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Abstract A data set for classification is commonly composed of a set of features
defining the data space representation and one attribute corresponding to the
instances’ class. A classification tool has to discover how to separate classes based
on features, but the discovery of useful knowledge may be hampered by inadequate
or insufficient features. Pre-processing steps for the automatic construction of
new high-level features proposed to discover hidden relationships among features
and to improve classification quality. Here we present a new tool for high-
level feature construction: Kaizen Programming. This tool can construct many
complementary/dependent high-level features simultaneously. We show that our
approach outperforms related methods on well-known binary-class medical data sets
using a decision-tree classifier, achieving greater accuracy and smaller trees.

Keywords Kaizen programming • Genetic programming • Classification
• Decision-tree

1 Introduction

The objective of a classification algorithm is to predict the class (label) of a record
given the values of its attributes. In order to do that, it employs knowledge obtained
from a tagged data set, composed of pre-classified records. The information
contained in the attribute set (also known as feature set) and in the labels is used
to build a model able to accurately differentiate the classes present in the data. This
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model will then be tested using unseen data which have labels (for quality assurance)
and other data without labels (for use the classifier).

The classification process can therefore be seen to consist of two phases. The
first phase, which corresponds to model building or training, employs a data set of n
records with known labels for each record. The model has to correctly identify the
class (yi; i D 1; : : :; n) of each record xi;j; j D 1; : : :;m, where m is the number
of features. The second phase consists of using this classifier to predict classes
of unknown records that were not employed in the training phase. Obviously, to
evaluate the classifier’s performance in the second phase, the test records must have
a known class, which is not used in the prediction but is used for comparison with
the class predicted by the model.

The method proposed in this paper aims at an improvement of predictive quality
by discovering useful knowledge from data in the pre-processing stage. Such
extracted knowledge is inserted into the data set in the form of new attributes and
can be used subsequently by the classifier to build new models. This strategy is
known as feature construction or feature generation (Liu and Motoda 1998), which
can also be employed for dimensionality reduction (Guo et al. 2008).

While many feature construction methods are deterministic (Schölkopf et al.
1997; Nguyen and Rocke 2004; Jolliffe 2005), stochastic approaches have also
been proposed (Guo et al. 2008; Neshatian et al. 2012; Wu and Banzhaf 2011).
Deterministic methods rely on greedy heuristics that are supposed to work on any
kind of data, but have been shown to not always effective (Wolpert and Macready
1997). Stochastic approaches are more flexible in this aspect: They can generate and
evaluate non-linear features that would be discarded by deterministic methods. It is
easy to see that, by being more rigid, greedy deterministic methods tend to be much
faster but less capable of exploring the search-space, while stochastic methods will
be slower but may generate better features.

The method reported in this chapter combines a stochastic and a deterministic
method into a hybrid method. Its stochastic part performs knowledge extraction to
generate high-level features, and its deterministic part builds a classification model
on top of that. In this work we aim at a grey-box classifier, which is a human-
readable model that may not be fully understandable (“gray” instead of “white”)
because some formulas in the new features could be complex and opaque, though
clearer than results produced by black-box approaches such as Artificial Neural
Networks.

In the present contribution we employ a collaborative approach to search
for high-quality features. There are many aspects that differentiate our method
from others found in the literature that use a team-based approach, see, for
instance (Brameier and Banzhaf 2001). Those differences will be explained later.
For now, to say that our approach evolves a set of features instead of evolving
individual features to be used as an ensemble, as commonly explored in the
literature.

In order to have a good ensemble, it is important that all classifiers have high
predictive quality. Therefore, it is reasonable to suppose that there is a high chance
of having very similar classifiers that do not augment each other. The methodology
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of the present study builds a single classifier whose features are likely to be
complementary to each other. It is similar in behavior to PCA (Jolliffe 2005), where
the features generated show a decreasing degree of variance the data. The difference
is, however, that our method discovers non-linear features using arbitrary formulas.

In order to perform an efficient search, our approach is based on the Kaizen
methodology (Imai 1986), that will be briefly introduced below. The main idea
of Kaizen is the continuous improvement of a process through the PDCA (Plan-
Do-Check-Act, Gitlow et al. 1989) cycle, generating a new solution based on
the knowledge obtained in previous cycles. This new solution can be divided to
conquer, allowing individual analysis and improvement of each part. Therefore,
a solution is actually composed of partial solutions. Our approach, called Kaizen
Programming (KP, de Melo 2014) is an implementation of the PDCA cycle. KP can
generate a feature set, build and evaluate the model, extract the importance of each
feature from the set, and evolve useful attributes to extract high-quality knowledge
from the training data.

The rest of this chapter is organized as follows. Section 2 introduces the
concept of Feature Construction, Section 3 describes related algorithms for feature
constructions that were used for comparison in this work. Section 4 presents
Kaizen Programming applied to feature construction. Computational experiments
are presented in Sect. 5 with Sect. 6 providing some conclusions.

2 Feature Construction

Feature construction (Liu and Motoda 1998; Guyon et al. 2006; Kantardzic 2011)
is a process employed to discover useful knowledge regarding hidden relationships
among features in a set of data. The newly constructed features can then be either
used alone or to augment the existing data set. When used alone, the new features
may be smaller in number than the original feature set, acting as a dimensionality
reduction method; thus named Feature Extraction (Liu and Motoda 1998; Guyon
et al. 2006; Kantardzic 2011). It is expected that the new features perform a better
separation of classes, facilitating the data mining task.

As pointed out by Freitas (2008), when compared to feature selection, the
construction of new useful attributes can be a much more difficult task. This can
be explained by the fact that feature selection is a binary combination problem
(a feature is selected or not selected, giving 2k possibilities, where k is the number
of features), while construction is a multi-valued combination task because the new
feature is a function composition.

Many methods have been proposed in the last decades to perform feature con-
struction for dimensionality reduction. Deterministic approaches such as Principal
Component Analysis (PCA, Jolliffe 2005), and Partial Least Squares (PLS, Nguyen
and Rocke 2004) are usually fast and able to find useful features. However, these
techniques do not search for a global optimum. Stochastic techniques such as
evolutionary algorithms have been investigated to that end. As examples of distinct
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methods from the area of Genetic Programming (Banzhaf et al. 1998) we refer to
Smith and Bull (2005), Gavrilis et al. (2008), and Drozdz and Kwasnicka (2010).

After generating a feature one must measure its quality. As we are aiming
to achieve the best prediction quality, we selected the wrapper approach (Miner
et al. 2009), where a predictive model (a classifier, for instance) is built using the
input feature set, and the prediction results are compared to the expected results.
The percentage of correct predictions made on the test set is used as a quality
measure. Since the wrapper does not provide feature importance, it is necessary
to investigate how the classifier used the features to build the model in. This
information about feature importance is then used to efficiently guide the search.

Our models are built using a random sample from the data set (the training set),
and tested using a distinct sample from the same data set. Wrappers may require a
large computational effort, but their use tends to result in high-quality features that
will be tuned to the specific classifier. Finding this best solution implies a global
search and a stochastic algorithm is a reasonable choice for this task. The next
Section presents some related work.

3 Evolutionary Algorithms for Feature Construction

While there are many using evolutionary algorithms for feature construction, here
we briefly introduce only those techniques that are used for comparison in the
experimental section.

GPMFC+CART (Neshatian et al. 2012): This technique is a GP-based system for
construction of multiple features for classification problems. It uses a filter approach
instead of a wrapper, to evaluate the quality of the constructed features during the
evolution. The multiple features are sequentially constructed, one by one, for each
class of the dataset, maximizing the purity of class intervals. After evolution, the
features were tested using the CART decision-tree technique.

MLGP (Wu and Banzhaf 2011): In this contribution, the multilevel selection
framework (Wu and Banzhaf 2010) served as inspiration to the development of
a multilevel genetic programming approach (MLGP). Multilevel selection tries
to encourage cooperation among individuals based on biological group selection
theory. The authors developed a cooperation operator in order to build solutions
hierarchically. The fitness of a group (or individual) is calculated through direct
evaluation, without external classifiers. Therefore, the individual, or group, is used
to classify the data.

GP-EM (Guo et al. 2010): This method uses GP to generate a single feature,
and an expectation maximization algorithm (EM) to model the new features as a
Gaussian mixture (GM). The objective is to evolve features that better separate the
classes when modeled as GM. The fitness measure, in this case, considers both the
within-class scatter and the between-class scatter values.
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GP+C4.5 (Neshatian et al. 2007): In this contribution, classical GP is used
to evolve multiple features, and a class-dispersion and entropy-based measure is
employed to calculate a feature’s quality. A feature is independently constructed for
each class in the dataset. Therefore, the distribution of classes in a particular feature
must be well separated. After evolving the features, experiments were performed
using the well-known C4.5 classifier.

GP+CART (Muharram and Smith 2004): These authors employ two distinct
fitness measures to evolve features using GP: Information Gain and Gini Index.
The constructed feature is assumed to be a node in a decision-tree, and fitness is
calculated using the result of a split in that node. A single feature is evolved in
each GP run, and four classifiers are tested on the features. We selected the results
obtained by CART to compare to the results herein.

In the next section we describe KP and our proposal for feature construction.

4 Kaizen Programming Applied to Feature Construction

Kaizen Programming (KP), proposed by de Melo (2014), is a novel tool inspired by
the concepts of the Kaizen method (Imai 1986). KP is a computational implementa-
tion of a Kaizen event with the Plan-Do-Check-Act (PDCA) methodology employed
to guide a process continuous improvement. However, KP is an abstraction of the
main components of PDCA.

Compared with classical GP, KP follows a different method for the automated
design of algorithms. KP individuals are not complete solutions, only parts of solu-
tions that have to combine together. As a result, evolution becomes a collaborative
approach with the expectation that more than one partial solution is improved to
help other partial solutions.

In KP, a team of experts is formed to propose ideas to solve a problem, which
then are joined to become a solution. The quality of a solution measures how well it
solves the problem, and the quality of an idea quantifies its contribution/importance
to the solution. KP first builds a model, and then calculates the importance of each
feature. Therefore, different from general GP and other evolutionary algorithms that
perform trial-and-error search guided by natural selection, in KP can determine,
exactly which parts of the solution should be removed or improved because they
were important to the method that built the model. Consequently, the experts
contribute by providing better ideas in each cycle. This results in a reduction in
bloat, population size, and number of function evaluations. A further difference to
other team-based approaches is that the team in KP is a set of agents (data structure
+ procedures), while for other methods a team is a set of solutions (individuals).

Conceptually, the knowledge acquired during the search is shared with the team
to improve everyone’s ideas. Thus, there is a single set of ideas accessible to all
experts, not multiple populations. Not all experts may provide useful contributions
all the time that is, the search mechanism does not guarantee that every cycle will
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give a better solution. However, it is expected that better ideas are generated over
the cycles. A brief explanation of the PDCA cycle is presented next.

REPEAT

PLAN: assuming the current ideas (called standard) the team performs a
brainstorming, and each expert proposes one or more ideas to solve part of
the problem;
DO: the standard and new ideas are applied (executed/parsed/evaluated/
calculated) to the problem and put together to become a complete solution;
CHECK: evaluate the proposed solution, then each single idea (considering the
standard and the new ones) is analyzed and its contribution to solve the problem
is measured. Create a new solution using only the important ideas and measure
its quality;
ACT: if the solution quality has improved, then the standard is updated, which
is presented to the team along with each contribution, improving the knowledge
of the problem. Create another kaizen event with a new team if the current one
doesn’t improve the standard after a certain number of cycles;

WHILE target not achieved

In this chapter, KP is employed to perform high-level feature construction
to improve prediction quality of a particular classifier. Various features can be
generated at the same time, being improved over PDCA cycles. As opposed to what
happens in traditional approaches, in KP those features are dependent on each other,
therefore the result is a feature set for a single model, not an ensemble.

4.1 Implementation

Algorithm 1 presents the pseudo-code of the KP method implemented for this
contribution. The experts work on a tree-based representation, i.e., as a traditional
GP, and may perform only recombination (crossover), only variation (mutation), or
both.

The ideas proposed by the experts are non-linear combinations of the original
features (formulas) using the terminals and non-terminals defined by the user. The
ideas are randomly selected for improvement (there is no tournament) as all of them
are supposed to be important. To facilitate implementation, we assumed that the
number of experts is the same as the number of features to be constructed, but they
are actually distinct parameters. The Expansion Factor to increase the size of the
team is a mechanism that may be used when stagnation is detected.

The method selected for building the model was the Classification and Regres-
sion Tree algorithm (CART, Breiman et al. 1984). Also, our CART implemen-
tation (Pedregosa et al. 2011) provides the Gini Importance (Breiman 2001) for
each feature of the dataset, which is used as the importance measure. Thus, one
may notice that CART must be used twice: first with all features to measure
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Algorithm 1 Pseudo-code of Kaizen Programming for feature construction
1. Read the dataset and set n as the number of instances
2. Set CurrentStandardQuality  0, MaxStagnated, Stagnated  0, Size of the Team (st),

number of New Ideas per Expert (NIE), Expansion Factor (EF), w st � NIE
3. Define the target and set it as not achieved
4. Generate st initial random ideas as CurrentStandard
5. Apply the CurrentStandard (calculate the results from the expressions) and create the feature

set STDn;st

6. BestStandard CurrentStandard
7. BestStandardQuality CurrentStandardQuality on k-fold cross-validation
8. Do

a. Generate, via GP operators, the TrialIdeas, which are NIE variations (ideas) of the
CurrentStandard through multiple crossover and mutation. Even the worst idea from
CurrentStandard might have offspring

b. Apply each new idea, resulting in the TRIALn;w feature set
c. Create the expanded feature set Fn;stCw containing TRIALn;w and STDn;st

d. Create new k stratified folds from F to reduce bias in the search
e. For each fold

i. Induce a decision tree via CART
ii. Calculate the array FoldImportances as the importance of each feature from F using Gini

Importance

f. End For
g. Set TrialImportances as the average of all FoldImportances
h. MostImportantTrialIdeas is the subset of the st most important TrialIdeas (considering

TrialImportances)
i. Create MITIn;st as a subset of F, and calculate MostImportantTrialIdeasQuality using the

current k-folds
j. If MostImportantTrialIdeasQuality is better than CurrentStandardQuality then

i. CurrentStandard MostImportantTrialIdeas
ii. CurrentStandardQuality MostImportantTrialIdeasQuality

iii. STDn;st  MITIn;st

iv. If CurrentStandardQuality is better than BestStandardQuality then

A. BestStandard CurrentStandard
B. BestStandardQuality CurrentStandardQuality

v. End If

k. Else

i. Stagnated StagnatedC 1

l. End If
m. If Stagnated > MaxStagnation then

i. Stagnated 0

ii. st  st C dst � EFe to increase the team of experts’ size
iii. Generate st initial random ideas as CurrentStandard
iv. Apply the CurrentStandard (calculate the results from the expressions) and create STDn;st

v. Calculate CurrentStandardQuality on k-fold cross-validation

n. End If

9. While target is not achieved
10. Return BestStandard, BestStandardQuality
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their importance, and then with the reduced feature set to measure the actual
solution quality. Therefore there is an expansion of the feature set, followed by
feature selection. Finally, to reduce the risk of overfitting we used cross-validation
in the training.

5 Experiments

This section presents our experiments performed to evaluate KP for classification.
KP was tested using publicly available two-class medical datasets from the UCI
online repository (Lichman 2013). Some characteristics of the datasets are presented
in Table 1. The datasets were chosen after selecting papers from literature that will
be used for comparison.

5.1 Pre-processing

Given that KP generates mathematical expressions using features from the dataset,
it is necessary to prepare the data. The Weka machine learning tool (Hall et al.
2009) was used to replace missing values with the means from the training data,
instead of removing incomplete instances. No other transformation, normalization,
or standardization was performed on the data.

5.2 Computational Environment

KP was implemented in the Python programming language (version 2.7.6), using
GP from DEAP (Distributed Evolutionary Algorithms in Python) library (version
1.0.1), and scikit-learn library (version 0.14.2) for CART. To evaluate the features
discovered by KP, tests were performed using CART in Weka (version 3.6.11)
running on Java (version 1.7.0_55) via OpenJDK Runtime Environment (IcedTea
version 2.4.7). The experiments were executed on an Intel i7 920 desktop, with 6Gb
of RAM, Archbang Linux (kernel version 3.14.5-1), GCC (version 4.9.0 20140521).

Table 1 Summary of the
two-class datasets employed
in the experiments

Continuous

Dataset attributes Instances

Breast-w (Winsconsin) 9 699

Diabetes (PIMA) 8 768

Liver-disorders (BUPA) 6 345

Parkinson 22 195
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5.3 Organization of the Experiments

During the discovery phase (training), a k-fold stratified cross-validation was
performed to calculate both the importance of ideas and the solution quality of
selected ideas. It is important to be clear that KP did not evolve features for a specific
k-fold configuration, because every time the objective function was called k new
stratified folds were generated.

For each dataset of Table 1, KP was run 32 independent times with a different
random seed.1 All runs used the configuration shown in Tables 2, 3, and 4. KP was
configured to search for the same number of ideas (10 new features), independently
of the number of features in the original dataset. However, not all may be used in
the final classifier.

In the expert configuration, GP evolutionary operators, pdiv, plog, and psqrt are
protected versions of these operations. pdiv.a; b/ returns zero whenever b is zero;
plog.a/ returns zero whenever the a is zero, and log.abs.a// otherwise; psqrt.a/
returns 1e100 if a � 0; and hypot.a; b/ D sqrt.a � a C b � b/.

Since the CART implementation in scikit-learn is not exactly the same as in
Weka, it was necessary to use two parameters to achieve greater similarity between
the results of different implementations: maximum tree-depth and minimum objects
in the leaf node. Features were then tested, in the second phase, with distinct
configurations of the CART method (in Weka), which also performed the statistical
analysis. This experiment was to evaluate the decision-tree’s performance using
the original feature set (O), the new feature set (N) discovered by KP, and the

Table 2 KP and CART
configuration

Parameter Value

Initial experts (st) 10

Initial ideas generator GP ramped half-half

Initial ideas max. depth 2

New ideas per expert (NIE) 5

Cycles 2000

Stagnation 2.5 % of the cycles

Factor (EF) to increase experts 0, disabled

Independent runs 32

Model builder (decision-tree) CART

CART Max. depth 5

CART Min. instances at a leaf 10

k (folds) 10

Solution quality/fitness Accuracy

Idea importance Gini Importance

1Thirty-two runs were performed because it is a multiple of 8, and the runs were done in parallel
on a quad-core machine with hyper-threading, so we employed all available processing units.
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Table 3 Experts configuration (GP operators)

Parameter Value

Crossover probability 0.2

Idea combinator/crossover operator One-point

Mutation probability 1.0

Idea improver/mutation operator GP subtree replacement

Max. depth 10

Non-terminals C;�;�; pdiv.a; b/; plog; psqrt; neg; cos; sin; tan;
tanh; square; cube; sigmoid; hypot.a; b/;max.a; b/;
min.a; b/; avg2.a; b/; avg3.a; b; c/

Terminals xi; i D 1; : : :; nf (features of the original dataset)

Table 4 CART configuration
in Weka for the Test phase

Config. name Min.Number.Obj Prune Use OneSE rule

CART_1 2 No No

CART_2 2 Yes No

CART_3 2 Yes Yes

CART_4 10 No No

CART_5 10 Yes No

CART_6 10 Yes Yes

The other parameters were the default values

combination of new and original feature sets (NO). In Weka, CART was configured
in six different ways (see Table 4) to verify the influence of the pruning mechanism.

The second analysis is the comparison of the best results obtained by CART
experiments versus other feature construction techniques, mainly using Genetic
Programming, whose results are reported in the literature. We selected only those
that performed ten-fold cross-validation.

5.4 Method of Analysis

The results presented here are only from the test phase. Given that KP was run 32
times on each dataset, we have 32 new feature sets for each of them. A CART
decision-tree was induced for each feature set using tenfold cross-validation.
Therefore, the original dataset gives 10 results, while each new feature set gives
32 � 10 D 320 results.

The evaluated measures were Accuracy, Weighted F-Measure, and Tree size.
Accuracy considers the whole dataset, while the Weighted F-Measure is the sum
of all F-measures, each weighted according to the number of instances with that
particular class label. Tree size is used to evaluate the complexity of the final
solution; however, it does not take into consideration the complexity of a feature.
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The relevance of this information can be decided by the user when defining the
maximum tree-depth used by KP when generating new ideas (features).

In order to verify if there are differences between the feature sets (O versus N,
and O versus NO), we executed Welch’s t-test at a significance level ˛ D 0:05. If
the new features result in statistically different means, a mark ‘*’ is inserted after
the standard-deviation in the tables showing the results.

5.5 Evaluation of the Discovered Features

For each dataset investigated here, one has a table with a short descriptive analysis
(mean and standard-deviation) of the results for each CART configuration and
feature sets, with the significant differences (via Welch’s test) marked when
necessary. The discussion on the results is as follows.

For the Breast Cancer dataset, one can see the short descriptive analysis in
Table 5. Accuracy when using either the New features (N) or the combination of
New and Original features (NO) improved significantly, as shown by the symbol
‘*’. It is interesting to notice that for both configurations CART_5 and CART_6,
the accuracies using N and NO were identical. This suggests that CART used only
the new features from the NO dataset; therefore, the Original features (O) were not
very useful anymore. This hypothesis gets stronger when configurations CART_2,
CART_3, and CART_4 are analyzed, in which the mean accuracy of using N is
bigger than using NO. The highest mean accuracy was achieved using a minimum of
2 instances for leaf and the pruning mechanism without the OneSE rule (CART_2).

The second classification quality measure is the Weighted F-Measure, which
considers the correct classification of each class separately. Again, all CART
configurations presented statistically better results when using N. For unbalanced
datasets, where one class has considerably more instances than the other, these two
measures may not have the same statistical interpretation.

The third measure is the tree size. Given that N is more representative than
O, a significant reduction is expected. As shown in the corresponding table, this
reduction was bigger than 50% for CART_1, CART_2, and CART_3, all of them
using minimum number of leaves set 2. A relevant comparison can be made between
the results of CART_1 and CART_3: there was an increment in the accuracy (from
93:7 to 97:28%) and a reduction in the tree size (from 41 to 4.41). Consequently,
by the results present in this table, the features discovered by KP for the Wisconsin
Breast Cancer dataset helped CART in finding better and smaller trees.

Regarding the PIMA diabetes dataset (Table 6), the lowest accuracy occurred
using CART_1 on the O dataset, while the highest accuracy was obtained with
CART_2 on the N dataset. All N datasets improved over O and were also better than
all NO. Similar behavior is present in the Weighted F-Measure results. A posterior
application of feature selection on NO could help improving the accuracy. With
respect to the trees sizes, large reductions can be seen from CART_1 to CART_2,
with corresponding increase in Accuracy and Weighted F-Measure. However, in
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contrast to what happened to the breast-w dataset, in this case the sizes were bigger
when N and NO were used by CART_3, CART_5, and CART_6. We are still
investigating the results to propose a reasonable explanation for this issue.

In the BUPA liver-disorders dataset (Table 7) both Accuracy and Weighted
F-Measure improved more than 11:94% D .75% � 67%/=67% when the
discovered features were employed. As will be seen in the comparison with results
from the literature, this improvement is very relevant. Finally, the increase in the
trees sizes is present for the same CART configurations as in the previous dataset.
Nevertheless, smaller trees showed similar or better quality than the bigger ones.

The last dataset contains information of Parkinson’s disease. The most noticeable
characteristic in Table 8 is that even though both the mean Accuracy and Weighted
F-Measure improved, the standard-deviations were large, reflecting non-significant
differences for configurations CART_4, CART_5, and CART_6, that had as a
termination criterion a minimum of 10 instances per leaf. Therefore, it was better to
let the tree grow deeper and prune it afterwards, taking the risk of overfitting. This
means that, for this dataset, for a significant number of times KP did not discover
features capable of reducing entropy in the leaf nodes. A possible explanation is that,
as shown in Table 1, this dataset has not only more attributes than the other three
datasets, but also fewer instances. Therefore, either a longer run would be necessary
or one would need more than 10 features. Nevertheless, the new features led to an
increase in mean Accuracy from 87:68% (best solution using O) to 93:85% (best
solution using N or NO).

5.6 Comparison Against Other Feature Construction
Techniques

In this section, KP’s results are compared with those from the literature. In order to
have a fairer comparison, we selected only works using GP (or a similar technique)
to evolve features, with ten-fold cross-validation in the test phase. The comparison
is performed with techniques presented in the literature review: GPMFC+CART,
MLGP, GP-EM, GP+C4.5, and GP+CART. The results on other methods were taken
from the other authors’ original works.

From each dataset in the previous section, we have selected the highest mean
Accuracy among the CART configurations (see Table 9). Not all datasets used in
this work were found in other papers.

As one can see, the features discovered by KP led to more accurate classifiers
than all the other feature construction techniques. An important characteristic the
number of feature sets created by the techniques. For KP, two feature sets have
to be tested at each generation: the first one using the current ideas (features) and
the new ideas simultaneously to calculate the importance of each idea; the second
one using only the st most important ideas to finally calculate the solution quality.
Given that KP was run for 2000 cycles, 4000 feature sets were generated in the



Kaizen Programming for Feature Construction for Classification 53

T
ab

le
7

Sh
or

td
es

cr
ip

tiv
e

an
al

ys
is

(m
ea

n
an

d
st

an
da

rd
-d

ev
ia

ti
on

)
fo

r
th

e
liv

er
-d

is
or

de
rs

da
ta

se
t

M
et

ri
c

Fe
at

C
A

R
T

_1
C

A
R

T
_2

C
A

R
T

_3
C

A
R

T
_4

C
A

R
T

_5
C

A
R

T
_6

A
cc

ur
ac

y
O

67
.5

4
(8

.3
2)

67
.5

7
(7

.9
4)

65
.8

5
(8

.8
8)

68
.6

6
(6

.3
7)

65
.2

6
(7

.5
9)

65
.2

5
(8

.2
2)

A
cc

ur
ac

y
N

76
.2

3
(7

.5
5)

*
78

.8
6

(7
.2

7)
*

77
.1

0
(7

.2
4)

*
78

.8
0

(7
.5

1)
*

77
.6

4
(7

.0
8)

*
74

.9
5

(7
.1

5)
*

A
cc

ur
ac

y
N

O
75

.7
1

(7
.6

9)
*

78
.3

4
(7

.3
2)

*
76

.5
0

(7
.2

4)
*

78
.2

8
(7

.4
2)

*
77

.1
8

(7
.2

3)
*

74
.7

7
(7

.1
8)

*

W
.F

-M
ea

s.
O

0.
67

(0
.0

83
)

0.
66

(0
.0

87
)

0.
64

(0
.0

89
)

0.
68

(0
.0

65
)

0.
64

(0
.0

81
)

0.
62

(0
.1

0)

W
.F

-M
ea

s.
N

0.
76

(0
.0

76
)*

0.
79

(0
.0

73
)*

0.
77

(0
.0

75
)*

0.
79

(0
.0

76
)*

0.
77

(0
.0

72
)*

0.
74

(0
.0

75
)*

W
.F

-M
ea

s.
N

O
0.

75
(0

.0
77

)*
0.

78
(0

.0
74

)*
0.

76
(0

.0
75

)*
0.

78
(0

.0
75

)*
0.

77
(0

.0
74

)*
0.

74
(0

.0
75

)*

T
re

e
si

ze
O

79
.4

0
(1

2.
64

)
20

.8
0

(1
4.

92
)

8.
00

(5
.8

3)
22

.2
0

(3
.4

3)
10

.0
0

(4
.5

5)
5.

80
(3

.1
6)

T
re

e
si

ze
N

53
.4

8
(

9.
96

)*
17

.7
6

(7
.4

8)
11

.4
3

(4
.2

0)
*

18
.1

6
(4

.0
7)

*
12

.6
2

(4
.1

7)
8.

57
(4

.1
4)

T
re

e
si

ze
N

O
50

.7
1

(9
.2

9)
*

17
.2

6
(8

.0
2)

10
.9

4
(4

.5
3)

17
.6

2
(3

.8
7)

*
12

.2
1

(4
.3

9)
8.

18
(4

.1
6)



54 V.V. de Melo and W. Banzhaf

T
ab

le
8

Sh
or

td
es

cr
ip

tiv
e

an
al

ys
is

(m
ea

n
an

d
st

an
da

rd
-d

ev
ia

ti
on

)
fo

r
th

e
pa

rk
in

so
ns

da
ta

se
t

M
et

ri
c

Fe
at

C
A

R
T

_1
C

A
R

T
_2

C
A

R
T

_3
C

A
R

T
_4

C
A

R
T

_5
C

A
R

T
_6

A
cc

ur
ac

y
O

87
.6

8
(4

.2
7)

85
.6

6
(4

.5
7)

87
.2

6
(8

.2
3)

86
.7

1
(7

.1
2)

86
.2

1
(8

.2
1)

84
.7

1
(8

.5
4)

A
cc

ur
ac

y
N

93
.3

2
(5

.3
4)

*
93

.8
5

(5
.5

3)
*

93
.7

9
(5

.6
4)

*
92

.2
5

(6
.6

8)
*

91
.2

0
(7

.0
3)

90
.4

0
(7

.1
1)

A
cc

ur
ac

y
N

O
92

.8
0

(5
.6

4)
*

93
.1

7
(5

.8
5)

*
93

.0
3

(6
.1

7)
*

91
.7

1
(6

.8
6)

90
.6

0
(7

.3
7)

89
.5

7
(7

.6
4)

W
.F

-M
ea

s.
O

0.
88

(0
.0

41
)

0.
86

(0
.0

47
)

0.
87

(0
.0

84
)

0.
86

(0
.0

73
)

0.
86

(0
.0

8)
0.

84
(0

.0
89

)

W
.F

-M
ea

s.
N

0.
93

(0
.0

54
)*

0.
94

(0
.0

56
)*

0.
94

(0
.0

59
)*

0.
92

(0
.0

69
)*

0.
91

(0
.0

74
)

0.
90

(0
.0

76
)

W
.F

-M
ea

s.
N

O
0.

93
(0

.0
57

)*
0.

93
(0

.0
6)

*
0.

93
(0

.0
65

)*
0.

91
(0

.0
72

)
0.

90
(0

.0
78

)
0.

89
(0

.0
81

)

T
re

e
si

ze
O

17
.6

0
(4

.4
3)

10
.8

0
(3

.4
6)

5.
40

(2
.8

0)
8.

40
(1

.3
5)

5.
80

(2
.7

0)
3.

80
(1

.6
9)

T
re

e
si

ze
N

14
.2

0
(2

.8
5)

*
8.

65
(2

.8
5)

7.
26

(2
.1

2)
*

7.
44

(1
.8

0)
5.

83
(1

.8
5)

5.
02

(1
.8

2)

T
re

e
si

ze
N

O
13

.5
2

(3
.2

5)
*

8.
54

(2
.7

6)
*

7.
12

(2
.1

6)
*

7.
28

(1
.6

9)
5.

72
(1

.8
6)

4.
74

(1
.8

3)



Kaizen Programming for Feature Construction for Classification 55

Table 9 Comparison of mean accuracy among feature extraction techniques that use GP

Dataset KP+CART GPMFC+CART MLGP GP-EM GP+C4.5 GP+CART

Breast-w 97.44 96.3** 96.8 – 97.2** –

Diabetes 79.65 – 71.6 – 75.4 –

Liver-disorders 78.86 67.68 67.5 – 70.4 69.71

Parkinsons 93.85 – – 93.12 – –

Feature sets 4000 100,000 600,000 11,200 18,000 60,000

Symbol ‘**’ means a reduction in the number of instances due to missing values, and “–” means
Not Available

process. Even though a ten-fold cross-validation approach was used in the training
phase, the features were the same for all folds. Because the features in KP are partial
solutions, they cannot be evaluated separately.

On the other hand, for the other techniques from Table 9 a single individual is a
solution to the problem thus they employed more feature sets. As most techniques
evolve a single expression per solution/class, more runs are necessary to have a set
of features, while KP can evolve many complementary features at the same time.
For them, we calculated the number of feature sets as Population size � number
of generations � number of features generated. An interesting conjecture is that in
order to achieve a performance close to that shown by KP, other techniques may
need a more complex formula, while KP may generate a set of smaller/simpler
formulas allowing for a posterior feature selection procedure, if desired by the user.

6 Conclusions

This chapter presented Kaizen Programming (KP) as a technique to perform high-
level feature construction. KP evolves partial solutions that complement each other
to solve a problem, instead of producing individuals that encode complete solutions.

Here, KP employed tree-based evolutionary operators to generate ideas (new
features for the dataset) and the CART decision-tree technique for the wrapper
approach. The gini impurity used by CART as split criterion is used to calculate the
importance of each feature, translating into the importance of each partial solution
in KP. The quality of complete solutions was calculated using accuracy in a tenfold
stratified cross-validation scheme.

Four widely studied datasets were used to evaluate KP, and tests were performed
on six distinct CART configurations. Comparisons among different configura-
tions were made in terms of mean and standard deviation of accuracy, weighted
f -measure, and tree-size. A hypothesis test was performed to compare the mean
performance when using the new features, and the new and original features
together. Results show that the new features with or without the original ones,
improved performance and reduced tree-sizes significantly.

The second comparison was against five related approaches from the literature.
All those approaches employ genetic programming to construct features from the
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original dataset and test them using well-known classifiers. It was found that KP
was better than all other approaches, while requiring a fraction of the feature sets
generated in other work. KP was not only more accurate, but also much faster.

As future work, a deeper sensitivity analysis will be necessary to verify KP’s
behavior on distinct configurations in order to be able to differentiate poor from
good configurations.
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