addition, we
have shown that the proposed overfit detection technique shows several advantages
over a state-of-the-art approach [54].

In the future, we plan to incorporate additional sources of fix ingredients (e.g.,
source code repositories [19, 53]) into our repair framework, which may increase
the potential for fixing more bugs. Moreover, we would like to investigate new mat-
ing and survival selection methods [15, 40, 58] in GP, so as to further improve the
evolutionary search algorithm for bug repair.

19 An Evolutionary System for Better Automatic Software Repair 405

References

1. Arcuri, A.: It does matter how you normalise the branch distance in search based software test-
ing. In: Proceedings of the Third International Conference on Software Testing, Verification
and Validation, pp. 205–214. IEEE (2010)

2. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic programming: An introduction,
vol. 1. Morgan Kaufmann San Francisco (1998)

3. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery hypothesis. In:
Proceedings of the 22nd International Symposium on Foundations of Software Engineering,
pp. 306–317. ACM (2014)

4. Brameier, M.F., Banzhaf, W.: Linear genetic programming. Springer Science & Business
Media (2007)

5. Campos, J., Riboira, A., Perez, A., Abreu, R.: Gzoltar: An eclipse plug-in for testing and
debugging. In: Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pp. 378–381. ACM (2012)

6. Chen, L., Pei, Y., Furia, C.A.: Contract-based program repair without the contracts. In: Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 637–647. IEEE (2017)

7. Contributors, J.: A programmer-oriented testing framework for java (2004). URL https:
//github.com/junit-team/junit4

8. D’Antoni, L., Samanta, R., Singh, R.: Qlose: Program repair with quantitative objectives.
In: Proceedings of International Conference on Computer Aided Verification, pp. 383–401.
Springer (2016)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

10. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty programs.
In: Proceedings of the Third International Conference on Software Testing, Verification and
Validation, pp. 65–74. IEEE (2010)

11. Fast, E., Le Goues, C., Forrest, S., Weimer, W.: Designing better fitness functions for auto-
mated program repair. In: Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation, pp. 965–972. ACM (2010)

12. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming approach to auto-
mated software repair. In: Proceedings of the 11th Annual conference on Genetic and Evolu-
tionary Computation, pp. 947–954. ACM (2009)

13. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: A survey. IEEE Transactions
on Software Engineering 45(1), 34–67 (2019)

14. Gupta, R., Pal, S., Kanade, A., Shevade, S.: Deepfix: Fixing common c language errors by
deep learning. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp.
1345–1351 (2017)

15. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with lexicase se-
lection. IEEE Transactions on Evolutionary Computation 19(5), 630–643 (2015)

16. Hua, J., Zhang, M., Wang, K., Khurshid, S.: Towards practical program repair with on-demand
candidate generation. In: Proceedings of the 40th International Conference on Software Engi-
neering, pp. 12–23. ACM (2018)

17. Jiang, J., Xiong, Y., Zhang, H., Gao, Q., Chen, X.: Shaping program repair space with existing
patches and similar code. In: Proceedings of the 27th International Symposium on Software
Testing and Analysis, pp. 298–309. ACM (2018)

18. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A database of existing faults to enable controlled
testing studies for java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis, pp. 437–440. ACM (2014)

19. Ke, Y., Stolee, K.T., Le Goues, C., Brun, Y.: Repairing programs with semantic code search.
In: Proceedings of the 30th IEEE/ACM International Conference on Automated Software En-
gineering, pp. 295–306. IEEE (2015)

https://github.com/junit-team/junit4
https://github.com/junit-team/junit4

406 Yuan Yuan and Wolfgang Banzhaf

20. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written
patches. In: Proceedings of the 35th International Conference on Software Engineering, pp.
802–811. IEEE (2013)

21. Koza, J.R.: Genetic programming: on the programming of computers by means of natural
selection, vol. 1. MIT press (1992)

22. Le, X.B.D., Chu, D.H., Lo, D., Le Goues, C., Visser, W.: Jfix: Semantics-based repair of java
programs via symbolic pathfinder. In: Proceedings of the 26th International Symposium on
Software Testing and Analysis, pp. 376–379. ACM (2017)

23. Le, X.B.D., Chu, D.H., Lo, D., Le Goues, C., Visser, W.: S3: syntax-and semantic-guided
repair synthesis via programming by examples. In: Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, pp. 593–604. ACM (2017)

24. Le, X.B.D., Lo, D., Le Goues, C.: History driven program repair. In: Proceedings of the 23rd
International Conference on Software Analysis, Evolution, and Reengineering, pp. 213–224.
IEEE (2016)

25. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of automated pro-
gram repair: Fixing 55 out of 105 bugs for $8 each. In: Proceedings of the 34th International
Conference on Software Engineering, pp. 3–13. IEEE (2012)

26. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software repair. Soft-
ware Quality Journal 21(3), 421–443 (2013)

27. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: Genprog: A generic method for automatic
software repair. IEEE Transactions on Software Engineering 38(1), 54–72 (2012)

28. Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., Beaulieu, J., Bentley, P.J.,
Bernard, S., Beslon, G., Bryson, D.M., et al.: The surprising creativity of digital evolution:
A collection of anecdotes from the evolutionary computation and artificial life research com-
munities. arXiv preprint arXiv:1803.03453 (2018)

29. Liu, X., Zhong, H.: Mining stackoverflow for program repair. In: Proceedings of 25th Inter-
national Conference on Software Analysis, Evolution and Reengineering, pp. 118–129. IEEE
(2018)

30. Long, F., Amidon, P., Rinard, M.: Automatic inference of code transforms for patch genera-
tion. In: Proceedings of the 11th Joint Meeting on Foundations of Software Engineering, pp.
727–739. ACM (2017)

31. Long, F., Rinard, M.: Staged program repair with condition synthesis. In: Proceedings of the
10th Joint Meeting on Foundations of Software Engineering, pp. 166–178. ACM (2015)

32. Long, F., Rinard, M.: Automatic patch generation by learning correct code. ACM SIGPLAN
Notices 51(1), 298–312 (2016)

33. Martinez, M., Durieux, T., Sommerard, R., Xuan, J., Monperrus, M.: Automatic repair of real
bugs in java: A large-scale experiment on the defects4j dataset. Empirical Software Engineer-
ing 22(4), 1936–1964 (2017)

34. Martinez, M., Monperrus, M.: Astor: A program repair library for java. In: Proceedings of the
25th International Symposium on Software Testing and Analysis, pp. 441–444. ACM (2016)

35. Martinez, M., Monperrus, M.: Ultra-large repair search space with automatically mined tem-
plates: the cardumen mode of astor. In: International Symposium on Search Based Software
Engineering, pp. 65–86. Springer (2018)

36. Martinez, M., Weimer, W., Monperrus, M.: Do the fix ingredients already exist? an empirical
inquiry into the redundancy assumptions of program repair approaches. In: Companion Pro-
ceedings of the 36th International Conference on Software Engineering, pp. 492–495. ACM
(2014)

37. Mechtaev, S., Yi, J., Roychoudhury, A.: Directfix: Looking for simple program repairs. In:
Proceedings of the 37th International Conference on Software Engineering, pp. 448–458.
IEEE Press (2015)

38. Mechtaev, S., Yi, J., Roychoudhury, A.: Angelix: Scalable multiline program patch synthesis
via symbolic analysis. In: Proceedings of the 38th International Conference on Software
Engineering, pp. 691–701. ACM (2016)

39. Monperrus, M.: Automatic software repair: A bibliography. ACM Computing Surveys 51(1),
17 (2018)

19 An Evolutionary System for Better Automatic Software Repair 407

40. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909 (2015)

41. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: Program repair via semantic
analysis. In: Proceedings of the 35th International Conference on Software Engineering, pp.
772–781. IEEE (2013)

42. Oliveira, V.P.L., de Souza, E.F., Le Goues, C., Camilo-Junior, C.G.: Improved representation
and genetic operators for linear genetic programming for automated program repair. Empirical
Software Engineering 23(5), 2980–3006 (2018)

43. Qi, Y., Mao, X., Lei, Y., Dai, Z., Wang, C.: The strength of random search on automated pro-
gram repair. In: Proceedings of the 36th International Conference on Software Engineering,
pp. 254–265. ACM (2014)

44. Qi, Z., Long, F., Achour, S., Rinard, M.: An analysis of patch plausibility and correctness
for generate-and-validate patch generation systems. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pp. 24–36. ACM (2015)

45. Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani, S., Gheyi, R., Suzuki, R., Hart-
mann, B.: Learning syntactic program transformations from examples. In: Proceedings of the
39th International Conference on Software Engineering, pp. 404–415. IEEE Press (2017)

46. Saha, R.K., Lyu, Y., Yoshida, H., Prasad, M.R.: Elixir: Effective object-oriented program re-
pair. In: Proceedings of the 32nd IEEE/ACM International Conference on Automated Soft-
ware Engineering, pp. 648–659. IEEE (2017)

47. Smith, E.K., Barr, E.T., Le Goues, C., Brun, Y.: Is the cure worse than the disease? overfitting
in automated program repair. In: Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering, pp. 532–543. ACM (2015)

48. Tan, S.H., Yoshida, H., Prasad, M.R., Roychoudhury, A.: Anti-patterns in search-based pro-
gram repair. In: Proceedings of the 24th International Symposium on Foundations of Software
Engineering, pp. 727–738. ACM (2016)

49. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with evolution-
ary computation. Communications of the ACM 53(5), 109–116 (2010)

50. Weimer, W., Fry, Z.P., Forrest, S.: Leveraging program equivalence for adaptive program re-
pair: Models and first results. In: Proceedings of the 28th International Conference on Auto-
mated Software Engineering, pp. 356–366. IEEE (2013)

51. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using ge-
netic programming. In: Proceedings of the 31st International Conference on Software Engi-
neering, pp. 364–374. IEEE (2009)

52. Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.C.: Context-aware patch generation for better
automated program repair. In: Proceedings of the 40th International Conference on Software
Engineering, pp. 1–11. ACM (2018)

53. Xin, Q., Reiss, S.P.: Leveraging syntax-related code for automated program repair. In: Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 660–670. IEEE Press (2017)

54. Xiong, Y., Liu, X., Zeng, M., Zhang, L., Huang, G.: Identifying patch correctness in test-based
program repair. In: Proceedings of the 40th International Conference on Software Engineer-
ing, pp. 789–799. ACM (2018)

55. Xiong, Y., Wang, J., Yan, R., Zhang, J., Han, S., Huang, G., Zhang, L.: Precise condition
synthesis for program repair. In: Proceedings of the 39th International Conference on Software
Engineering, pp. 416–426. IEEE Press (2017)

56. Xuan, J., Martinez, M., Demarco, F., Clement, M., Marcote, S.L., Durieux, T., Le Berre,
D., Monperrus, M.: Nopol: Automatic repair of conditional statement bugs in java programs.
IEEE Transactions on Software Engineering 43(1), 34–55 (2017)

57. Yuan, Y., Banzhaf, W.: Arja: Automated repair of java programs via multi-objective genetic
programming. IEEE Transactions on Software Engineering (2018). DOI 10.1109/TSE.2018.
2874648

58. Yuan, Y., Xu, H., Wang, B., Yao, X.: A new dominance relation-based evolutionary algorithm
for many-objective optimization. IEEE Transactions on Evolutionary Computation 20(1), 16–
37 (2016)

