Chapter 6

Temporal Memory Sharing in Visual
Reinforcement Learning

Stephen Kelly and Wolfgang Banzhaf

Abstract Video games provide a well-defined study ground for the development of
behavioural agents that learn through trial-and-error interaction with their environ-
ment, or reinforcement learning (RL). They cover a diverse range of environments
that are designed to be challenging for humans, all through a high-dimensional vi-
sual interface. Tangled Program Graphs (TPG) is a recently proposed genetic pro-
gramming algorithm that emphasizes emergent modularity (i.e. automatic construc-
tion of multi-agent organisms) in order to build successful RL agents more effi-
ciently than state-of-the-art solutions from other sub-fields of artificial intelligence,
e.g. deep neural networks. However, TPG organisms represent a direct mapping
from input to output with no mechanism to integrate past experience (previous in-
puts). This is a limitation in environments with partial observability. For example,
TPG performed poorly in video games that explicitly require the player to predict the
trajectory of a moving object. In order to make these calculations, players must iden-
tify, store, and reuse important parts of past experience. In this work, we describe an
approach to supporting this type of short-term temporal memory in TPG, and show
that shared memory among subsets of agents within the same organism seems par-
ticularly important. In addition, we introduce heterogeneous TPG organisms com-
posed of agents with distinct types of representation that collaborate through shared
memory. In this study, heterogeneous organisms provide a parsimonious approach
to supporting agents with task-specific functionality, image processing capabilities
in the case of this work. Taken together, these extensions allow TPG to discover
high-scoring behaviours for the Atari game Breakout, which is an environment it
failed to make significant progress on previously.
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6.1 Introduction

Reinforcement learning (RL) is an area of machine learning that models the way
living organisms adapt through interaction with their environment. RL can be char-
acterized as learning how to map situations to actions in the pursuit of a pre-defined
objective [34]. A solution, or policy in RL is represented by an agent that learns
through episodic interaction with the problem environment. Each episode begins in
an initial state defined by the environment. Over a series of discrete timesteps, the
agent observes the environment (via sensory inputs), takes an action based on the
observation, and receives feedback in the form of a reward signal. The agent’s ac-
tions potentially change the state of the environment and impact the reward received.
The agent’s goal is to select actions that maximize the long-term cumulative reward.
Most real-world decision-making and prediction problems can be characterized as
this type of environmental interaction.

Animal and human intelligence is partially a consequence of the physical rich-
ness of our environment, and thus scaling RL to complex, real-world environ-
ments is a critical step toward sophisticated artificial intelligence. In real-world
applications of RL, the agent is likely to observe the environment through a high-
dimensional, visual sensory interface (e.g. a video camera). However, scaling to
high-dimensional input presents a significant challenge for machine learning, and
RL in particular. As the complexity of the agent’s sensory interface increases, there
is a significant increase in the number of environmental observations required for
the agent to gain the breadth of experience necessary to build a strong decision-
making policy. This is known as the curse of dimensionality (Section 1.4 of [6]).
The temporal nature of RL introduces additional challenges. In particular, complete
information about the environment is not always available from a single observation
(i.e the environment is partially observable) and delayed rewards are common, so
the agent must make thousands of decisions before receiving enough feedback to as-
sess the quality of its behaviour [22]. Finally, real-world environments are dynamic
and non-stationary [9], [26]. Agents are therefore required to adapt to changing en-
vironments without ‘forgetting’ useful modes of behaviour that are intermittently
important over time.

Video games provide a well-defined test domain for scalable RL. They cover a
diverse range of environments that are designed to be challenging for humans, all
through a common high-dimensional visual interface, namely the game screen [5].
Furthermore, video games are subject to partial observability and explicitly non-
stationary. For example, many games require the player to predict the trajectory of
a moving object. These calculations cannot be made from observing a single screen
capture. To make such predictions, players must identify, store, and reuse important
parts of past experience. As the player improves, new levels of play are unlocked
which may contain completely new visual and physical dynamics. As such, video
games represent a rich combination of challenges for RL, where the objective for
artificial agents is to play the game with a degree of sophistication comparable to
that of a human player [27], [4]. The potential real-world applications for artificial
agents with these capabilities is enormous.
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6.2 Background

Tangled Program Graphs (TPG) are a representation for Genetic Programming (GP)
with particular emphasis on emergent modularity through compositional evolution:
the evolution of hierarchical organisms that combine multiple agents which were
previously adapted independently [38], Figure 6.1.
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Environment Organism

Action

Fig. 6.1: A multi-agent organism developed through compositional evolution.

This approach leads to automatic division of labour within the organism and,
over time, a collective decision-making policy emerges that is greater than the sum
of its parts. The system has three critical attributes:

1. Adaptive Complexity. Solutions begin as single-agent organisms and then de-
velop into multi-agent organisms through interaction with their environment.
That is, the complexity of a solution is an adapted property.

2. Input Selectivity. Multi-agent organisms are capable of decomposing the input
space such that they can ignore sensory inputs that are not important at the
current point in time. This is more efficient than assuming that the complete
sensory system is necessary for every decision.

3. Modular Task Decomposition. As multi-agent organisms develop they may
subsume a variable number of stand-alone agents into a hierarchical decision-
making policy. Importantly, hierarchies emerge incrementally over time, slowly
growing and breaking apart through interaction with the environment. This
property allows a TPG organism to adapt in non-stationary environments and
avoid unlearning behaviours that were important in the past but are not currently
relevant.

In the Atari video game environment, TPG matches the quality of solutions from
a variety of state-of-the-art deep learning methods. More importantly, TPG is less
computationally demanding, requiring far fewer calculations per decision than any
of the other methods [21]. However, these TPG policies were purely reactive. They
represent a direct mapping from observation to action with no mechanism to inte-
grate past experience (prior state observations) into the decision-making process.
This might be a limitation in environments with temporal properties. For example,
there are Atari games that explicitly involve predicting the trajectory of a moving
object (e.g. Pong) for which TPG performed poorly. A temporal memory mecha-
nism would allow agents to make these calculations by integrating past and present
environmental observations.
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6.2.1 Temporal Memory

Temporal memory in sequential decision-making problems implies that behavioural
agent has the ability to identify, store, and reuse important aspects of past experi-
ence when predicting the best action to take in the present. More generally, temporal
memory is essential to any time series prediction problem, and has thus been inves-
tigated extensively in GP (see Agapitos et. al [2] for a broad review). In particular,
an important distinction is made between static memory in which the same mem-
ory variables are accessed regardless of the state of the environment, and dynamic
memory in which different environmental observations trigger access to different
variables.

Dynamic memory in GP is associated with indexed memory, which requires the
function set to include parameterized operations for reading and writing to specific
memory addresses. Teller [35] showed that GP with memory indexing is Turing
complete, i.e. theoretically capable of evolving any algorithm. Brave [8] emphasized
the utility of dynamic memory access in GP applied to an agent planning problem,
while Haynes [15] discuses the value of GP with dynamic memory in sequential
decision-making environments that are themselves explicitly dynamic. Koza [23]
proposed Automatically Defined Stores, a modular form of indexable memory for
GP trees, and demonstrated its utility for solving the cart centering problem without
velocity sensors, a classic control task that requires temporal memory.

Static memory access is naturally supported by the register machine representa-
tion in linear genetic programming [6]. For example, a register machine typically
consists of a sequence of instructions that read and write from/to memory, e.g.
Register|x] = Register|[x] + Register|y]. In this case, the values contained in registers
x and y may change depending on environmental input, but reference to the specific
registers x and y is determined by the instruction’s encoding and is not affected by
input to the program. If the register content is cleared prior to each program exe-
cution, the program is said to be stateless. A simple form of temporal memory can
be implemented by not clearing the register content prior to each execution of the
program. In the context of sequential decision-making, the program retains/accumu-
lates state information over multiple timesteps, i.e., the program is stateful. Alterna-
tively, register content from timestep ¢ may be fed back into the program’s input at
time ¢ + 1, enabling temporal memory through recurrent connections, e.g [10], [16].

Smith and Heywood [32] introduced the first memory model for TPG in partic-
ular. Their method involved a single global memory bank. TPG’s underlying lin-
ear GP representation was augmented with a probabilistic write operation, enabling
long and short-term memory memory stores. They also included a parameterized
read operation for indexed (i.e. dynamic) reading of external memory. Further-
more, the external memory bank is ecologically global. That is, sharing is supported
among the entire population such that organisms may integrate their own past expe-
rience and experience gained by other (independent) organisms. The utility of this
memory model was demonstrated for navigation in a partially observable, visual RL
environment.
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In this work we propose that multi-agent TPG organisms can be extended to
support dynamic temporal memory without the addition of specialized read/write
operations. This is possible because TPG organisms naturally decompose the task
both spatially and temporally. Specifically, each decision requires traversing one
path through the graph of agents, in which only agents along the path are ’executed’
(i.e. a subset of the agents in the organism). Each agent will have a unique com-
plement of static environmental input and memory references. Since the decision
path at time 7 is entirely dependent on the state of the environment, both state and
memory access are naturally dynamic.

The intuition behind this work is that dynamic/temporal problem decomposition
w.r.t input and memory access is particularly important in visual RL tasks because:
1) High-dimensional visual input potentially contains a large amount of information
that is intermittently relevant to decision making over time. As such, it is advanta-
geous if the model can parse out the most salient observational data for the current
timestep and ignore the rest; and 2) RL environments with real-world complexity
are likely to exhibit partial observability at multiple times scales. For example, pre-
dicting the trajectory of a moving object may require an agent to integrate a memory
of the object’s location at # — 1 with the current observation at time ¢, or short-term
memory. Conversely, there are many tasks that require integration over much longer
periods of time, e.g. maze navigation [12]. These two points clearly illustrate the
drawback of autoregressive models [2,27], in which the issue of temporal memory
is side-stepped by stacking a fixed number of the most recent environmental ob-
servations into a single ’sliding window’ world view for the agent. This approach
potentially increases the amount of redundant input information and limits temporal
state integration to a window size fixed a priori.

6.2.2 Heterogeneous Policies and Modularity

Heterogeneous policies provide a mechanism through which multiple types of active
device, entities which accept input, perform some computation, and produce output,
may be combined within a stand-alone decision-making agent, eg. [17], [25]. In this
work, we investigate how compositional evolution can be used to adaptively com-
bine general-purpose and task-specific devices. Specifically, GP applied to visual
problems can benefit from the inclusion of specialized image-progressing opera-
tors, e.g. [3], [24], [39]. Rather than augmenting the instruction set of all programs
with additional operators, compositional evolution of heterogeneous policies pro-
vides an opportunity to integrate task-specific functionality in a modular fashion,
where modularity is likely to improve the evolvability of the system [1], [38], [36].
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6.3 Evolving Heterogeneous Tangled Program Graphs

The algorithm investigated in this work is an extension of Tangled Program Graphs
[21] with additional support for temporal memory and heterogeneous policies. This
section details the extended system with respect to three system components, each
playing a distinct role within the emergent hierarchical structure of TPG organisms:

e A Program is the simplest active device, capable of processing input data and
producing output, but not representing a stand-alone RL agent.

e A Team of Programs is the smallest independent decision-making organism,
or agent, capable of observing the environment and taking actions.

¢ A Policy Graph adaptively combines multiple teams (agents) into a single hier-
archical organism through open-ended compositional evolution. In this context,
open-ended refers to the fact that hierarchical transitions are not planned a pri-
ori. Instead, the hierarchical complexity of each policy graph is a property that
emerges through interaction with the problem environment.

6.3.1 Programs and Shared Temporal Memory

In this work, all programs are linear register machines [6]. Two types of program
are supported: Action-value programs and Image processors.

Action-value programs have a pointer to one action (e.g. a joystick position from
the video game domain) and produce one scalar bidding output, which is interpreted
as the program’s confidence that its action is appropriate given the current state of
the environment. As such, the role of an action-value program is to define envi-
ronmental context for one action, Algorithm 3. In order to support shared temporal
memory, action-value programs have two register banks; one stateless bank that is
reset prior to each program execution, and a pointer to one stateful bank that is only
reset at the start of each episode (i.e. game start). Stateless register banks are private
to each program, while stateful banks are stored in a dedicated memory population
and may be shared among multiple programs (This relationship is illustrated in the
lower-left of Figure 17.2). Shared memory allows multiple programs to communi-
cate within a single timestep or integrate information across multiple timesteps. In
effect, shared memory implies that each program has a parameterized number of
context outputs (see Registersspareq in Table 6.2).

Image processing programs have context outputs only. They perform matrix ma-
nipulations on the raw pixel input and store the result in shared memory accessible
to all other programs, Algorithm 4. In addition to private and shared register mem-
ory, image processors have access to a task-specific type of shared memory in the
form of a single, global image buffer matrix with the same dimensionality as the
environment’s visual interface. The buffer matrix is stateful, reset only at the start
of each episode. This allows image processors to accumulate full-screen manipula-
tions over the entire episode. Note that image-processor programs have no bidding
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Algorithm 3 Example action-value program. Each program contains one private
stateless register bank, R, and a pointer to one shareable stateful register bank,
R;. R, is reset prior to each execution, while Ry is reset (by an external process) at
the start of each episode. Programs may include two-argument instructions of the
form R[i] - R[j] o Rk] in which o € {+, —,x,=}; single-argument instructions of
the form R[i] <— o(R[k]) in which o € {cos,In,exp}; and a conditional statement of
the the form IF (R]i] < R[k]) THEN R]i] +— —R[i]. The second source variable, R[k],
may reference either memory bank or a state variable (pixel), while the target and
first source variables (R[i] and R[j]) may reference either the stateless or stateful
memory bank only. Action-value programs always return the value stored in R, [0]
at the end of execution.

I: Ry <0 # reset private memory bank R,
2: R,[0] <= Ry[0] — Input 3]

3: Ry[1] = Ry [0] + Ry [7]

& R[2] < Log(Ry[1])

5: if then(R,[0] < R[2])

6 R0 < —R,[0]

7: end if

8: return R),[0]

output because they do not contribute directly to action selection. Their role is to
preprocess input data for action-value programs, and this contribution is communi-
cated to action-value programs through shared register memory (This relationship
is illustrated in the lower-left of Figure 17.2).

Memory sharing implies that a much larger proportion of program code is now ef-
fective, since an effective instruction is one that effects the final value in the bidding
output (R, [0]) or any of the shared registers, R,. As a result, sharing memory incurs
a significant computational cost relative to programs without shared memory, since
fewer ineffective instructions, or introns, can be removed prior to program execu-
tion. In addition, shared memory implies that the order of program execution within
a team now potentially impacts bidding outputs. In this work, the order of program
execution within a team remains fixed, but future work could investigate mutation
operators that modify execution order. Program variation operators are listed in Ta-
ble 6.2, providing an overview of how evolutionary search is focused on particular
aspects of program structure. In short, program length and content, as well as the
degree of memory sharing, are all adapted properties.
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Algorithm 4 Example image-processor program. As with action-value programs,
image-processor programs contain one private stateless register bank, R,, and a
pointer to one shareable stateful register bank, R;. In addition, all image processors
have access to a global buffer matrix, S, which is reset (by an external process) at the
start of each episode. Image-processor programs accept either the raw pixel screen
or the shared buffer as input. Depending on the operation, the result is stored in R,
Ry, or back into the shared buffer S. Unlike the operations available to action-value
programs, some image processing operations are parameterized by values stored
in register memory or sampled directly form input. This opens a wide range of
possibilities for image processing instructions, a few of which are illustrated in this
algorithm. Table 6.1 provides a complete list of image processing operations used
in this work.

I: Ry <0 # reset private memory bank R,

2: S+ AddC(Screen,R;[0]) # Add an amount to each image pixel
3: § < Div(Screen, ) # Divide the pixel values of two images
4: S+ Sqrt(S) # Take the square root of each pixel

5: Rp[2] <= MaxW (S,Rs[0],R,[5],Rs[7]) # Store max of parameterized window
6: R[2] <~ MeanW (S,R,[3],Rs[1],R,[2]) # Store mean of parameterized window

6.3.2 Cooperative Decision-Making with Teams of Programs

Individual action-value programs have only one action pointer, and can therefore
never represent a complete solution independently. A team of programs represents
a complete solutions by grouping together programs that collectively map environ-
mental observations (e.g. the game screen) to atomic actions (e.g. joystick posi-
tions). This is achieved through a bidding mechanism. In each timestep, every pro-
gram in the team will execute, and the team then takes the action pointed to by the
action-value program with the highest output. This process repeats at each timestep
from the initial episode condition to the end of an episode. When the episode ends,
due to a GameOver signal from the environment or an episode time constraint is
reached, the team as a whole is assigned a fitness score from the environment (i.e.
the final game score). Since decision-making in TPG is a strictly collective process,
programs have no individual concept of fitness. Team variation operators may add,
remove, or modify programs in the team, with parameters listed in Table 6.2.

In this work, new algorithmic extensions at the team level are twofold: 1) Teams
are heterogeneous, containing action-value programs and image processing pro-
grams; and 2) All programs have access to shareable stateful memory. Figure 17.2
illustrates these extensions.
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Table 6.1: Operations available to image-processor programs. These operations were selected
based on their previous application in GP applied to image classification tasks [3]. See
Algorithm 4 for an example program using a subset of these operations.

Operation Parameters Description
Add Image, Image Add pixel values of two images
Sub Image, Image Subtract pixel values of two images
Div Image, Image Divide pixel values of two images
Mul Image, Image Multiply pixel values of two images
Max?2 Image, Image Pixel-by-pixel max of two images
Min2 Image, Image Pixel-by-pixel min of two images
AddC Image, x Add integer x to each pixel
SubC Image, x Subtract integer x from each pixel
DivC Image, x Divide each pixel by integer x
MulC Image, x Multiply each pixel by integer x
Sqrt Image Take the square root of each pixel
Ln Image Take the natural log of each pixel
Uses a sliding window of size x
Mean Image, x and replaces the centre pixel of the
window with the mean of the window
Max Image, x As Mean, but takes the maximum value
Min Image, x As Mean, but takes the minimum value
Med Image, x As Mean, but takes the median value

Returns the mean value of the pixels
MeanA  Image, 3 Int (X, y, size) contained in a window of size,
centred at x,y in the image
StDevA Image, 3 Int (X, y, size) Returns standard deviation
MaxA Image, 3 Int (X, y, size) Returns maximum value
MinA Image, 3 Int (X, y, size) Returns minimum value

6.3.3 Compositional Evolution of Tangled Program Graphs

This section details how teams and programs are coevolved, paying particular atten-
tion to emergent hierarchical transitions. Parameters are listed in Table 6.2.
Evolution begins with a population of Ry;,, teams, each containing at least one
program of each type, and a max of @ programs in total. Programs are created in
pairs with one shared memory bank between them (See left-hand-side of Figure
17.2). Program actions are initially limited to task-specific (atomic) actions, Fig-
ure 17.2. Throughout evolution, program variation operators are allowed to intro-
duce actions that index other teams within the team population. To do so, when a
program’s action is modified, it may reference either a different atomic action or
any team created in a previous generation. Specifically, the action set from which
new program actions are sampled will correspond to the set of atomic actions, A,
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Fig. 6.2: Illustration of the relationship between teams, programs, and shared memory in
heterogeneous TPG.

with probability pgiomic, and will otherwise correspond to the set of teams present
from any previous generation. In effect, action pointer mutations are the primary
mechanism by which TPG supports compositional evolution, adaptively recombin-
ing multiple (previously independent) teams into variably deep/wide directed graph
structures, or policy graphs, right-hand-side of Figure 17.2. The hierarchical inter-
dependency between teams is established entirely through interaction with the task
environment. Thus, more complex structures can emerge as soon as they perform
better than simpler solutions. The utility of compositional evolution is empirically
demonstrated in Section 6.4.2.

Table 6.2: Parameterization of Team and Program populations. For the team population, p,
denotes a mutation operator in which: x € {d,a} are the prob. of deleting or adding a
program respectively; x € {m,n} are the prob. of creating a new program, changing the
program action pointer, and changing the program shared memory pointer respectively.
 is the max initial team size. For the program population, p, denotes a mutation
operator in which x € {delete,add,mutate,swap} are the prob. for deleting, adding,
mutating, or reordering instructions within a program. pyemic is the probability of a
modified action pointer referencing an atomic action.

Team population
Parameter |Value| Parameter Value
Rsize 1000 Rgap 50% of Root Teams
Pmd> Pma 0.7 0] 60
Pmm 0.2 |  pumn;Pms 0.1
Program population
Parameter |Value| Parameter Value
Registersprivare| 8 |maxProgSize 100
Registersspared 8 Patomic 0.99
Pdeletes Padd 0.5 | pmutates Pswap 1.0
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Decision-making in a policy graph begins at the root team (e.g. #3 in Figure 17.2),
where each program in the team will produce one bid relative to the current state
observation, ?(t) Graph traversal then follows the program with the largest bid,
repeating the bidding process for the same state, ?(t), at every team along the
path until an atomic action is reached. Thus, in sequential decision-making tasks,
the policy graph computes one path from root to atomic action at every time step,
where only a subset of programs in the graph (i.e those in teams along the path)
require execution.

As hierarchical structures emerge, only root teams (i.e. teams that are not ref-
erenced as any program’s action) are subject to modification by the variation op-
erators. As such, rather than pre-specify the desired team population size, only the
number of root teams to maintain in the population, or Rj;,., requires prior speci-
fication. Evolution is driven by a generational GA such that the worst performing
root teams (50% of the root population, or R,,) are deleted in each generation and
replaced by offspring of the surviving roots. After team deletion, programs that are
not part of any team are also deleted. As such, selection is driven by a symbiotic
relationship between programs and teams: teams will survive as long as they de-
fine a complementary group of programs, while individual programs will survive
as long as they collaborate successfully within a team. The process for generating
team offspring uniformly samples and clones a root team, then applies mutation-
based variation operators to the cloned team, as listed in Table 6.2. Complete details
on TPG are available in [21] and [19].

6.4 Empirical Study

The objective of this study is to evaluate heterogeneous TPG with shared temporal
memory for object tracking in visual RL. This problem explicitly requires an agent
to develop short-term memory capabilities. For an evaluation of TPG in visual RL
with longer-term memory requirements see [32].

6.4.1 Problem Environments

In order to compare with previous results, we consider the Atari video game Break-
out, for which the initial version of TPG failed to learn a successful policy [21].
Breakout is a vertical tennis-inspired game in which a single ball is released near
the top of the screen and descends diagonally in either left or right direction, Figure
3(a). The agent observes this environment through direct screen capture, a 64 x 84
pixel matrix! in which each pixel has a colour value between 0 and 128. The player

! This screen resolution corresponds to 40% of the raw 210 Atari screen resolution. TPG has
previously been shown to operate under the full Atari screen resolution [21]. The focus of this
study is temporal memory, and the down sampling is used here to speed up empirical evaluations.
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controls the horizontal movement of a paddle at the bottom of the screen. Selecting
form 4 atomic actions in each timestep, A € {Serve, Left,Right, NoAction}, the goal
is to maneuver the paddle such that it makes contact with the falling ball, causing it
to ricochet up towards the brick ceiling and clear bricks one at a time. If the paddle
misses the falling ball, the player looses a turn. The player has three turns to clear
two layers of brick ceiling. At the end of each episode, the game returns a reward
signal which increases relative to the number of bricks eliminated. The primary skill
in breakout is simple: the agent must integrate the location of the ball over multiple
timesteps in order to predict its trajectory and move the paddle to the correct hori-
zontal position. However, the task is dynamic and non-trivial because, as the game
progresses, the ball’s speed increases, its angle varies more widely, and the width
of the paddle shrinks. Furthermore, sticky actions [27] are utilized such that agents
stochastically skip screen frames with probability p = 0.25, with the previous action
being repeated on skipped frames. Sticky actions have a dual purpose in the ALE:
1) artificial agents are limited to roughly the same reaction time as a human player;
and 2) stochasticity is present throughout the entire episode of gameplay.
The Atari simulator used in this work, The Arcade Learning Environment (ALE)
[5], is computational demanding. As such, we conduct an initial study in a custom
environment that models only the ball tracking task in breakout. This “ball catch-
ing” task is played on a 64 x 32 grid (i.e. representing roughly the bottom 3/4 of
the Breakout game screen) in which each tile, or pixel, can be one of two colours
represented by the values O (no entity present) and 255 (indicating either the ball
or paddle is present at this pixel location), Figure, 3(b). The ball is one pixel large
and is stochastically initialized in one of the 64 top-row positions at the start of each
episode. The paddle is 3 pixels wide and is initialized in the centre of the bottom row.
The ball will either fall straight down (probability = 0.33) or diagonally, moving one
pixel down and one pixel to the left or right (chosen with equal probability at time
t = 1) in each timestep. If a diagonally-falling ball hits either wall, its horizontal
direction is reversed. The agent’s objective is to select one of 3 paddle movements
in each timestep, A € {Left,Right,NoAction}, such that the paddle makes contact
with the falling ball. The paddle moves twice as fast as the ball, i.e. 2 pixels at a
time in either direction. An episode ends when the ball reaches the bottom row, at
which point the game returns a reward signal of 1.0 if the ball and paddle overlap,
and 0 otherwise. As in Breakout, success in this task requires the agent to predict the
trajectory of the falling ball and correlate this trajectory with the current position of
the paddle in order to select appropriate actions.

6.4.2 Ball Catching: Training Performance

Four empirical comparisons are considered in the ball catching environment, with
10 independent runs performed for each experimental case. As discussed in Section
11.1, visual RL policies require a breadth of experience interacting with the problem
environment before their fitness can be estimated with a sufficient degree of gener-
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(a) Breakout (b) Ball Catching

Fig. 6.3: Screenshots of the two video game environments utilized in this work.

ality. As such, in each generation we evaluate every TPG policy in 40 episodes and
let the mean episode score represent their fitness. Curves in Figure 6.4 represent
the fitness of the champion individual over 2000 generations, which is equivalent to
roughly 12 hours of wall-clock time. Each line is the median over 10 independent
runs.
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Fig. 6.4: Fraction of successful outcomes (Mean Game Score) in 40 episodes for the champion
individual at each generation. Each line is the median over 10 independent runs for
experimental cases (a) - (e). See Section 6.4.2 text for comparative details.
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Figure 6.4 (a) is the training curve for heterogeneous TPG with the capacity
for shared stateful memory as described in Section 6.3. For reference, a mean game
score of 0.65 indicates that the champion policy successfully maneuvered the paddle
to meet the ball 65% of the time over 40 episodes.

Figure 6.4 (b) is the training curve for TPG with shared memory but without
image-processor programs. While the results are not significantly different than case
(a), heterogeneous TPG did not hinder progress in any way. Furthermore, the sin-
gle best policy in either (a) or (b) was heterogeneous and did make use of image-
processor programs, indicating that the method has potential.

Figure 6.4 (c) is the training curve for heterogeneous TPG without the capacity
for shared memory. In this case, each program is initialized with a pointer to one
private stateful register bank. Mutation operators are not permitted to modify mem-
ory pointers (p,s = 0). The case with memory sharing exhibits significantly better
median performance after very few generations (= 100).

Figure 6.4 (d) shows the training curve for heterogeneous TPG without the
capacity to build policy graphs. In this case, team hierarchies can never emerge
(Patomic = 1.0). Instead, adaptive complexity is supported by allowing root teams to
acquire an unbounded number of programs (@ = o). The weak result clearly illus-
trates the advantage of emergent hierarchical transitions for this task. As discussed
in Section 6.2.1, one possible explanation for this is the ability of TPG policy graphs
to decompose the task spatially by defining an appropriate subset of inputs (pixels)
to consider in each timestep, and to decompose the task temporally by identifying,
storing, and reusing subsets of past experience through dynamic memory access.
Without the ability to build policy graphs, input and memory indexing would be
static, i.e. the same set of inputs and memory registers would be accessed in every
timestep regardless of environmental state.

Figure 6.4 (e) shows the training curve for heterogeneous TPG without the capac-
ity for stateful memory. In this case, both private and shared memory registers are
cleared prior to each program execution. This is equivalent to equipping programs
with 16 stateless registers. The case with shared temporal memory achieves signif-
icantly better policies after generation ~ 500, and continues to gradually discover
increasingly high scoring policies up until the runs terminate at generation 2000.
This comparison clearly illustrates the advantage that temporal memory provides
for TPG organisms in this domain. Without the ability to integrate observations over
multiple timesteps, even the champion policies are only slightly better than random

play.

6.4.3 Ball Catching: Solution analysis

Section 6.4.2 established the effectiveness of heterogeneous TPG with shared tem-
poral memory in a visual object tracking task (i.e. ball-catching). The following
analysis confirms that champion policies rely on shared temporal memory to suc-
ceed at this task under test conditions. Box plots in Figure 6.5 summarize the mean
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game score (over 30 episodes) for the single champion policy from 20 runs®. The
distribution labeled *Shared Mem’ indicates that the median success rate for these
20 champions is & 76%. The box labeled "Mem (No Sharing)’ summarizes scores
for the same 20 policies when their ability to share memory is suppressed. The de-
crease in performance indicates that policies are indeed exploiting shared temporal
memory in solving this task. The box labeled 'No Mem’ provides test scores for
these policies when all memory registers are stateless (i.e. reset prior to each pro-
gram execution), again confirming that temporal memory plays a crucial role in the
behaviour of these policies. Without temporal memory, the champion policies are
often no better than a policy that simply selects actions at random, or 'Rand’ in
Figure 6.5.
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Fig. 6.5: Fraction of successful outcomes (Mean Game Score) in 30 test episodes for the
champion policies from the case of heterogeneous TPG with shared temporal memory,
Figure 6.4 (a). Box plots summarize the results from 20 independent runs. See Section
6.4.3 text for details on each distribution.

2 An additional 10 runs were conducted for this analysis relative to the 10 runs summarized in
Figure 6.4 (a).
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6.4.4 Atari Breakout

In this Section, the most promising TPG configuration identified under the ball-
catching task, or heterogeneous TPG with shared temporal memory, is evaluated
in the Atari game Breakout (Section 6.4.1). The computational cost of game sim-
ulation in the ALE precludes evaluating each individual policy in 40 episodes per
generation during training. In Breakout, each policy is evaluated in only 5 episodes
per generation. This limits the generality of fitness estimation but is sufficient for
a proof-of-concept test of our methodology in a challenging and popular visual RL
benchmark. Figure 6.6 provides the training curves for 10 independent Breakout
runs. In order to score any points, policies must learn to serve the ball (i.e. select the
Serve action) whenever the ball does not appear on screen. This skill appears rela-
tively quickly in most of the runs in Figure 6.6. Next, static paddle locations (e.g.
moving the paddle to the far right after serving the ball and leaving it there) can
occasionally lead to =~ 11 — 15 points. In order to score =~ 20 — 50 points, policies
must surpass this somewhat degenerate local optima by discovering a truly respon-
sive strategy in which the paddle and ball make contact several times at multiple
horizontal positions. Finally, policies that learn to consistently connect the ball and
paddle will create a hole in the brick wall. When this is achieved, the ball can pass
through all layers of brick and become trapped in the upper region of the world
where it will bounce around clearing bricks from the top down and accumulating
scores above 100.

Table 6.3 lists Breakout test scores for several recent visual RL algorithms.
Previous methods either employed stateless models that failed to achieve a high
score (TPG, CGP, HyperNeat) or side-stepped the requirement for temporal mem-
ory by using autoregressive, sliding window state representations. Heterogeneous
TPG with shared memory (HTPG-M) is the highest scoring algorithm that operates
directly from screen capture without an autoregressive state, and roughly matches
the test scores from 3 of the 4 deep learning approaches that do rely on autoregres-
size state.

Table 6.3: Comparison of Breakout test scores (mean game score over 30 episodes) for
state-of-the art methods that operate directly from screen capture. Heterogeneous TPG
with shared memory (HTPG-M) is the highest scoring algorithm that operates without
an autoregressive, sliding window state representation. "Human’ is the score achieved
by a “professional” video game tester reported in [27]. Scores for comparator
algorithms are from the literature: Double [13], Dueling [37], Prioritized [31], A3C
FF [28], A3C LSTM [28], TPG [21], HyperNeat [14], CGP [39].

Human |Double|Dueling | Prioritized | A3C LSTM |TPG |HTPG-M |HyperNeat | CGP
31.8 | 368.9 | 411.6 371.6 766.8 12.8| 3742 2.8 132
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Fig. 6.6: Fitness (mean game score) for the single champion policy in each of 10 independent
Breakout runs. Scores are averaged over 5 episodes. For clarity, line plots show the
fitness of the best policy discovered up to each generation.

6.5 Conclusions and Future Work

We have proposed a framework for shared temporal memory in TPG which sig-
nificantly improves the performance of agents in a partially observable, visual RL
problem with short-term memory requirements. This study confirms the significance
of private temporal memory for individual programs as well as the added benefit of
memory sharing among multiple programs in a single organism, or policy graph. No
specialized program instructions are required to support dynamic memory access.
The nature of temporal memory access and the degree of memory sharing among
programs are both emergent properties of an open-ended evolutionary process. Fu-
ture work will investigate this framework in environments with long-term partial
observability. Multi-task RL is a specific example of this [21], where the agent must
build short-term memory mechanisms and integrate experiences from multiple on-
going tasks. Essentially, the goal will be to construct shared temporal memory at
multiple time scales, e.g. [17]. This will most likely require a mechanism to trig-
ger the erosion of non-salient memories based on environmental stimulus, or active
forgetting [11].

Supporting multiple program representations within a single heterogeneous or-
ganism is proposed here as an efficient way to incorporate domain knowledge in
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TPG. In this study, the inclusion of domain-specific image processing operators was
not crucial to building strong policies, but it did not hinder performance in any way.
Given the success of shared memory as a means of communication within TPG or-
ganisms, future work will continue to investigate how heterogeneous policies might
leverage specialized capabilities from a wider of variety bio-inspired virtual ma-
chines. Image processing devices that model visual attention are of particular inter-
est, e.g. [33], [29].
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