Chapter 6

A SURVEY OF SELF MODIFYING CARTESIAN
GENETIC PROGRAMMING

Simon Harding!, Wolfgang Banzhaf! and Julian F. Miller?

1Department Of Computer Science, Memorial University, Canada; 2Department Of Electronics,
University of York, UK.

Abstract

Self-Modifying Cartesian Genetic Programming (SMCGP) is a general pur-
pose, graph-based, developmental form of Cartesian Genetic Programming. In
addition to the usual computational functions found in CGP, SMCGP includes
functions that can modify the evolved program at run time. This means that pro-
grams can be iterated to produce an infinite sequence of phenotypes from a single
evolved genotype. Here, we discuss the results of using SMCGP on a variety of
different problems, and see that SMCGP is able to solve tasks that require scala-
bility and plasticity. We demonstrate how SMCGP is able to produce results that
would be impossible for conventional, static Genetic Programming techniques.

Keywords: Cartesian genetic programming, developmental systems

1. Introduction

In evolutionary computation (EC) scalability has always been an important
issue. An evolutionary technique is scalable if the generational time it takes
to evolve a satisfactory solution to a problem increases relatively weakly with
increasing problem size. As in EC, scalability is an important issue in Genetic
Programming (GP). In GP important methods for improving scalability are
modularity and re-use. Modularity is introduced through sub-functions or sub-
procedures. These are often called Automatically Defined Functions (ADFs)
(Koza, 1994a). The use of ADFs improves the scalability of GP by allowing
solutions of larger or more difficult instances of particular classes of problems to
be evolved. However, GP methods in general have largely employed genotype
representations whose length (number of genes) is proportional to the size of

R. Riolo et al. (eds.), Genetic Programming Theory and Practice VIII,
DOI 10.1007/978-1-4419-7747-2_6, © Springer Science+Business Media, LLC 2011

92 Genetic Programming Theory and Practice VIII

the anticipated problem solutions. This has meant that evolutionary operators
(e.g. crossover or mutation) have been used as the mechanism for building
large genotypes. The same idea underlies approaches to evolve artificial neural
networks. For instance, a well known method called NEAT uses evolutionary
operators to introduce new neurons and connections, thus expanding the size
of the genotype (Stanley and Miikkulainen, 2002).

It is interesting to contrast these approaches to mechanisms employed in
evolution of biological organisms. Multicellular organisms, having possibly
enormous phenotypes, are developed from relatively simple genotypes. De-
velopment implies an unfolding in space and time. It is clearly promising to
consider employing an analogue of biological development in genetic program-
ming (Banzhaf and Miller, 2004). There are, of course, many possible aspects
of developmental biology that could be adopted to construct a developmental
GP method. In this chapter we discuss one such approach. It is called Self
Modifying Cartesian Genetic Programming (SMCGP). It is based on a simple
underlying idea. Namely, that a phenotype can unfold over time from a geno-
type by allowing the genotype to include primitive functions which act on the
genotype itself. We refer to this as self-modification. As far as the authors
are aware, self-modification is included in only one existing GP system: Lee
Spector’s Push GP language (Spector and Robinson, 2002). One of the at-
tractive aspects of introducing primitive self-modification functions is that it is
relatively easy to include them in any GP system.

Since 2007, SMCGP has been applied to a variety of computational problems.
In the ensuing time the actual details of the SMCGP implementation have
changed, however the key concepts and philosophy have remained the same.
Here we present the latest version. We explain the essentials of how SMCGP
works in section 2. Section 3 discusses briefly examples of previous work
with SMCGP. In section 4 we compare and contrast the way other GP systems
include iteration with the iterative unrolling that occurs in SMCGP. We end the
chapter with conclusions and suggestions for future work.

2. Self Modifying Cartesian Genetic Programming

As the name suggests, SMCGP is based on the Cartesian Genetic Program-
ming technique. In CGP, programs are encoded in a partly connected, feed
forward graph. A full description can be found in (Miller and Thomson, 2000).
The genotype encodes this graph. Associated with each node in the graph are
genes that represent the node function and genes representing connections to
either other nodes or terminals. The representation has a number of interesting
features. Firstly, not all of the nodes in the genotype need to be connected to
the output, so there is a degree of neutrality which has been shown to be very
useful (Miller and Thomson, 2000; Vassilev and Miller, 2000; Yu and Miller,

A Survey of Self Modifying CGP 93

2001; Miller and Smith, 2006). Secondly, as the genotype encodes a graph
there is reuse of nodes, which makes the representation very compact and also
distinct from tree based GP.

Although CGP has been used in various ways in developmental systems
(Miller, 2004; Miller and Thomson, 2003; Khan et al., 2007), the programs that
it produces are not themselves developmental. Instead, these approaches used a
fixed length genotype to represent the programs defining the behaviour of cells.

SMCGP’s representation is similar to CGP in some ways, but has extensions
that allow it to have the self modifying features. SMCGP genotypes are a linear
string of nodes. That is to say, only one row of nodes is used (in contrast to
CGP which can have a rectangular grid of nodes). In contrast to CGP in which
connection genes are absolute addresses, indicating where the data supplied
to a node is to be obtained, SMCGP uses relative addressing. Each node
obtains its data inputs from its connection genes by counting back from its
position in the graph. To prevent cycles, nodes can only connect to previous
nodes (on their left). The relative addressing allows section of the graph to
be moved, duplicated, deleted etc without breaking constraints of the structure
whilst allowing some sort of modularity. In addition to CGP, SMCGP has some
extra genes that are used by self-modification functions to identify parts or
characteristics of the graph that will be changed.

Another change from CGP is the way SMCGP handles inputs and outputs.
Terminals are acquired through special functions (called INP, INPP, SKIPINP)
and program outputs are taken from a special function called OUTPUT. This
is an important change as it enables SMCGP programs to obtain and deliver
as many inputs or outputs as required by the problem domain, during program
execution. This allows the possibility of evolving general solutions to problems.
For example, to find a program that can compute even-n parity, where n is
arbitrary, one needs to be able to acquire an arbitrary number of inputs or
terminals.

In summary: Each node in the SMCGP graph contains a number of evolvable
elements:

The function. Represented in the genotype as an integer.
A list of (relative) connections addresses, again represented as integers.

A set of 3 floating point number arguments used by self-modification
functions.

There are also primitive functions that acquire or deliver inputs and outputs.

As with CGP, the number of nodes in the genotype is typically kept constant
through an experiment. However, this means care has to be taken to ensure that
the genotype is large enough to store the target program.

94 Genetic Programming Theory and Practice VIII

Executing a SMCGP Individual

SMCGP individuals are evaluated in a multi-step process, with the evolved
program (the phenotype) executed several times. The evolved program in SM-
CGP initially has the same structure as the genotype, hence the first step is to
make a copy of the genotype and call it the phenotype. This graph is to be the
‘working copy’ of the program.

Each time the program is executed, the graph is first run and then any self
modification operations required are invoked. The graph is executed in the
following manner.

First, the node (or nodes) to be used as outputs are identified. This is done by
reading through the graph looking at which nodes are of type OUTPUT. Once
a sufficient number of these nodes has been found, the various nodes that they
connect to are identified. If not enough output nodes are found, then the last n
nodes in the graph are used, where n is the number of outputs required. If there
are not enough nodes to satisfy this requirement, then the execution is aborted,
and the individual is discarded.

At this point in the decoding, all the nodes that are actually used by the
program have been identified and so their values can be calculated (the other
nodes can simply be ignored). For the mathematical and binary operators, these
functions are performed in the usual manner. However, as mentioned before
SMCGP has a number of special functions. Table 6-1 shows an example of
some of the functions used in previous work (see section 3).

The first special functions are the INP and INPP functions. Each time the
INP function is called it returns the next available input (starting with the first,
and returning to the first after reading the last input). The INPP function is
similar, but moves backwards through the inputs. SKIPINP allows a number
of inputs to be ignored, and then returns the next input. These functions help
SMCGTP to scale to handle increasing numbers of inputs through development.
This also applies to the use of the OUTPUT function, which allows the number
of outputs to change over time.

If a function is a self modification function, then it may be activated depend-
ing on the following rules. For binary functions they are always activated. For
numeric function nodes, if the 1st input is larger than the 2nd input the node is
activated. The self modification operation from an activated node is added to a
list of pending operations - the “ToDo’ list. The maximum length of the list is
a parameter of the system. After execution, the self modification functions on
the ToDo list are applied to the current graph. The ToDo list is operated as a
FIFO list in which the leftmost activated SM function is the first to be executed
(and so on).

The self modification functions require arguments defining which parts of
the phenotype the function operates on. These are taken from the arguments of

A Survey of Self Modifying CGP 95

the calling node. Many of the arguments are integers, so they may need to be
cast. The arguments may be treated as an address (depending on the function)
and like all SMCGP operations, these are relative addresses. The program can
now be iterated again, if necessary.

3. Summary of Previous Work in SMCGP
Early experiments

There are very few benchmark problems in the developmental system liter-
ature. In the first paper on SMCGP (Harding et al., 2007), we identified two
possible challenges that had been described previously.

The first was to find a program that generates a sequence of squares (i.e.
0,1,2,4,9,16,25...) using arestricted set of mathematical operators such as + and
—, but not multiplication or power. Without some form of self modification this
challenge would be impossible to solve (Spector and Stoffel, 1996). SMCGP
was easily able to solve this problem (89% success rate), and a large number
of different solutions were found.

Typical solutions were similar to the program in table 6-2, where the program
grew in length by adding new terms.

During evolution, solutions were only tested up to the first 10 iterations.
However, after evolution the solutions were tested for generality by increasing
the number of iterations to 50. 66% of the solutions are correct to 50 iterations.
Thus SMCGP was able to find general solutions.

The next benchmark problem was the French Flag (FF) problem. Several
developmental systems have been tested on generating the FF pattern (Miller,
2003; Miller and Banzhaf, 2003; Miller, 2004), and it is one of the few com-
mon problems tackled. In this problem, the task is to evolve a program that
can assign the states of cells (represented as colours) into three distinct regions
so that the complete set of cells looks like a French Flag. However, the design
goals of SMCGP are very different to those the FF task demands. Many de-
velopmental systems are built around the idea of multi-cellularity and although
they are capable of producing cellular patterns or even concentrations of sim-
ulated proteins, they are not explicitly computational in the sense of Genetic
Programming. Often researchers have to devise somewhat arbitrary mappings
from developmental outputs (i.e. cell states and protein levels) to those required
for some computational application. SMCGP is designed to be an explicitly
computational developmental system from the outset.

Typically, the FF is produced via a type of cellular automaton (CA), where
each cell ‘alive’ contains a copy of an evolved program or set of update rules.
We could have taken this approach with SMCGP, but we decided on a more
abstract interpretation of the problem. In the CA version, each cell in the
CA is analogous to a biological cell. In SMCGP, the biological abstractions

96

Delete (DEL)
Add (ADD)
Move (MOV)

Overwrite (OVR)
Duplication (DUP)
Duplicate Preserving

Connections (DU3)

Duplicate and scale ad-
dresses (DU4)

Copy To Stop (COPY-
TOSTOP)

Stop Marker (STOP)
Shift Connections
(SHIFTCONNEC-
TION)

Shift Connections 2
(MULTCONNEC-
TION)

Change Connection
(CHC)

Change Function
(CHF)

Change Parameter
(CHP)

Flush (FLR)

Genetic Programming Theory and Practice VIII

Basic

Delete the nodes between (Fy +x) and (Py+x+ Py).
Add P; new random nodes after (P +).
Move the nodes between (P +x) and (Py+x+ Pp)
and insert after (Py + x + P»).

Duplication
Copy the nodes between (FPy +x) and (Py+z+ Pp)
to position (Py + = + P»), replacing existing nodes
in the target position.
Copy the nodes between (P +) and (Py +z+ Py)
and insert after (Py + = + P»).
Copy the nodes between (FPy +x) and (Py+z+ Pp)
and insert after (P + = + FP»). When copying, this
function modifies the ¢;; of the copied nodes so that
they continue to point to the original nodes.
Starting from position (Fy + x) copy (FP1) nodes
and insert after the node at position (Fy + x + P}).
During the copy, ¢;; of copied nodes are multiplied
by P.
Copy from z to the next “COPYTOSTOP” or
‘STOP” function node, or the end of the graph.
Nodes are inserted at the position the operator stops
at.
Marks the end of a COPYTOSTOP section.
Connection modification
Starting at node index (Fp + x), add P» to the values
of the ¢;; of next P.

Starting at node index (F + x), multiply the ¢;; of
the next P; nodes by Ps.

Change the (P;mod3)th connection of node Fy to
Ps.

Function modification
Change the function of node F, to the function as-
sociated with P;.
Change the (Pymod3)th parameter of node Py to
Ps.

Miscellaneous

Clears the contents of the ToDo list

Table 6-1. Self modification functions. x represents the absolute position of the node in the
graph, where the leftmost node has position 0. Py are evolved parameters stored in each node.

A Survey of Self Modifying CGP 97

Iteration (¢) Function Result
0 0+: 0
1 0+¢ 1
2 0+i+14 4
3 O+i+1+1 9
4 O+i+i+i+i 16

etc.

Table 6-2. Program that generates sequence of squares. The program was found by reverse
engineering a SMCGP phenotype. i, the current iteration, is the only input to the program.

are blurred, and the SMCGP phenotype itself could be viewed as a collection
of cells. One way of viewing cells in SMCGP is to break the phenotype into
‘modules’ and then define these as the cells. In this way, SMCGP cells duplicate
and differentiate using the various modifying functions. In a static program,
this concept of cellularity does not exist.

To tackle the FF problem with SMCGP, we defined the target pattern to be
a string of integers that could be visually interpreted as a French Flag pattern.
In the CA model, the pattern would be taken as the output of the program at
each cell. Here, since we can view SMCGP phenotypes as a collection of cells,
we took the output pattern as the set of outputs from all the active (connected)
nodes in the phenotype graph. The fitness of an individual is the count of how
many of the sequence it got right after a certain number of iterations.

As the phenotype can change length when it is iterated, the number of active
nodes can change and the length of the output pattern can also change. The
value of the output of active nodes is dependent on the calculation it (and the
nodes before it) does. So the French Flag pattern is effectively the side effect
of some mathematical expression.

It was found that this approach was largely successful, but only in generating
approximations to the flag. No exact solutions were found, which is similar to
the findings of the CA solutions where exact results are uncommon.

The final task we explored in this paper was generating parity circuits, a
challenge we return to in the next section.

Digital Circuits

Digital circuits have often been studied in genetic programming (Koza,
1994b; Koza, 1992b), and some systems have been used to produce ‘general’
solutions (Huelsbergen, 1998; Wong and Leung, 1996; Wong, 2005). A gen-
eral solution in this sense is a program that can output a digital circuit for an
arbitrary number of inputs, for example it may generate a parity circuit of any

98 Genetic Programming Theory and Practice VIII

size |. Conveniently, many digital circuits are modular and hierarchical - and
this fits the model of development that SMCGP implements.

In our first paper, we successfully produced parity circuits up to 8 inputs
(Harding et al., 2007). We stopped at this size because, at the time, this was the
maximum size we could find conventional CGP solutions for. In a subsequent
paper (Harding et al., 2009a), we revisited the problem (using the latest version
of SMCGP), and found that not only could we evolve larger parity circuits, but
we could rapidly and consistently evolve provably general parity circuits.

We used an incremental fitness function to find programs that on the first
iteration would solve 2 input parity, then 3 input parity on the next iteration and
continue up to a maximum number of inputs. The fitness of an individual is
the number of correct output bits over all iterations. To keep the computational
costs down, we limited the evolution to 2 to 20 inputs, and then tested the final
programs for generality by running up to 24 bits of input. We also stopped
iterating programs if they failed to correctly produce all the output bits for the
current table.

Note how if an individual fails to be successful on a particular iteration the
evaluation is canceled. Not only did this reduce the computation time, but we
hoped it would also help with producing generalized solutions. Our function
set consisted of all the two-input Boolean functions and the self modifying
functions. In 251 evolutionary runs we found that the average number of evalu-
ations required to successfully solve the parity problems was (number of inputs
in parentheses) are as follows: 1,429(2), 4,013 (3), 43,817 (6), 82, 936 (8),
107,586 (10), 110,216 (17). Here we have given an incomplete list that just
illustrates the trend in problem difficulty.

We found that the number of evaluations stabilizes when the number of in-
puts is about 10. This is because after evolution has solved to a given number
of inputs the solutions typically become generalized. We found that by the time
that evolution had solved 5 inputs, more than half the solutions were general-
izable up to 20 inputs, and by 10 inputs this was up to 90%. The percentage
of runs that correctly computed even-parity 22 to 24 was approximately 96%.
However, without analysis of the programs it was difficult to know whether
they were truly general solutions.

The evolved programs can be relatively compact, especially when we place
constraints on the initial size, the number of self modification operations allowed
on the ToDo list and the overall length of the program. Figure 6-1 shows an
example of an evolved parity circuit generating a program which we were able
to prove is a general solution to even-parity.

! An even parity circuit takes a set of binary inputs and outputs true if an even number of the inputs are true,
and false otherwise.

A Survey of Self Modifying CGP 99

Figure 6-1. An example of the development of a parity circuit. Each line shows the phenotype
graph at a given time step. The first graph solves the 2-input parity, the second solves 3-input and
continues to 7-bits. The graph has been tested to generalise through to 24 inputs. This pattern
of growth is typical of the programs investigated.

In recent work (to be published in (Harding et al., 2010a)) we have also
shown general solutions for the digital adder circuit. A digital adder circuit of
size n adds two binary n bit numbers together. This problem is much more
complicated than parity, as the number of inputs scales twice as fast (i.e. it has
to produce 1 bit+1 bit, 2+2, 3+3) and the number of outputs also grows with
the number of inputs.

Mathematical problems

SMCGP has been applied to a variety of mathematical problems (Harding
et al., 2009c; Harding et al., 2010b).

For the Fibonacci sequence, the fitness function is the number of correctly
calculated Fibonacci numbers in a sequence of 50. The first two Fibonacci
numbers are given as fixed inputs (these were 0 and 1). Thus the phenotypes
are iterated 48 times. Evolved solutions were tested for generality by iterating
up to 72 times (after which the numbers exceeds the long int). A success rate
of 87.4% was acheived on 287 runs and 94.5% of these correctly calculated
the suceeeding 24 Fibonacci numbers. We found that the average number of
evaluations of 774,808 compared favourably with previously published methods
and that the generalization rate was higher.

In the “list summation problem” we evolved programs that could sum an ar-
bitrarily long list of numbers. At the n-th iteration, the evolved program should
be able to take n inputs and compute the sum of all the inputs. We devised
this problem because we thought it would be difficult for genetic programming

100 Genetic Programming Theory and Practice VIII

without the addition of an explicit summation command. Koza used a sum-
mation operator called SIGMA that repeatedly evaluates its sole input until a
predefined termination condition is realised (Koza, 1992a).

Input vectors consisted of random sequences of integers. The fitness is
defined as the absolute cumulative error between the output of the program and
the expected sum of the values. We evolved programs which were evaluated
on input sequences of 2 to 10 numbers. The function set consisted of the self
modifying functions and just the ADD operator. All 500 experiments were
found to be successful, in that they evolved programs that could sum between 2
and 10 numbers (depending on the number of iterations the program is iterated).
On average it took 6,922 evaluations to solve this problem. After evolution,
the best individual for each run was tested to see how well it generalized. This
test involved summing a sequence of 100 numbers. It was found that 99.03%
solutions generalized. When conventional CGP was used it could only sum up
to 7 numbers.

We also studied how SMCGP performed on a “Powers Regression” problem.
The task is to evolve a program that, depending on the iteration, approximates
the expression 2" where n is the iteration number. The fitness function applies
x as integers from 0 to 20. The fitness is defined as the number of wrong outputs
(i.e. lower is better). Programs were evolved to n = 10 and then tested for
generality up to n = 20. As with many of the other experiments, the program
is evolved with an incremental fitness function. We obtained 100% correct
solutions (in 337 runs). The average number of evalutions was 869,699.

More recently we have looked at whether SMCGP could produce algorithms
that can compute mathematical constants, like 7 and e, to arbitrary precision
(Harding et al., 2010b). We were able to prove that two of the evolved formulae
(one for 7 and one for e) rapidly converged to the constants in the limit of
large iterations. We consider this work to be significant as evolving provable
mathematical results is a rarity in evolutionary computation.

The fitness function was designed to produce a program where subsequent
iterations of the program produced more accurate approximation to m or e.
Programs were allowed to iterate for a maximum of 10 iterations. If the output
after an iteration did not better approximate 7, evaluation was stopped and a
large fitness penalty applied. Note that it is possible that after the 10 iterations
the output value diverges from the constant and the quality of the result would
therefore worsen.

We analyzed one of the solutions that accurately converges to 7. It had the
generating function:

cos(sin(cos(sin(0)))) i=0

1) :{ Fli=1)+sin(fi—1)) i>0 ©.1)

A Survey of Self Modifying CGP 101

Equation 6.1 is a nonlinear recurrence relation and it can be proven formally
that it is an exact solution in that it rapidly approaches 7 in the limit of large .

Using the same fitness function as with 7, evolving solutions for e was found
to be significantly harder. In our experiments we chose the initial genotype to
have 20 nodes and the ToDo list length to be 2. This meant that only two SM
functions were used in each phenotype. We allowed the iteration number ¢t as
the sole program input. Defining x = 4% and y = 4z = 4*! we evolved the
solution for the output, z as

1 1
s (14 L (6.2)
Yy
Eqn 6.2 tends to the form of a well-known Bernoulli formula.

1
lim (1+)Y (6.3)
y—00 Y

Evolving to Learn

In nature, we are used to the idea that plasticity (e.g., in the brain) can be used
to learn during the lifetime of an organism. In the brain, the ‘self-modification
rules’ are ultimately encoded in the genome. In (Harding et al., 2009b), we set
out to use SMCGP to evolve a learning algorithm that could act on itself. The
basic question being whether SMCGP can evolve a program that can learn -
during the development phase - how to perform a given task. We chose the task
of getting the same phenotype to learn all possible 2-input boolean truth tables.
We took 16 copies of the same phenotype, and then tried to train each copy on
a different truth table, with the fitness being how well the programs (after the
learning phase) did at calculating the correct value based on a pair of inputs.

In SMCGP, the activation of a self modifying node is dependent on the values
that it reads as inputs. Combined with the various mathematical operators, this
allows the phenotype to develop differently in the presence of different sets
of inputs. To support the mathematical operators, the Boolean tables were
represented (and interpreted) as numbers, with -1.0 being false, +1.0 being
true.

Figure 6-2 illustrates the process. The evolved genotype (a) is copied into
phenotype space (b) where it can be executed. The phenotype is allowed to
develop for a number of iterations (c). The number of iterations is defined
by a special gene in the genotype. Copies of the developed phenotype are
made (d) and each copy is assigned a different truth table to learn. The test set
data is applied (e) as described in the following section. After learning (f) the
phenotype can now be tested, and its fitness found. During (f), the individual
is treated as a static individual - and is no longer allowed to modify itself. This

102 Genetic Programming Theory and Practice VIII

fixed program is then tested for accuracy, and its fitness used as a component
in the final fitness score of that individual.

(a) Evolved genotype

(b) Copy to phenotype space

(c) Develop for N iterations

(d) Copy M times,
1 per test set to learn

(e) Learning phase (apply test sets)

(f) Obtain final phenotype for each test set

Figure 6-2. Fitness function flow chart, as described in section 3.

During the fitness evaluation stage, each row of the truth table is presented
to a copy of the evolved phenotype (Figure 6-2.¢). During this presentation,
the error between the expected and actual output is fed back into the SMCGP
program, in order to provide some sort of feedback. Full details of how this
was implemented can be found in (Harding et al., 2009b).

During fitness calculation, we tested all 16 tables. However, we split the
tables into two sets, one for deriving the fitness score (12 tables) and the other
for a validation score (4 tables). It was found that 16% of experimental runs
were successfully able to produce programs that correctly learned the 12 tables.
None of the evolved programs was able to generalize to learn all the unseen
truth tables. However, the system did come close with the best result having
only 2 errors (out of a possible 16).

Figure 6-3 shows the form of the final phenotypes for the programs for
each of the fitness truth tables. We can see both modularity and a high degree
of variation - with the graphs for each table looking quite different from one
another. This is in contrast to previous examples, such as the parity circuits,
where we generally only see regular forms.

4. Iteration in SMCGP and GP

One of the unique properties of SMCGP is how it handles iteration. Iteration
is not new in genetic programming and there are several different forms. The
most obvious form of GP with iteration is Linear Genetic Programming (LGP),
where evolved programs can execute inside a kind of virtual machine in which
the program counter can be modified using jump operations. LGP operates on
registers (as in a CPU), and uses this memory to store state between iterations
of the same section of program. It is also worth noting that in LGP sub-sections

A Survey of Self Modifying CGP 103

@-E’uﬂ‘-m:g ;_‘jji'-uvp_« U rls:j_? Aot)

TR K Ry T BT BT T D)

T T e e R L R L R R U A SR g T (e
(.;;n‘ﬁ"__;f;e O)

Figure 6-3. Phenotypes for each of the tables learned during evolution.

of code are executed repeatedly. This is different from most implementations of
tree-based GP (and we restrict our discussion to the simple, common varieties
found in the literature), as the tree represents an expression, and so any iteration
has to be applied externally. Tree-based GP also typically does not have a
concept of working registers to store state between iterations, so these must
be added to the function set, or previous state information passed back via the
tree’s inputs. Tree-based GP normally only has one output, and no intermediate
state information. So additional mechanisms would be required to select what
information to store and pass to subsequent iterations. In LGP termination can
be controlled by the evolved program itself, whereby with external iteration
another mechanism needs to be defined - perhaps by enforcing a limit to the
number of iterations or some form of conditional.

SMCGP handles its iteration in a very different manner. It can be viewed as
something analogous to loop-unrolling in a compiler, whereby the contents of
the loop are explicitly rewritten a number of times. In SMCGP, the duplication
operator unrolls the phenotype. State information is passed between iterations
by the connections made in the duplicated blocks. In compilers, it is done
for program efficiency and is typically only done for small loops. In SMCGP,
if the unrolling is excessive it will exceed the maximum permitted phenotype
length. We speculate that this may help to evolve more efficient modularization.
Because the activation of self modifying functions is determined by both the
size of the ToDo list and the inputs to self modifying nodes, it is possible for
SMCGP to self-limit when sections of code should be unrolled.

SMCGP’s unrolling also has the possibility to grow exponentially, which
forms a different kind of loop. For example, imagine a duplication operator
that copied every node to its left and inserted it before itself : e.g NODEO

104 Genetic Programming Theory and Practice VIII

NODE1 DUPLICATE. On the next iteration it would produce NODEO NODE1
NODEO NODE1 DUPLICATE, then NODEO NODE1 NODEO NODEI1
NODEO NODE1 NODEO NODE1 DUPLICATE and so on. Hence the pro-
gram length almost doubles at each time. Similarly, the arguments for the
duplication operation may only replicate part of the previously inserted mod-
ule, so the phenotype would grow a different, smaller rate each time. Other
growth progressions are also possible, especially when several duplication-style
operators are at work on the same section of phenotype. This makes the iter-
ation capabilities of SMCGP very rich and implies that it can also do a form
of recursion unrolling - removing the need for explicit procedures in a similar
way to the lack of need for loop instructions.

5. Conclusions and Further Work

Self modification in Genetic Programming seems to be a useful property.
With SMCGP we have shown that the implementation of such a system can
be relatively straightforward, and that very good results can be achieved. In
upcoming work, we will be demonstrating SMCGP on several other problems
including generalized digital adders and a structural design problem.

Here we have discussed problems that require some sort of developmental
process, as the problems require a scaling ability. One benefit of SMCGP is that
ifthe problem does not need self modification, evolution can stop using it. When
this happens, the representation reverts to something similar to classical CGP.
In (Harding et al., 2009c), we showed that on a bio-informatics classification
problem where there should be no benefit in using self modification, SMCGP
behaved similarly to CGP. This result lets us be confident that in future work
we can by default use SMCGP and automatically gain any advantages that
development might bring.

The SMCGP representation has changed over time, whilst maintaining the
same design philosophy. In future work we consider other variants as well.
Currently we are investigating ways to simplify the genotype to make it easier
for humans to understand. This should allow us to be able to prove general
cases more easily, and perhaps explain how processes like the evolved learning
algorithm function.

A whole world of self modifying systems seems to have become available
now that the principle has been shown work successfully. We plan to investigate
this world further and also encourage others to consider sel f modification in their
systems.

6. Acknowledgments

Funding from NSERC under discovery grant RGPIN 283304-07 to W.B. is
gratefully acknowledged. S.H. was supported by an ACENET fellowship.

A Survey of Self Modifying CGP 105

References

Banzhaf, W. and Miller, J. F. (2004). The Challenge of Complexity. Kluwer
Academic.

Harding, S., Miller, J. F., and Banzhaf, W. (2009a). Self modifying cartesian
genetic programming: Parity. In Tyrrell, Andy, editor, 2009 IEEE Congress
on Evolutionary Computation, pages 285-292, Trondheim, Norway. IEEE
Computational Intelligence Society, IEEE Press.

Harding, Simon, Miller, Julian F., and Banzhaf, Wolfgang (2009b). Evolution,
development and learning with self modifying cartesian genetic program-
ming. In GECCO ’09: Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 699—706, New York, NY, USA. ACM.

Harding, Simon, Miller, Julian F., and Banzhaf, Wolfgang (2010a). Develop-
ments in cartesian genetic programming: Self-modifying cgp. To be pub-
lished in Genetic Programming and Evolvable Machines.

Harding, Simon, Miller, Julian F., and Banzhaf, Wolfgang (2010b). Self mod-
ifying cartesian genetic programming: Finding algorithms that calculate pi
and e to arbitrary precision. In Genetic and Evolutionary Computation Con-
ference, GECCO 2010. Accepted for publication.

Harding, Simon, Miller, Julian Francis, and Banzhaf, Wolfgang (2009c). Self
modifying cartesian genetic programming: Fibonacci, squares, regression
and summing. In Vanneschi, Leonardo, Gustafson, Steven, et al., editors,
Genetic Programming, 12th European Conference, EuroGP 2009, Tiibingen,
Germany, April 15-17, 2009, Proceedings, volume 5481 of Lecture Notes in
Computer Science, pages 133—144. Springer.

Harding, Simon L., Miller, Julian F., and Banzhaf, Wolfgang (2007). Self-
modifying cartesian genetic programming. In Thierens, Dirk, Beyer, Hans-
Georg, Bongard, Josh, Branke, Jurgen, Clark, John Andrew, Cliff, Dave, Con-
gdon, Clare Bates, Deb, Kalyanmoy, Doerr, Benjamin, Kovacs, Tim, Kumar,
Sanjeev, Miller, Julian F., Moore, Jason, Neumann, Frank, Pelikan, Martin,
Poli, Riccardo, Sastry, Kumara, Stanley, Kenneth Owen, Stutzle, Thomas,
Watson, Richard A, and Wegener, Ingo, editors, GECCO ’07: Proceedings
of the 9th annual conference on Genetic and evolutionary computation, vol-
ume 1, pages 1021-1028, London. ACM Press.

Huelsbergen, Lorenz (1998). Finding general solutions to the parity problem
by evolving machine-language representations. In Koza, John R., Banzhaf,
Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and Riolo,
Rick, editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference, pages 158-166, University of Wisconsin, Madison, Wisconsin,
USA. Morgan Kaufmann.

106 Genetic Programming Theory and Practice VIII

Khan, G.M., Miller, J.F, and Halliday, D.M. (2007). Coevolution of intelligent
agents using cartesian genetic programming. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, pages 269 — 276.

Koza, J. R. (1994a). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press.

Koza, John R. (1992a). A genetic approach to the truck backer upper problem
and the inter-twined spiral problem. In Proceedings of IJCNN International
Joint Conference on Neural Networks, volume 1V, pages 310-318. IEEE
Press.

Koza, John R. (1994b). Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press, Cambridge Massachusetts.

Koza, J.R. (1992b). Genetic Programming: On the Programming of Computers
by Natural Selection. MIT Press, Cambridge, Massachusetts, USA.

Miller, J. F. and Smith, S. L. (2006). Redundancy and computational efficiency
in cartesian genetic programming. In IEEE Transactions on Evoluationary
Computation, volume 10, pages 167-174.

Miller, Julian F. (2003). Evolving developmental programs for adaptation, mor-
phogenesis, and self-repair. In Banzhaf, Wolfgang, Christaller, Thomas, Dit-
trich, Peter, Kim, Jan T., and Ziegler, Jens, editors, Advances in Artificial Life.
7th European Conference on Artificial Life, volume 2801 of Lecture Notes
in Artificial Intelligence, pages 256265, Dortmund, Germany. Springer.

Miller, Julian F. and Banzhaf, Wolfgang (2003). Evolving the program for a
cell: from french flags to boolean circuits. In Kumar, Sanjeev and Bentley,
Peter J., editors, On Growth, Form and Computers. Academic Press.

Miller, Julian F. and Thomson, Peter (2000). Cartesian genetic programming. In
Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian F.,
Nordin, Peter, and Fogarty, Terence C., editors, Genetic Programming, Pro-
ceedings of EuroGP’2000, volume 1802 of LNCS, pages 121-132, Edin-
burgh. Springer-Verlag.

Miller, Julian F. and Thomson, Peter (2003). A developmental method for grow-
ing graphs and circuits. In Proceedings of the 5th International Conference
on Evolvable Systems: From Biology to Hardware, volume 2606 of Lecture
Notes in Computer Science, pages 93—104. Springer.

Miller, Julian Francis (2004). Evolving a self-repairing, self-regulating, french
flag organism. In Deb, Kalyanmoy, Poli, Riccardo, Banzhaf, Wolfgang,
Beyer, Hans-Georg, Burke, Edmund K., Darwen, Paul J., Dasgupta, Di-
pankar, Floreano, Dario, Foster, James A., Harman, Mark, Holland, Owen,
Lanzi, Pier Luca, Spector, Lee, Tettamanzi, Andrea, Thierens, Dirk, and
Tyrrell, Andrew M., editors, GECCO (1), volume 3102 of Lecture Notes in
Computer Science, pages 129-139. Springer.

A Survey of Self Modifying CGP 107

Spector, L. and Robinson, A. (2002). Genetic programming and autoconstruc-
tive evolution with the push programming language. Genetic Programming
and Evolvable Machines, 3:7-40.

Spector, Lee and Stoffel, Kilian (1996). Ontogenetic programming. In Koza,
John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L., editors,
Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 394-399, Stanford University, CA, USA. MIT Press.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99-127.

Vassilev, Vesselin K. and Miller, Julian F. (2000). The advantages of landscape
neutrality in digital circuit evolution. In Proceedings of the Third Interna-
tional Conference on Evolvable Systems, pages 252—263. Springer-Verlag.

Wong, Man Leung (2005). Evolving recursive programs by using adaptive
grammar based genetic programming. Genetic Programming and Evolvable
Machines, 6(4):421-455.

Wong, Man Leung and Leung, Kwong Sak (1996). Evolving recursive func-
tions for the even-parity problem using genetic programming. In Angeline,
Peter J. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming
2, chapter 11, pages 221-240. MIT Press, Cambridge, MA, USA.

Yu, Tina and Miller, Julian (2001). Neutrality and the evolvability of boolean
function landscape. In Miller, Julian F., Tomassini, Marco, Lanzi, Pier Luca,
Ryan, Conor, Tettamanzi, Andrea G. B., and Langdon, William B., editors,
Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS,
pages 204-217, Lake Como, Italy. Springer-Verlag.

	Chapter 6
	A SURVEY OF SELF MODIFYING CARTESIAN GENETIC PROGRAMMING
	1. Introduction
	2. Self Modifying Cartesian Genetic Programming
	3. Summary of Previous Work in SMCGP Early experiments
	4. Iteration in SMCGP and GP
	5. Conclusions and FurtherWork
	6. Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

