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Abstract Redundant mapping from genotype to phenotype is common in evolution-
ary algorithms, especially in genetic programming (GP). Such a redundancy leads
to neutrality, a situation where mutations to a genotype may not alter its phenotypic
outcome. The effects of neutrality can be better understood by quantitatively ana-
lyzing its two observed properties, i.e., robustness and evolvability. In this chapter,
we summarize our previous work on this topic in examining a compact Linear GP
algorithm. Due to the choice of this particular system we can characterize its entire
genotype, phenotype, and fitness networks, and quantitatively measure robustness
and evolvability at the genotypic, phenotypic, and fitness levels. We then investi-
gate the relationship between robustness and evolvability at those different levels.
Technically, we use an ensemble of random walkers and hill climbers to study how
robustness and evolvability are related to the structure of genotypic, phenotypic, and
fitness networks and influence the evolutionary search process.

1 Introduction

In evolutionary algorithms in general, but especially in genetic programming (GP), a
redundant genotype-to-phenotype mapping is common where multiple unique geno-
types map to the same phenotype [1, 12, 16, 23, 25]. A related notion of neutrality
has been put forward to describe the mutational connectivity amongst those geno-
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types mapped to the same phenotype [2]. Specifically, if a single-point mutation
changes one genotype to another without altering the phenotypic outcome, the mu-
tation is called neutral. Redundancy and neutrality are different but closely related
concepts. Redundancy is needed for, but does not guarantee, neutrality. It is pos-
sible that although a phenotype can be represented by multiple genotypes, these
genotypes cannot traversed from one to the other through single-point mutations. In
such a case, any mutations applied to those genotypes will change their phenotype.

Neutrality appears as an embedded property of many evolutionary algorithms
and its influence on evolution has seen many debates in the field of evolutionary
computation. On the one hand, neutrality may seem to hamper the evolutionary
search since neutral mutations are not phenotypically effective [7, 27]. On the other
hand, neutrality is considered beneficial for the search by providing a buffer against
deleterious mutations [32] and, more importantly, by offering mutational potential
through expanding neutral genotypic regions which are not subject to selection pres-
sure [14, 29]. These two aspects relate neutrality to two notions that have drawn
much attention in studies on both computational and natural evolution, namely to
robustness and evolvability.

Robustness describes the resilience of an evolutionary system in the face of con-
stant genetic and environmental perturbations, while evolvability captures the ability
for generating novel and adaptive phenotypes. These two properties may seem con-
tradictory at first glance, but are commonly observed coexisting in living organisms
and are both results of neutrality.

The interplay between robustness and evolvability has been a focus of research
in evolutionary biology. Both theoretical [20, 30] and empirical studies [10, 19,
21] have been put forth to elucidate the relationship between them. Using RNA
molecules, some argued that neutral mutational connections constrain evolution
since evolution yields phenotypes which are genotypically abundant even when they
are not the most fit [8]. While others argued that robustness could facilitate evolv-
ability and long-term innovation could only emerge in the presence of the mutational
robustness [6, 9].

The relationship between robustness and evolvability is system-dependent, and
it is crucially influenced by the distribution of genotypic redundancy and the muta-
tional interconnections among phenotypes [17, 25]. Robustness promotes evolvabil-
ity only if genotypic redundancy leads to more connections to different phenotypes.

A quantitative understanding of the relationship between robustness and evolv-
ability can help resolve conflicting reports and clarify outstanding research ques-
tions. Genotype networks, a.k.a., neutral networks, provide a general framework for
quantitatively characterizing robustness and evolvability, and have found applica-
tions in a wide array of systems [6, 11, 22, 24, 26].

In genotype networks (Figure 1), vertices represent unique genotypes and muta-
tional connections are represented as edges between pairs of genotypes. A genotype
network is comprised of all genotypes that encode the same phenotype. Mutations
within a genotype network are neutral by definition. Multiple genotype networks
representing different phenotypes can also be connected through non-neutral single-
point mutations. Genotype networks quantitatively characterize the distribution of
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Fig. 1 Schematic diagram of genotype networks. Each vertex represents a genotype and all geno-
types encoding the same phenotype define one genotype network. An edge links two vertices if the
two genotypes can be transferred from one to another through a single point mutation. Single point
mutations can also connect genotypes from different phenotypes, shown in dashed lines.

genotypic redundancy among phenotypes, i.e., over-represented phenotypes have
larger genotype networks and under-represented phenotypes have smaller networks.
Genotype networks also capture the mutational potential among different pheno-
types using different edges representing non-neutral mutations between genotypes
that belong to two phenotypes.

Phenotype and fitness networks can be constructed in a similar way by repre-
senting phenotypes (or fitness values) as vertices and their mutational connections
as edges. By building networks at these different levels, we are enabled to take a
close look at the relationship of robustness and evolvability at the genotypic, phe-
notypic, and fitness levels.

Most existing studies of neutrality in evolutionary algorithms look at the effect
of neutrality on the evolutionary search indirectly, i.e., they ask whether neutrality
by a redundant representation improves or hampers the search ability of an evolu-
tionary algorithm. Very little has been done to quantitatively measure robustness
and evolvability directly and to study their relationship and influence on evolution
dynamics.

In this chapter, we discuss the use of genotype networks to quantitatively analyze
robustness and evolvability in a Linear Genetic Programming system. Linear GP has
a compact representation and here is intentionally amenable to an exhaustive enu-
meration of all possible genotypes and phenotypes. We characterize its genotype,
phenotype, and fitness networks and their properties, and examine the diffusion and
dynamics of an evolutionary population on those networks. We report on a quan-
titative examination of neutrality and elucidate the relationship of robustness and
evolvability in GP. We hope that our analysis can find application in other GP in-
stances and in other evolutionary algorithms, that it provides a better understanding
of evolutionary mechanisms, and that it will eventually inspire new and more so-
phisticated evolutionary algorithms [3, 15].
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Fig. 2 The phenotype of a LGP program is defined as the Boolean relationship it encodes, repre-
sented as the four-digit output of the ordered two-variable inputs.

2 Linear GP Algorithm

2.1 Representation

Linear Genetic Programming is a branch of Genetic Programming (GP) where
the chromosomal representation is a set of instructions that are executed sequen-
tially [5]. Although LGP follows a linear instructional structure, it is very powerful
and capable of modeling complex nonlinear relationships among multiple attributes.
LGP has gained increasing popularity due to its fast speed of program execution and
individual evaluation [4, 13, 18, 28].

Here, we consider a two-input one-output Boolean function (Boolean circuit)
modeling problem. Each LGP instruction is comprised of one return value, two
operands, and one Boolean operator producing the return value from the operands.
Registers Ry and R, store the two Boolean input values. Register Rq takes a default
initial Boolean value and its finciteal value after the execution of all instructions
is returned as the LGP program’s output. To enhance the computational capacity
of LGP programs, we add an extra calculation register Rz. Calculation registers Ro
and R3 can serve as both return or operands, whereas input registers Ry and Ry are
read-only and can only serve as operands with their input content being protected
from overwriting. The Boolean operator in each LGP instruction is chosen from a
pre-defined operator set opr = {AND, OR,NAND,NOR}. An example Boolean LGP
program with a length L = 4 can be given as:

Rz =Ry AND Rg
Ro=R; OR Ry
Rs = Ry NAND R4
Ro = Rz NAND Ry
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2.2 Genotype, phenotype, and fitness

In our LGP system, the genotype is an unique LGP program. To enable exhaustive
enumeration of the entire genotype space, we set a fixed length of L = 4 for all
LGP programs. The total number of possible instructions is 2 x 4 x 4 x 4 = 27,
and thus, the total number of possible four-instruction programs, i.e. genotypes, is
(27)* =228 > 268 million. We see that even for a small problem instance and a short
fixed program length the genotype space can be quite large.

We define the two-input, one-output Boolean function f : B> — B, where B =
{TRUE, FALSE} represented by a LGP program as its phenotype. The total num-

ber of possible phenotypes is thus 22 = 16. A phenotype can be represented by a
set of outputs observed across each of the 22 possible combinations of Boolean in-
puts (Figure 2). Compared to the large genotype space, the phenotype space is very
small. This suggests a high redundancy in the mapping from genotype to pheno-
type, i.e., a large number of different genotypes should map to the same phenotype
(approximately 16.7 million genotypes per phenotype, on average).

Based on a predefined phenotypic target, fitness can be assigned to each of the
16 phenotypes. We define the fitness of a phenotype to be the Hamming distance
between its four-digit binary vector and that of the target. While this is technically
the error between the two functions, we use the term fitness for this quantity, despite
it being minimized. There are five possible fitness values, for example if the target
phenotype is TRUE (i.e., (1111)) the fitness of phenotype FALSE (i.e., (0000)) is 4.
The phenotype x OR y (i.e., (0111)) has an improved fitness of 1. The mapping
from phenotype to fitness is redundant again, i.e., from 16 phenotypes to five fitness
values, but depends on which phenotype is set as the target. Redundancy between
phenotype and fitness is less strong (approximately 3.2 phenotypes per fitness value,
on average).

A single-point mutation to a genotype changes any one of the four elements of
an instruction and replaces it with a randomly chosen possible allele. Single-point
mutations that do not alter the phenotypic outcome are called neutral mutations.
Mutations that lead to a change of phenotype are called non-neutral mutations.

3 Genotype, phenotype, and fitness networks

Our Boolean LGP system now has 16 genotype networks, each corresponding to
a particular phenotype. The distribution of genotypic redundancy is highly uneven,
with the largest genotype network FALSE having more than 60 million genotypes
(> 23% of the entire genotype space) and the smallest genotype networks x == y
and x XOR vy having less than 25 thousand genotypes (< 1% of the entire geno-
type space). The distribution of the sizes of genotype networks is shown in Figure 3.
Note that phenotype FALSE has more genotypes than TRUE, simply because all
registers are initialized as FALSE before any computation. Programs whose execu-
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Fig. 3 Distribution of the size of genotype networks. Due to the symmetry of Boolean relation-
ships, multiple phenotypes can have the same number of underlying genotypes. The size of geno-
type networks ranges from 25 thousand to 60 million.
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Fig. 4 The phenotype network. Vertices represent phenotypes and edges link two phenotypes if
there exist at least one pair of genotypes mapped to the two phenotypes that can be transferred
from one to the other through one single-point mutation. Vertex size is proportional to the total
number of genotypes mapped to a corresponding phenotype. Edge width is proportional to the
total number of one point mutations that change genotypes of one phenotype to another.

tion does not change the content of the output register Ry will output FALSE. The
heterogeneous distribution of genotype networks suggests that some phenotypes are
over-represented and some are under-represented. Random sampling and initializing
genotypes likely will generate over-represented phenotypes. If a phenotypic target
is under-represented, the search task will be relatively more difficult.

A phenotype network can be further constructed by representing a genotype net-
work, i.e., a phenotype, as a vertex, and connecting two phenotypes using an edge
if there exist at least one pair of genotypes of those two phenotypes that can be
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Fig. 5 The fitness networks with target phenotype TRUE (left) and x ==y (right). Each vertex is

a fitness value with white representing the best fitness zero and black representing the worst fitness
four. The vertex size is again proportional to the total number of underlying genotypes. When
selection prevents worsening fitness, point mutations may become irreversible, and the mutational
transitions among fitness values, represented by edges, is now directed. Edge width is proportional
to the total number of point mutations changing genotypes from one fitness value to another.

transferred from one to the other through a single-point mutation. Figure 4 shows
the phenotype network in our setting. Phenotypes as vertices are numbered using
the decimal values corresponding to their binary strings, labeled with their repre-
sented Boolean relationships. The phenotype network of our LGP system here is a
complete graph, meaning that every vertex is connected directly to any other vertex.
However, the connections are also highly heterogeneous, reflected by the varying
width of edges. This suggests that a phenotype has varying mutational potentials
to access other phenotypes. For instance, random mutations to genotypes of phe-
notype !y more likely lead to phenotypes y, FALSE, and TRUE, and less likely to
phenotypes x OR y and x .

Introducing fitness further groups genotypes to build a higher-level fitness net-
work. Since the fitness function is defined as the Hamming distance between the
target phenotype and the reference phenotype, the assignment of fitness values and
thus the structure of the fitness network depend on the setting of the phenotypic tar-
get. Figure 5 shows two fitness networks using different target phenotypes. When
selection is present and rejects mutations that worsen the fitness, the fitness network
becomes directed, where single-point mutations are only accepted if fitness is im-
proved or remains the same. Again, we observe heterogeneous mutational potential
for transitioning from one fitness level to another.

4 Quantitative analysis of robustness and evolvability

Using the framework of genotype and phenotype networks, robustness and evolv-
ability can be quantitatively analyzed. In the context of RNA genotypes and their
secondary structure phenotypes, it has been argued that the paradoxical tension of
mutational robustness and evolvability can be solved by distinguishing robustness
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Fig. 6 Robustness and evolvability of genotypes and phenotypes. A typical and representative phe-
notype x>=y is chosen to show the genotypic properties in its genotype network. Subfigures a) and
b) show the distributions of genotypic robustness and evolvability, and c) shows the scattered plot
and correlation of genotypic robustness and evolvability. The correlation of phenotypic robustness
and evolvability is shown in d). The fitted lines provide a visual guidance of correlations.

and evolvability at genotypic and phenotypic levels [31]. The relationship of robust-
ness and evolvability can be different at those two levels. We discuss the quantitative
analysis of robustness and evolvability of a genotype and a phenotype in the follow-
ing subsections.

4.1 Genotypic robustness and evolvability

The robustness of a genotype can be measured as the fraction of its neutral neigh-
bors among all neighbors [31]. This definition follows the intuition that if a random
single-point mutation to a genotype likely leads to a different genotype but retains
the same phenotype, this genotype can be regarded as robust.

The measure of the evolvability of a genotype, on the other hand, should reflect
the innovation ability of a genotype. It is defined as the fraction of the number
of phenotypes that are accessible through non-neutral single-point mutations to a
genotype to the number of all phenotypes [31].

We now look at the distribution of genotypic robustness and evolvability within a
genotype network. Note that all phenotypes have very similar behavior, so we only
show results of one typical and representative phenotype x >= y. If the genotype
network of x >= vy is visualized with more robust genotypes located more towards
the center, the bi-modal distribution of genotypic robustness (Figure 6a) suggests a
dense core and a thick periphery of the network. The genotypic evolvability (Fig-
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Fig. 7 The correlation of phenotypic robustness and the average genotypic (a) robustness and (b)
evolvability. The fitted lines provide a visual guidance of correlations.

ure 6b) resembles a normal distribution, with the majority of genotypes being able
to reach 50% of other phenotypes though single-point mutations. The genotypic
evolvability and robustness are negatively correlated (Figure 6¢). This negative cor-
relation is weak (R = 0.015) but highly significant (p < 0.001). This observation is
in line with findings in RNA networks where at the genotypic level robustness and
evolvability share an antagonistic relationship [31]. It is also intuitive that if random
mutations to a genotype do not change its phenotype most of the time, this genotype
may have less access to other different phenotypes.

4.2 Phenotypic robustness and evolvability

The robustness of a phenotype is defined as the size of its genotype network, i.e., the
total number of unique genotypes that map to the phenotype. The more genotypes a
phenotype has, the more robust it appears.

The definition of phenotypic evolvability has seen different proposals. It can be
defined similarly to genotypic evolvability as the fraction of different phenotypes
that can be reached via non-neutral single-point mutations from a given pheno-
type [31]. However, given the complete connectivity of our phenotype network (Fig-
ure 4), this phenotypic evolvability measure will assign the same value of 1 to all
phenotypes.

Alternatively, the evolvability of a phenotype can be measured as the distribution
of its mutational potential to other phenotypes [8]. Specifically, we use v;; to denote
the total number of non-neutral single-point mutations between phenotypes i and j.

Letting
U ifi
fij= Yitivik’ . 7&] 1)
0, ifi=

denote the fraction of non-neutral point mutations to genotypes of phenotype i that
result in genotypes of phenotype j, we define the evolvability E of a phenotype i as
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Ei=1-Y f. 2)
J

A phenotype that has more equally distributed mutational potential to other pheno-
types is regarded as more evolvable.

The correlation of phenotypic robustness and evolvability is shown in Fig-
ure 6d for all 16 phenotypes. Phenotypic robustness and evolvability are non-
monotonically correlated, with median robust phenotypes having the lowest evolv-
ability (x AND !y and !x AND vy). Both theleast (x XOR yand x == y)and
most robust (FALSE) phenotypes are highly evolvable. Our results disagree with
previous findings in evolutionary biology that either a monotonic positive [31] or
negative [8] correlation is observed.

We also compare the measured properties across the genotypic and phenotypic
levels. Figure 7 shows the average genotypic robustness and evolvability in re-
lation to the phenotypic robustness. A strong and significant positive correlation
(R*> = 0.98,p < 0.001) is observed between the average genotypic robustness and
the robustness of the corresponding phenotype (Figure 7a). Meanwhile, average
genotypic evolvability is negatively correlated (R> = 0.95,p < 0.001) with phe-
notypic robustness (Figure 7b). This suggests that more robust phenotypes are com-
prised of more robust and less evolvable genotypes.

Note that at the level of fitness, robustness and evolvability can be defined simi-
larly to the definition for phenotypes. However, fitness evolvability and robustness
are no longer correlated (data not shown, R2=1.8x 10’4,p =0.91).

5 Random walkers and hill climbers

We use an ensemble of random walkers and hill climbers to investigate how the
structures of genotype, phenotype, and fitness networks influence evolutionary
search. We test if the quantitative measures of robustness and evolvability provide
insights into predicting the search dynamics. We perform two sets of simulations.
In the first set, a genotype is allowed to randomly explore the genotypic and pheno-
typic spaces, i.e., as a random walker. In the second set of experiments, a specific
target phenotype is chosen and a fitness value is thus assigned to each genotype. Hill
climbers are only allowed to move from genotypes via non-deleterious single-point
mutations.

5.1 Random walks through genotype networks

First we investigate how individual random walkers explore the genotypic space.
We consider a representative phenotype x >= y and confine the random walk-
ing within its genotype network. By doing so, we enforce the selection pressure
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Fig. 8 A random walk in the genotype network of phenotype x >= y. a) Distribution of the
visit frequency, defined as the proportion of steps in a random walk spent at genotypes of a given
robustness value. b) Visit frequency normalized by the frequency with which a given genotypic
robustness value is observed in the genotype network, i.e., the distribution in a) divided by the
distribution in Figure 6a.

on neutrality and observe its influences on evolution. Each step corresponds to a
single-point mutation. We randomly pick a genotype in the phenotype x >= y and
record all genotypes encountered in a total of four million (an approximation of
the total number of genotypes in phenotype x >= vy) steps. Then we compute the
visit frequency of each genotypic robustness value during the entire course. This
distribution is shown in Figure 8a.

The visit frequency follows a bi-modal distribution, similar to the distribution
of genotypic robustness in the genotype network of x >= vy (Figure 6a). It is true
that the more frequent a robustness value is observed in a genotype network, the
more likely a random walker will encounter that robustness value. So we normalize
the visit frequency by dividing it by the fraction of a robustness value observed in a
genotype network, i.e., by dividing Figure 8a by Figure 6a. The resulting distribution
is shown in Figure 8b.

Now we can observe a strong positive correlation of the normalized visit fre-
quency and the genotypic robustness. This suggests that genotypes are not visited
uniformly by single-point mutations, but rather in proportion to their robustness.
Genotypes of high robustness are visited more often, and genotypes of low robust-
ness are visited less often than would be expected from a random sampling of geno-
types from a phenotype.

5.2 Average waiting/adaptation time

We set each of the 16 phenotypes as the target phenotype and one of the other 15
as the starting phenotype. For each of the 16 X 15 possible combinations of pairs of
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Fig.9 Average waiting (adaptation) time as a function of the evolvability of the starting phenotype
(fitness) and the robustness of the target phenotype (fitness).

unique phenotypes, we then perform 1000 random walks and hill climbs, starting
from a designated source phenotype and ending when the random walker or hill
climber reaches any genotype in the specified target phenotype. We record the to-
tal number of point-mutations/steps required to get from one phenotype to another
and calculate the average waiting (adaptation) time across 1000 random walks (hill
climbs).

Figure 9 shows the average waiting (adaptation) time as a function of the evolv-
ability of the source phenotype (fitness) and the robustness of the target pheno-
type (fitness). It is speculated that if a random walker or hill climber starts from
a more evolvable phenotype, it may find a target phenotype faster. However, the
evolvability of the source phenotype fails to make a prediction on the waiting time
(Figure 9a, R? =0.001, p = 0.62), neither does the evolvability of the source fit-
ness on the adaptation time (Figure 9c, R* = 0.02, p = 0.32). This observation puts
into question the currently available quantification of evolvability. Recall that the
evolvability of a phenotype/fitness measures the mutational potential to reach other
phenotypes/fitness. It only captures the very first step leaving a phenotype/fitness,
but fails to provide further insights on the long-term trajectory of the evolutionary
process.

The robustness of the target phenotype (fitness), on the other hand, shows strong
predictive power for the average waiting (adaptation) time. In Figure 9 b and d, a
strong and negative correlation is observed between average waiting time and ro-
bustness of the target phenotype (R*> = 0.95, p < 0.001), as well as between av-
erage adaptation time and robustness of the target fitness (R = 0.88, p < 0.001).
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Fig. 10 Comparison of mutational transitions from phenotype y to TRUE and to !y. Filled circles
are genotypes of y that have non-neutral mutational connections to genotypes of phenotype TRUE,
and triangles are genotypes of y that have non-neutral mutational connections to phenotype !y.

These results are intuitive and suggest that more robust phenotypes (fitness) are eas-
ier to reach from other phenotypes via single-point mutations since they are over-
represented by more genotypes, and random mutations will more likely lead to more
robust phenotypes.

The probabilistic nature of random walks and hill climbing can be captured by
Markov Chain analysis, meaning that the average waiting (adaptation) time could
be predicted analytically rather than through empirical simulations. By considering
each phenotype as a state, and the mutational connections between phenotype i and
phenotype j (f;; in Equation 1) as their transition probability, we can apply Markov
Chain analysis to determine the expected waiting (adaptation) time for moving from
one phenotype to another. We find a strong correlation between the analytical pre-
diction and the empirical observation, yet also large relative residuals, i.e., 126 steps
comparing to 112 steps in the average waiting and adaptation times, respectively.

This discrepancy between the analytical prediction and empirical observations
suggests that the mutational connections between phenotypes might not serve as the
most accurate estimate of transitional probabilities from one phenotype to another.
Let us take a close look at an example for moving from source phenotype y to
target phenotype !x AND y: The predicted most likely path for this transition is
y —> TRUE —> !x AND vy, but the observed most frequent path is y —> !y —>
TRUE —> !x AND vy, despite the fact that the observed path is longer than the
predicted path and y has more mutational connections to TRUE than !x AND y
(i.e., fytrue = 0.19 and fy 1y, = 0.18)!

The transitional probabilities are measured at the phenotypic level, but mutations
occur at the genotypic level. Therefore, if the mutational connections between phe-
notypes do not provide the most accurate estimation of the transition likelihoods, a
mutational bias must be introduced at the genotypic level. We take phenotypes v,
TRUE, and !y as examples and look into the genotypes that allow a transfer from
y to TRUE and to !y. Figure 10 shows the comparison of the transitions between
v and TRUE and between y and !y. The non-neutral mutations connect y to TRUE
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(filled circles) through more genotypes with low robustness but less genotypes with
high robustness, whereas the non-neutral mutations connect y to ! y (filled triangles)
through less genotypes with low robustness but more genotypes with high robust-
ness. Recall that more robust genotypes are visited more frequently (Figure 8b).
This is the source of the bias required and explains why mutations to genotypes of
y more likely lead to phenotype !y than to TRUE, despite the fact that the total
amount of non-neutral mutations between y and TRUE is greater than that between
vy and !y.

6 Conclusion

Neutrality is commonly observed in evolutionary algorithms where mutations may
not alter the phenotypic outcome. Neutrality is a result of the redundant genotype-
to-phenotype mapping and debates have raged on whether neutrality is beneficial
for the search ability of an evolutionary algorithm.

The effects of neutrality on its two observed properties, robustness and evolvabil-
ity, can be studied quantitatively. Both robustness and evolvability capture how an
evolutionary system responds to genetic changes. Robustness refers to the resilience
to retain phenotypic traits in face of mutational perturbations, whereas evolvability
characterizes the capability of using random mutations to generate novel and adap-
tive phenotypes. The relationship of robustness and evolvability may seem antago-
nistic, but is in fact highly collaborative.

Studying the relationship of robustness and evolvability helps to better under-
stand the fundamental mechanisms of evolution. The framework of genotype net-
works has been used to quantitatively measure robustness and evolvability and to
analyze their relationship. Moreover, the relationship should be better studied at the
genotypic, phenotypic, and fitness levels since robustness and evolvability can take
different qualifications and correlate differently at those levels.

In this book chapter, we reported on the quantitative analysis of robustness and
evolvability at the genotypic, phenotypic, and fitness levels. A small-scale Linear
GP system was adopted as our test system, which provides multiple advantages for
our purposes. The Linear GP algorithm has a compact presentation which allows
exhaustive enumeration of all possible genotypes and phenotypes. Thus the entire
genotype and phenotype spaces can be characterized.

We followed evolutionary biological studies on robustness and evolvability in
RNA networks and defined quantitative measures of robustness and evolvability at
the genotypic, phenotypic, and fitness levels. We showed that robustness and evolv-
ability correlate differently at those levels. At the genotypic level, a more robust
genotype is less evolvable. At the phenotypic level, the correlation of robustness
and evolvability is non-monotonic with the least robust and the most robust phe-
notypes having the highest evolvability. However, no correlation was observed at
the fitness level. This finding calls for more advanced fitness evaluation methods in
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the future that incorporate mutational connections at the genotypic and phenotypic
levels rather than simply the similarity between phenotypes.

Using an ensemble of random walkers and hill climbers, we showed how the
structure of genotype, phenotype, and fitness networks can influence the evolution-
ary search. We found that more robust phenotypes are more accessible from other
phenotypes via random mutations, however starting from a more evolvable pheno-
type does not guarantee a more efficient search for novel phenotypes. This is due
to the limitations of evolvability measures currently available and calls for further
studies.

We also found that robust genotypes play a crucial role in the evolutionary search
process. More robust genotypes are visited more often than would be expected in a
random sampling of genotypes, i.e., random mutations are biased leading to more
robust genotypes. Therefore, robust genotypes can influence the evolutionary search
by guiding it to their adjacent phenotypes. This finding is of particular interest since
it may inspire mechanisms of evolutionary search that utilize robust genotypes.
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