
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2025) 26:8
https://doi.org/10.1007/s10710-024-09505-2

Using FPGA devices to accelerate the evaluation phase
of tree‑based genetic programming: an extended analysis

Christopher Crary1 · Wesley Piard1 · Greg Stitt1 · Benjamin Hicks1 · Caleb Bean1 ·
Bogdan Burlacu2 · Wolfgang Banzhaf3

Received: 1 November 2023 / Revised: 17 December 2024 / Accepted: 18 December 2024 /
Published online: 7 January 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract
This paper establishes the potential of accelerating the evaluation phase of tree-based
genetic programming through contemporary field-programmable gate array (FPGA)
technology. This exploration stems from the fact that FPGAs can sometimes lever-
age increased levels of both data and function parallelism, as well as superior power/
energy efficiency, when compared to general-purpose CPU/GPU systems. In this
investigation, we introduce a fixed-depth, tree-based architecture that can fully par-
allelize tree evaluation for type-consistent primitives that are unrolled and pipelined.
We show that our accelerator on a 14nm FPGA achieves an average speedup of 43×
when compared to a recent open-source GPU solution, TensorGP, implemented on
8nm process-node technology, and an average speedup of 4,902× when compared to
a popular baseline GP software tool, DEAP, running parallelized across all cores of
a 2-socket, 28-core (56-thread), 14nm CPU server. Despite our single-FPGA accel-
erator being 2.4× slower on average when compared to the recent state-of-the-art
Operon tool executing on the same 2-processor, 28-core CPU system, we show that
this single-FPGA system is 1.4× better than Operon in terms of performance-per-
watt. Importantly, we also describe six future extensions that could provide at least
a 64–192× speedup over our current design. Therefore, our initial results provide
considerable motivation for the continued exploration of FPGA-based GP systems.
Overall, any success in significantly improving runtime and energy efficiency could
potentially enable novel research efforts through faster and/or less costly GP runs,
similar to how GPUs unlocked the power of deep learning during the past fifteen
years.

Keywords Tree-based genetic programming · Field-programmable gate array ·
Domain-specific architecture · Hardware acceleration

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-024-09505-2&domain=pdf

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 2 of 48

1 Introduction

Throughout history, the evolution of AI has been heavily constrained and influ-
enced by the computing technologies that are available [44, 47]. With such con-
straints, there is continual motivation to develop clever applications of existing
technologies. Notably, resulting solutions can sometimes affect the trajectories
of science and life in profound ways. For example, the application and develop-
ment of GPU technology for neural networks significantly expanded the utility of
this form of AI [44, 47], which then drove substantial research initiatives [92],
transformed Nvidia into the most valuable public company [79], and enabled the
creation of applications and systems that have greatly influenced the world at
large [81, 98, 116].

Of course, some other challenge or trade-off is eventually reached. In the case
of neural networks, recent work has highlighted serious scaling challenges for
energy consumption and various other costs [2, 15, 72, 103, 116], which has kick-
started or revived the exploration of many other learning systems. Importantly,
one domain that is promising in this regard is genetic programming (GP) [13, 59,
89], for which it has been widely shown that the pairing of evolutionary search
with alternative model structures (e.g., trees, assembly languages, tangled pro-
gram graphs, etc.) can sometimes allow for more compact solutions and enhanced
efficiency during inference [57, 64, 89]. However, training often remains complex
with current GP techniques, which motivates improvements to the computational
efficiency of such procedures [19, 27, 89].

In general, there are various ways to improve the computational efficiency
of GP training, and they normally involve either increasing performance (i.e.,
throughput) or enhancing energy efficiency, for which there are at least four key
benefits: (1) with increased performance, useful solutions can potentially be
found in a shorter amount of time; (2) with improved energy efficiency, there
is the potential for lower operational costs, which (3) can allow for more cost-
effective multi-computer GP systems, in turn allowing for higher performance;
and (4) with either improved performance or improved energy efficiency, better
solutions can potentially be found when allowing the system to consume a simi-
lar amount of runtime/energy. Notably, in regard to this last point, consuming a
similar amount of runtime/energy does not necessarily mean conducting a single
evolutionary run for more generations; it could also mean more hyperparameter
tuning, larger statistical studies, etc., which are frequently useful.

Notably, in many application domains, the demands of ever-increasing perfor-
mance and energy efficiency has now led to the broad development of domain-
specific architectures [44]. However, in the context of genetic programming, there
exist only a few instances of domain-specific architectures (Sect. 3), which is
particularly surprising given that GP is often an “embarrassingly parallel” pro-
cedure [89]. Although general-purpose CPU/GPU systems can be configured to
implement the multiple-program, multiple-data model of GP, it is challenging
to fully exploit the inherent parallelism (Sect. 3). For CPUs, the use of multiple
cores/threads is relatively straightforward, but it is often difficult or prohibitively

Genetic Programming and Evolvable Machines (2025) 26:8 Page 3 of 48 8

expensive (in terms of power and other costs) to continually scale up [44]. And
for GPUs, which offer numerous simpler cores and have been highly successful in
accelerating other forms of machine learning, the need for conditional program
execution (e.g., to decide which function primitive to execute) and large cache
sizes generally limits acceleration capabilities [23, 27, 94]. To address such limi-
tations of CPU/GPU systems, this paper introduces a specialized accelerator for
the evaluation phase of tree-based GP, implemented using contemporary field-
programmable gate array (FPGA) technology as described in Sect. 4. We provide
a more detailed description of FPGA devices in Sect. 2.3, but in brief, FPGAs are
programmable computing systems that enable the synthesis of specialized digital
circuitry from various levels of abstraction, without recourse to integrated circuit
development.

We compare the performance of our architecture with the evaluation engines
given by three actively maintained, open-source tree-based GP software tools:
DEAP [29], TensorGP [12], and Operon [19]. From each tool, we use the evalua-
tion engine—and no evolution engine—to execute a large set of randomly generated
programs for various amounts of fitness cases (i.e., data points), and we estimate
evaluation performance in terms of nodes per second (NPS), which is similar to the
conventional GP operations per second (GPops/s), as described in Sect. 5.1. For
each CPU-based tool, we utilize a dual-socket server populated with two 2.6 GHz
(3.7 GHz Turbo), 14-core (28-thread), 14nm Intel Xeon Gold 6132 CPU packages,
and we additionally use an 8nm Nvidia RTX 3080 GPU (10 GB) for TensorGP. For
our accelerator, we use a 14nm Intel Stratix 10 SX 1SX280HN2F43E2VG FPGA
provided by an Intel Programmable Acceleration Card D5005. We use the VHDL
programming language to specify our designs [115], and we compile our accelerator
by way of Quartus Pro 19.2.0, Build 57.

When compared to DEAP [29], a popular baseline for GP software tools, our
accelerator achieves an average speedup of 4,902× . Compared to TensorGP [12], a
recent general-purpose GP software tool targeting both CPU and GPU systems, our
architecture achieves an average speedup of 62× in regard to CPU execution and 43×
in regard to GPU execution. Finally, when compared to Operon [19], a recent state-
of-the-art GP tool tailored to symbolic regression [64], our single-FPGA accelera-
tor executes 0.42× faster (i.e., 2.4× slower) on average when compared to the same
2-processor CPU system, although there are multiple instances in which our accel-
erator performs fastest. Importantly, when we additionally consider energy con-
sumption, we showcase that the FPGA provides a 1.4× average improvement over
Operon in terms of performance-per-watt. However, even more importantly, we also
identify six future extensions that could allow for at least a 64–192× speedup over
our current system. Altogether, our initial results provide considerable motivation
for the continued exploration of FPGA-based GP systems. Especially when account-
ing for our proposed extensions, FPGAs may allow for faster and/or less costly GP
runs, in which case it may also be possible for better solutions to be found when
allowing an FPGA to consume the same amount of runtime/energy as another com-
puting platform.

The remainder of the paper is organized as follows. Section 2 provides a
high-level overview of modern computing, which should ultimately motivate

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 4 of 48

domain-specific architectures for GP systems. Section 3 describes related work, with
emphasis placed primarily on recent achievements. Section 4 details our hardware
accelerator architecture. Section 5 describes our design of experiments. Section 6
presents results. Section 7 discusses challenges regarding our current architecture,
followed by planned future extensions that should address the challenges and allow
for state-of-the-art performance, followed by some final considerations. Section 8
concludes our study.

2 Background

In this section, we provide some relevant background on modern (digital) comput-
ing. Importantly, we note that the following discussion provides appropriate context
for the comparison of GP systems laid out in Sect. 3, and it also motivates domain-
specific architectures, like the one we introduce in Sect. 4.

2.1 A high‑level view of modern computing

For about twenty years now, the practical relevance of Moore’s Law has been wan-
ing, and Dennard scaling no longer applies [33, 44]. In brief, Moore’s Law describes
an empirical regularity that the maximum number of transistors in an integrated cir-
cuit chip doubles roughly every two years,1 and Dennard scaling refers to the idea
that as transistor circuit area scales down, power density roughly stays the same.

Notably, from the mid-1980s to the early-2000s, a combination of Moore’s Law
and Dennard scaling allowed average CPU performance to roughly double (i.e., exe-
cution times to roughly halve) every two years [44]. Then, from the end of Dennard
scaling in the early-2000s until the late-2010s, the use of multiple general-purpose
cores per chip kept Moore’s Law alive, but various theoretical and practical barriers
led to a significant slowing of performance enhancements. Primarily, performance
enhancements were constrained by consistent power budgets–which, in general, are
constrained by electromigration, mechanical, and thermal limits–as well as the lim-
its on parallelism as prescribed by Amdahl’s Law [8]. With consistent power budgets
due to physical constraints, the number of general-purpose cores in a single chip
approached a practical upper limit [33, 44]. Thus entered the next big trend, which is
still relevant today: domain-specific architectures (DSAs). Importantly, with DSAs,
hardware specialized to a particular application domain can often accomplish more
with a similar, sometimes smaller, power budget [44, 84, 90, 114, 117].

In general, domain-specific architectures can offer equivalent, and sometimes bet-
ter, performance and energy benefits when compared to modern general-purpose
architectures, such as central processing units (CPUs) and graphics processing units
(GPUs) [44, 84, 90, 114, 117]. Although DSAs can sometimes serve as complete
solutions, the latest trend is to integrate both general-purpose and domain-specific

1 Recent work allows us to conclude that Moore’s Law is still alive [95].

Genetic Programming and Evolvable Machines (2025) 26:8 Page 5 of 48 8

chiplets into a single circuit, so that the system can efficiently support a wide range
of applications while additionally being optimized for a particular subset [44, 99,
127]. Such a composite system is commonly referred to as a system-on-chip (SoC).
One recent, notable example of an SoC is the Apple M1 Ultra chip, which con-
sists of 114 billion transistors primarily allocated to a 20-core CPU, 64-core GPU,
32-core “Neural Engine,” and memory [10]. In terms of number of transistors, this
chip represents roughly a 50 million times increase from the Intel 4004 chip released
in 1971—the first commercially produced microprocessor—which consisted of
2,300 transistors [53].

2.2 Domain‑specific architectures

Many application domains can benefit from the use of specialized computer archi-
tectures [44, 61]. In general, a DSA can be leveraged when either (1) large amounts
of algorithmic parallelism can be exploited or (2) some low-power, low-area, or spe-
cialized implementation is desired. However, practically speaking, additional factors
must often be considered, such as those involving nonrecurring engineering (NRE)
time, NRE cost, unit cost, sale volume, and sale price [44, 112, 119].

Naturally, there are different mechanisms for designing a DSA, and each comes
with its own set of trade-offs. Generally speaking, an application-specific integrated
circuit (ASIC) provides the most flexibility in achieving some desired performance
and power characteristics, as well as low unit costs, but this route usually requires
years of NRE time and millions of dollars in NRE costs [44]. Unfortunately, accord-
ing to Rock’s Law [31, 96], NRE costs often increase significantly with newer
device technologies, which continually makes ASIC engineering more of a techni-
cal and economic challenge.2 Thus, ASICs are usually most applicable for applica-
tions in which large NRE times/costs are tolerable and high sale volumes/prices are
expected, so that NRE cost may be offset by a large amount of low-cost, high-profit
sales.

Besides the fabrication of an ASIC, another alternative for designing a DSA is
to utilize a reconfigurable computing (RC) system [25, 36, 44, 118]. In essence, RC
systems are programmable computing systems in which specialized digital circuitry
can be synthesized from different levels of abstraction, without recourse to inte-
grated circuit development.3 When compared to an ASIC, RC systems often gain
appeal by trading off higher unit costs for lower NRE costs while also retaining sig-
nificant performance/power benefits [44, 62]. In general, RC systems are useful for
prototyping designs before ASIC development or for developing standalone solu-
tions in which either (1) NRE cost must be low or (2) high unit cost can be amor-
tized by high sale volume/price or the ability to reconfigure the device over time.
Additionally, with the ability to design high-performance, low-power solutions, and
the ability to support different hardware designs over multiple reconfigurations, RC

2 However, the manufacturing of older technologies generally becomes cheaper over time [44].
3 An RC system is itself an ASIC, yet an ASIC designed to expose some aspect(s) of reconfigurability.

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 6 of 48

platforms are used for various research [84, 90, 97, 114, 117, 123]. The most popu-
lar type of RC system is a field-programmable gate array (FPGA), which we detail
in the next subsection.

2.3 Field‑programmable gate arrays

Unfortunately, the name field-programmable gate array fails to capture the main
mechanism by which FPGAs implement designs—there, in fact, does not exist any
array of (logic) gates [43]. Primarily, there exist many small memories, known as
lookup tables (LUTs), which can implement the truth table(s) corresponding to some
desired circuitry. For a simple example of such an implementation, see Fig 1. By
way of LUTs, FPGAs support combinational logic. To additionally support sequen-
tial logic, FPGAs also increasingly leverage flip-flop memory components [43].
Ultimately, combinations of LUT and flip-flop components can allow for highly
flexible circuit configurations, but implementing an entire system only with such
components may not be feasible, depending on design complexity. To address this
fact, modern FPGA systems also contain more coarse-grained components such
as integer and floating-point multiply-adders,4 high-bandwidth memories, general-
purpose CPU cores, and sometimes other specialized computing cores (e.g., “AI

Fig. 1 An example LUT-based implementation. A LUT-based implementation of a full adder, with
carry-in and carry-out. Importantly, the depicted LUT memory could implement not only this circuit, but
all 3-input, 2-output digital circuits. Also, note that the schematic in the bottom-right is just for illustra-
tion; with a LUT-based implementation, no logic gates are used. For a more thorough example, see [43,
Example 5.5]

4 These multiply-adders are often referred to as digital signal processing (DSP) blocks/engines, or just
DSPs for simplicity. For floating-point, newer devices can efficiently implement single/half precision and
“bfloat16” [6, 24, 37, 45, 50], although double precision is still relatively complex.

Genetic Programming and Evolvable Machines (2025) 26:8 Page 7 of 48 8

engines” [4]), so that common computing tasks can more readily be implemented [4,
45, 52, 84, 112, 117]. In this respect, modern FPGAs are, themselves, SoC devices.
Overall, by integrating many thousands (or millions) of components via a reconfig-
urable interconnect, FPGA devices can implement massively parallel designs, many
of which often require much less power to operate when compared to CPU/GPU
systems [44, 97].

Although FPGA devices can provide significant benefits for many applications,
various challenges still exist, which we can classify into three major categories:

1. Productivity. When compared to standard software development, it is generally
regarded that FPGAs have low design productivity. Overall, there are numerous
reasons for this, but the primary issue is that designing meaningful circuits gen-
erally demands considerable digital-design expertise, as well as knowledge of
low-level device details [112]. To reduce required effort, many developments have
taken place throughout the past few decades, including the creation of numerous
specialized programming languages [55], the extension of pre-existing high-level
programming languages (e.g., C++, Python, etc.) [66, 91], and the simplifica-
tion of design tools [106]. Overall, significant improvements have been made,
especially in regard to high-level synthesis (HLS) [65, 82, 93], but classical tech-
niques are still often necessary in order to implement a circuit with the desired
performance/energy characteristics.5 In addition to the above, another important
limitation regarding productivity is that the process of synthesizing a circuit into
hardware, otherwise known as compilation, can take hours or even days [112].
Although functionality can be verified with software simulations, a common
challenge is that design bugs often only appear once the relevant specification is
interpreted into hardware [75]. Linting tools exist to help reduce the prevalence of
this issue, but they do not catch everything. Therefore, with such lengthy compila-
tion times, debugging can be an extremely inefficient and frustrating process [75].
Ultimately, the main cause for long compilation times is that the placement and
routing (PR) of a circuit is an NP-hard problem [39, 128]. Unfortunately, PR
often becomes increasingly difficult as FPGA architectures get larger and more
complex. To alleviate the challenges of PR, numerous techniques have been con-
sidered, with three primary solutions being (1) heuristic or AI methods [16, 39,
128], (2) partial reconfiguration [78, 121], and (3) overlay technologies [26, 108,
113, 125]. In brief, partial reconfiguration is an ability provided by some FPGA
architectures through which a subset of the FPGA can be programmed instead
of the whole chip, so that the workload for PR is reduced. Separately, an overlay
is a specialized circuit implemented on the FPGA device that exposes simpler,
higher-level aspects of reconfigurability. Essentially, with an appropriate overlay,
compilation can be near-instantaneous for the class of designs supported by the
overlay [26, 108, 113, 125]. In addition, unlike standard FPGA compilations,
overlays can allow for high-level designs to be specified by portable machine
code. Thus, when moving to another FPGA technology, the overlay itself may

5 For some useful introductions to digital design, see [43, 115].

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 8 of 48

need to be recompiled, but machine codes relevant to the overlay can be reused.
Generally speaking, design iterations may necessitate the compilation of a new
overlay, but several techniques have been designed to mitigate this challenge,
e.g., the identification of a “supernet” in order to support the superset of some
netlists [26], incremental compilation [125], and the use of device libraries in
order to retain various compilation information. Similar to overlays, another strat-
egy to combat large compilation times has been to embed within a FPGA system
higher-level computing cores (e.g., “AI engines” [4]), in order to enable a more
direct mapping of high-level software. Although such cores can sometimes allow
for significant performance and energy benefits when compared to CPU/GPU
devices [4], the capabilities of such cores may be too limited for certain applica-
tions.

2. Amenability. In general, not all algorithms are directly amenable to FPGA
devices [112]. One key reason for this is that various high-level constructs do
not have standard mappings to FPGAs, often because such mappings would not
be widely useful and/or intuitive [112]. For instance, pointers and recursions do
not immediately make sense for most LUT-based circuits (Sect. 2.3), and even
though support may be possible through additional hardware complexity, alterna-
tive constructs are likely more suitable if performance/energy characteristics are
important. Separately, even if an algorithm can be directly mapped, it is not guar-
anteed that an inferred circuit will effectively utilize low-level device resources,
and poor mappings often lead to lower computational efficiency. Fortunately,
such issues have become less pronounced over time with heterogeneous comput-
ing platforms and newer FPGA technologies that support additional and more
versatile components [4, 52], but the mapping of certain functionality can still
be challenging, and algorithmic tweaks are often necessary. In addition to these
challenges, another amenability issue is that the complex interconnect within
FPGA devices usually necessitates a clock frequency that is significantly lower
than modern CPU/GPU devices [112]. For instance, even with high-end technolo-
gies, clock frequencies for programmable logic must almost always be set to less
than 1 GHz, and generally much lower than that, often being at least a factor of
five less than similarly recent CPU/GPU technologies [84, 90, 97, 112, 114, 117].
Thus, when the goal of using an FPGA is to achieve higher performance than
CPU/GPU technologies, a massive amount of parallelism is often needed, which
is frequently achieved through pipelining and/or pipeline duplication. However,
when the goal of using an FPGA is to leverage enhanced energy efficiency, the
lower clock frequencies can often be a plus.

3. Cost. Due in part to the aforementioned challenges regarding amenability, there
has yet to be a “killer app” for FPGA devices [112].6 Whereas the develop-
ment of GPUs was clearly motivated by graphics applications and, now, general-
purpose scientific computing [87], FPGAs evolved from a considerably smaller
market targeting the development of “glue logic” and the prototyping of ASIC

6 And if there is a killer app, an ASIC can likely be designed to extract additional benefits [54]. Regard-
less, there are various notable applications for FPGAs, e.g., SmartNIC designs for data centers [90].

Genetic Programming and Evolvable Machines (2025) 26:8 Page 9 of 48 8

devices [25, 36, 44, 118]. In general, the larger demand for GPUs has continually
led to a significant discrepancy in subsidies for research/development, supply, and
device costs. Until recently, it was not uncommon for the latest GPUs to cost a few
hundred dollars while the latest FPGAs were at least $10,000 [112]. Nowadays,
the price gap has narrowed or inverted, with some high-end GPU devices costing
around $30,000 [71], but FPGA devices are still typically pricey or unavailable
due to low supply. However, some free or cheap cloud-based platforms with
FPGAs now exist; for example, see [5, 7].

Despite these notable challenges, the performance and energy benefits of recon-
figurable hardware are frequently worth the effort [44, 84, 90, 97, 112, 114, 117].
Importantly, following from this section, it seems that genetic programming (GP)
could be a prime candidate for FPGA devices, since the algorithms of GP are often
embarrassingly parallel and often exhibit both data and function parallelism. In the
remainder of this paper, we explore this possibility further.

3 Related work

One general tendency for improving GP has been to increase the computational effi-
ciency of training procedures [12, 14, 19, 22, 23, 89, 94]. To improve training effi-
ciency, focus is often placed on the program evaluation phase, since this phase gen-
erally involves evaluating hundreds or thousands of computer programs on hundreds
or thousands of fitness cases (i.e., data points), for each of hundreds or thousands of
generations [12, 14, 19, 22, 23, 89, 94]. Notably, the evolutionary phases of GP also
typically operate on the same number of programs across the same number of gen-
erations, but these procedures are often not affected by the number of fitness cases,7
which generally leads to a significant workload imbalance between evaluation and
evolution. Even with efficient forms of evaluation, it has been shown that such pro-
cedures can often account for over 90% of the total runtime taken for a GP run [19].

In the remainder of this section, we review a few recent GP systems that have
pushed the boundaries of computational efficiency. We continue from the review
provided by Chitty in [23], including his novel GPU contributions presented in the
same work, as well as a few systems developed before and after this study. Primar-
ily, we focus on tree-based GP systems (Sect. 3.1), since these are the most com-
mon [86, 89, 122], although we also mention a few notable systems involving other
program representations (Sect. 3.2). In addition, we only focus on notions of perfor-
mance rather than energy, since most studies have not considered the latter.

Lastly, we note that this current paper provides an extension to our work in [27],
where each of Sects. 2, 3, 4, 6, 7, and 8 include a significant amount of new content.
More specifically, Sects. 2 and 3 are new and provide extensive background regard-
ing how and why the acceleration of tree-based GP has been a challenging pursuit,
as well as general motivation for the exploration of FPGA-based GP systems. Then,

7 Of course, there exist exceptions, e.g., lexicase selection [63].

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 10 of 48

in Sect. 4, additional information about our preliminary evaluation architecture is
detailed. Following this, in Sects. 5 and 6, additional experiments and results are
documented. Lastly, in Sects. 7 and 8, expanded discussions of the relevant chal-
lenges, future work, and conclusions are presented.

3.1 Tree‑based GP systems

We organize the systems listed in this section based on the relevant implementation
technology, where we consider GPUs, CPUs, and FPGAs. For a short summary of
the relevant GP systems, see Table 1.

3.1.1 GPU solutions

In [23], Chitty extends to a GPU system the ideas he presented in [22] involving
a multi-core CPU system. Most importantly, Chitty reaffirms the idea that appro-
priately leveraging cache memory within CPU/GPU systems can greatly improve
the evaluation performance of many GP systems. In particular, Chitty notes that
when evaluating programs on multiple fitness cases—a common occurrence—typi-
cal cache memory layouts can often be effectively leveraged by performing node
operations on batches of fitness cases. In this manner, memory locality is exploited
more than with the traditional strategy that evaluates a program entirely before
moving on to a following fitness case, since the proposed strategy can immedi-
ately reuse instructions and immediately use contiguous data. To effectively exploit
cache memory, Chitty uses a two-dimensional stack representation as well as spe-
cialized GP operators, and extra care is taken to ensure that this format maps well
to the chosen NVIDIA Kepler GK104 GPU architecture [23]. Chitty distinguishes

Table 1 Chronological listing of the tree-based GP systems discussed in Sect. 3.1

For a distinction between GPops/s, effective GPops/s, and NPS, refer to the text. Also, note that perfor-
mance numbers are given in billions

Year Author(s) Hardware Performance (in billions) Reference

1998 Koza et al. FPGA N/A [60]
1999 Sidhu et al. FPGA N/A [104]
2012 Augusto et al. CPU/GPU 11.85–13.02 (GPops/s) [11]
2017 Chitty GPU 56–1,411 (GPops/s) [23]
2017 Staats et al. CPU/GPU N/A [111]
2018 Funie et al. CPU+FPGA N/A [35]
2019 Langdon 2 CPUs 139 (GPops/s) [67]
2020 Burlacu et al. CPU 94 (NPS) [19]
2021 Sathia et al. CPU/GPU N/A [101]
2022 Langdon et al. 2 CPUs 1,103 (effective GPops/s) [70]
2022 Baeta et al. GPU 0.264 (GPops/s) [12]
2022 Zhang et al. CPU/GPU N/A [131]
2023 Crary et al. FPGA Up to 198.5 (NPS) Current paper

Genetic Programming and Evolvable Machines (2025) 26:8 Page 11 of 48 8

that even though GPU devices exhibit more spatial parallelism than CPU devices,
there is often less high-performance cache memory per computing core within
GPU devices, which makes it challenging to exploit such additional cores for GP. In
order to reduce pressure on the limited GPU caches and better support a two-dimen-
sional stack, Chitty also explores a linear representation through which a smaller
stack depth and fewer stack operations can be used, where a compilation process is
included to convert traditional postfix expressions into the prescribed linear nota-
tion. Lastly, to further reduce pressure on cache memory, local device registers are
employed to implement a portion of stack memory.

Overall, when compared to the GPU-based implementation of GP from Robil-
liard et al. [94], which used a one-dimensional stack for evaluation, Chitty’s opti-
mized GPU implementation achieved a 1.88× average speedup in the context of four
problem instances, which included one regression problem, two classification prob-
lems, and one Boolean logic problem [23]. In terms of the common performance
measure known as genetic programming operations per second (GPops/s) [69],
which is defined as the total number of program node evaluations divided by the
total runtime of the GP procedure (including time taken for evolution), Chitty’s sys-
tem was notably able to attain a peak rate of 55.7 billion GPops/s for a classification
problem as well as 1.411 trillion GPops/s for the chosen Boolean logic problem,8
which at the time of publication in 2016 were seemingly the highest performance
results ever reported [23].

In between the aforementioned GPU studies by Robilliard and Chitty [23, 94],
Augusto et al. explored the use of the portable OpenCL platform for accelerating GP
with both CPU and GPU devices [11]. Notably, a peak GPops/s value of 13.08 bil-
lion was achieved with a Nvidia GTX-285 GPU across a set of regression and clas-
sification datasets, which constituted a 126× speedup when compared to a sequen-
tial implementation using an AMD Phenom II X6 1090T CPU. Within this study,
several forms of parallelization were explored for GPU program evaluation, and the
one that performed best was similar to the best-performing strategies given by the
studies of Robilliard and Chitty—specifically, compute multiple programs across
multiple GPU “compute units,” and compute multiple fitness cases across multiple
threads within each compute unit [11, 23, 94]. Due to the fact that the results of
Chitty were significantly better than those by Augusto et al. [11, 23], it seems that
the simpler implementations offered by the OpenCL framework—which have less
influence on the resulting mappings from software to hardware—may be causing a
significant performance reduction, although other factors are likely also at play, e.g.,
differences in GPU technology, the parameters of the GP experiments, etc.

Following Chitty’s work in [23], Staats et al. took a different approach for exploit-
ing general-purpose GPU/CPU execution by using Python and the open-source Ten-
sorFlow library developed by Google [1]. Their system is known as KarooGP [111].
In general, TensorFlow provides generic mechanisms for optimizing/paralleliz-
ing computation specified by arbitrary data-flow graphs (DFGs), which is directly

8 Note that for Boolean logic problems, a form of bit-level parallelism can also be exploited [89], which
in this case allowed for an additional 32× speedup when using 32-bit words with the relevant GPU.

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 12 of 48

relevant to tree-based GP since tree-based expressions are a form of DFGs. It is
from these capabilities that KarooGP was able to attain notable results for both an
Apple MacBook Pro with 4 Intel i7 CPU cores and an NVidia Tesla P100-SXM2
GPU [111]. Specifically, in the context of one regression problem and three clas-
sification problems, two of which were large real-world datasets, it was shown that
KarooGP was able to significantly outperform a baseline CPU software implementa-
tion, with peak speedup values of 877.2× and 851.2× for the CPU and GPU systems,
respectively. However, no measurements of GPops/s were provided.

Although implemented with TensorFlow, Baeta et al. note that KarooGP does
not leverage some useful updates that have since been made to the TensorFlow
library [12]. Most importantly, in [111], KarooGP only leverages the original execu-
tion model of TensorFlow. In the past, TensorFlow evaluated DFGs only after first
converting them into directed acyclic graphs (DAGs), but newer versions of Tensor-
Flow also allow for the immediate execution of DFGs, which is known as “Eager”
mode [3]. In addition, the mechanisms for constructing DAGs have become more
efficient with the latest versions of TensorFlow [3]. Notably, even though Tensor-
Flow’s DAG conversion process allows for redundant sub-expressions to be cached
and represented only once—which can significantly reduce the amount of computa-
tion performed—this process can infer significant overhead [12]. Such overhead can
be amortized when evaluating a DAG on enough data points, but this overhead can
still be pronounced in the context of GP, especially since program graphs are con-
tinually evolving [12].

To improve upon the TensorFlow implementation provided by KarooGP, Baeta
et al. released their own tool known as TensorGP [12], which by default uses the
Eager execution model for TensorFlow. Although geared toward evolutionary art
contexts, TensorGP can be applied to many GP applications [12]. In the context
of the challenging Pagie-1 symbolic regression problem, with a number of fitness
cases equal to 16,384 and program depths varying from 4 to 26, average GPops/s
values of 264.4 million and 255.4 million were achieved for a GTX TITAN X (12
GB) GPU and Intel Core i7-5930K (@3.7 GHz) CPU, respectively [12, Table 4].
When considering individual program depths, peak GPops/s values of around 300
million were achieved on average for both systems, although the CPU notably per-
formed best for smaller programs and smaller fitness cases whereas the GPU per-
formed similarly for both the smaller and larger extremes. When instead fixing the
maximum program depth to be 12 and varying the number of fitness cases from
4,096 to 4,194,304, peak speedup values of 597.7× and 105.2× were provided for
the GPU and CPU, respectively, when compared to a baseline software implementa-
tion [12, Table 6]. However, for this alternative experiment, GPops/s values were
not provided. Finally, a separate experiment was performed in order to showcase
how CUDA-optimized and AVX-optimized operators could be generated with Ten-
sorFlow in order to achieve further speedups. For their custom warp operator [12],
peak GPops/s values of around 8.5 billion and 1.5 billion were achieved for the GPU
and CPU systems, respectively.

Following from the above, we establish that the abstractions provided by Tensor-
Flow might significantly limit the performance of TensorGP, given that Chitty was
able to report 55.7 billion GPops/s for a regression problem with a CUDA-optimized

Genetic Programming and Evolvable Machines (2025) 26:8 Page 13 of 48 8

GPU implementation whereas Baeta et al. report around 300 million GPops/s for
a separate regression problem with the standard implementation of TensorGP [12,
23]. This observation seems corroborated by two additional works in which CUDA-
optimized systems are introduced and compared against TensorGP using the Pagie-1
symbolic regression problem [101, 131]. In [101], a stack-based GP system known
as cuml is introduced,9 and speedups of up to 48.9× are achieved when compared to
TensorGP, using an Nvidia DGX-A100 GPU [101, Table 4]. Separately, in [131], an
alternative CUDA-based system achieves speedups upwards of 68.6× when using
an Nvidia RTX 3050 [131, Table 5]. For both studies, no measurements of GPops/s
were reported.

Overall, we establish several important points that follow from the aforemen-
tioned GPU studies [11, 12, 23, 94, 111, 131]. Importantly, GP is often a mem-
ory-intensive application, and it is challenging to fully leverage the limited memory
caches within GPU systems [23]. In terms of performance, executing tree-based
programs directly on the GPU by way of a generic interpreter seems more effec-
tive than performing intermediate compilation [23, 94]. When using such an inter-
preter, subdividing the evaluation of multiple programs across multiple high-level
“compute units” (e.g., streaming multiprocessors [40]) and then subdividing the
evaluation of multiple fitness cases across multiple low-level cores (e.g., CUDA
cores [40]) appears to be the best strategy for parallelism [11, 23, 94]. To further
lower the overhead associated with program interpretation (e.g., conditional logic
used to choose which primitive to execute), low-level L1 memory caches can be
better utilized when using a two-dimensional stack that associates an independent
stack to each fitness case within a batch [23]. However, when allocating a 2D stack
to each thread of execution, we see that only a small amount of memory is available
for each stack (e.g., 64 32-bit values for the GPU in [23] if the number of threads is
equal to the number of CUDA cores), which can significantly limit the benefits of
this approach when compared to CPU devices [22, 23]. Although modern high-end
GPU devices can now contain roughly 4 × as much L1 cache memory [9], 2D stacks
would still be fairly small, implying that similar conclusions can likely be drawn
about GPU-based GP in the present day.10 Ultimately, due to limited strategies for
parallelism as well as limited capacities of local memory (especially once subdi-
viding such memory across all low-level cores/threads), the presence of many addi-
tional cores within GPU devices when compared to CPU devices is not necessarily
useful for GP. Notably, in Sect. 3.1.2, we showcase that recent CPU solutions have
achieved better performance when compared to the aforementioned GPU studies.

3.1.2 CPU solutions

In a similar vein to Chitty’s work in [22, 23], Langdon extended the GPQuick tool
to a two-processor, 12-core, 48-thread Intel Xeon Gold 6126 (2.60 GHz) server [67,

9 We include this stack-based system here since it is almost identical to standard tree-based GP [101].
10 Higher-level memories (e.g., L2/L3 caches) can be considerably larger, but this stack approach heavily
relies on lower-level memory (e.g., L1 caches and registers) to maximize performance.

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 14 of 48

105].11 To extend GPQuick, Langdon makes use of the special AVX-512 instruc-
tions within the chosen server CPU in order to execute 16 fitness cases at once for
each of 48 threads. Notably, the primary goal of this work was not to speed up the
GP procedure, but rather to evolve gigantic programs containing around 400 mil-
lion nodes. As such, the extensions made to GPQuick were specialized to a particu-
lar experiment involving the Sextic polynomial regression problem, with 48 fitness
cases and a population size of 48, in order to map well to the relevant CPU system.
Nevertheless, not only were such humongous programs able to be evolved and eval-
uated, 139 billion GPops/s were achieved in the process. At the time of publication
in 2019, this seemingly constituted the best single-computer (albeit, with two pro-
cessors) GPops/s results ever reported, with exception to a few results for Boolean
logic problems, which naturally exhibit more parallelism (Sect. 3.1.1, footnote 8).
However, we additionally note that these results were for simple arithmetic prim-
itives, and that more complex primitives (e.g., sin, cos, etc.) would likely reduce
throughput considerably.

Following the work given in [67], Langdon separately introduced a novel tactic
for evaluating very large programs that have no side effects [89], which allowed for
a significant boost in evaluation performance [68]. In particular, due to the fact that
the evolution of very large programs generally causes comparatively small semantic
(i.e., behavioral) changes in programs [68, 89], Langdon notes that evaluation can
start at modified subtrees and traverse outward toward the root node of the over-
all tree, stopping whenever it is determined that the new program is semantically
equivalent to its predecessor. With this so-called “incremental evaluation,” Langdon
shows that the evaluation of individuals can take much less time than when evaluat-
ing every node. In this context, if the performance measure of GPops/s is allowed to
be defined based on the total number of program nodes in the population, rather than
the total number of nodes evaluated, some significant speedups occur over previ-
ously listed results. To distinguish this atypical definition of GPops/s, we submit that
such a measure should be called effective GPops/s. Overall, when applying incre-
mental evaluation to the Sextic polynomial problem with an unlisted 16-core Intel
CPU, 571 billion effective GPops/s were achieved [68]. Finally, Langdon and Ban-
zhaf extended the ideas presented in [67] to include those presented in [68], which,
when using a 3.00GHz Intel Xeon Gold 6136 server, allowed for a significant 1.103
trillion effective GPops/s on the Sextic polynomial problem [70]. However, when
distinguishing between effective GPops/s and the original definition of GPops/s, we
submit that the value of 139 billion listed in [67] is still the largest GPops/s value
reported for non-Boolean domains.

Besides the aforementioned studies, another notable work involves the symbolic
regression engine known as Operon [19]. In their original study of Operon, Burlacu
et al. provide further evidence for leveraging flattened tree representations as well
as the most up-to-date SIMD instructions for modern CPU architectures. But per-
haps most importantly, in addition to the typical tree-based GP procedures, Operon

11 GPQuick uses a flattened tree representation for programs as well as an 8-bit machine code for repre-
senting program nodes, both of which contribute to computational efficiency [105].

Genetic Programming and Evolvable Machines (2025) 26:8 Page 15 of 48 8

incorporates nonlinear least squares (NLS) optimization in order to speed up the dis-
covery of appropriate constant terms while evolving expressions [58]. Although the
computation associated with NLS can significantly slow down the tool [19, 58], a
peak GPops/s value of 2.8 billion is achieved in the context of nine symbolic regres-
sion problems for an AMD Ryzen 3900X, 12 core, 24 thread (3.8 GHz) CPU sys-
tem. To showcase the discrepancy in GPops/s values due to the presence of NLS
optimization, Burlacu et al. also perform an experiment for measuring the raw eval-
uation speed of their system excluding evolution and NLS optimization [19]. In par-
ticular, when using double-precision arithmetic to evaluate 1,000 randomly gener-
ated programs with an average size of 50 nodes on 1,000 random fitness cases, 94.3
billion GPops/s is achieved when using all 24 CPU threads. In addition, Burlacu
et al. later make the case that using single-precision arithmetic instead of double-
precision arithmetic can allow for roughly a 2 × speedup in terms of performance,
from which we can extrapolate a potential peak performance value of around 188.6
billion GPops/s. However, we submit here that since no evolution was performed
for the aforementioned experiment, the given performance measure is not exactly
GPops/s, and we choose to distinguish this type of measure with the term nodes
per second (NPS), to align with our experiments described in Sect. 5. Nevertheless,
Burlacu et al. also showcase how program evaluation for their system can, on aver-
age, take roughly 87% of total runtime when using only 50 fitness cases, and roughly
99% of total runtime when using 1,000 fitness cases. Therefore, we estimate that
GPops/s values for full GP runs of Operon including only arithmetic primitives and
excluding NLS optimization could largely be similar to the NPS estimates we just
listed, which could potentially constitute the highest GPops/s results ever reported.

From the above, we emphasize that if taken at face value, the peak GPops/s value
of 2.8 billion for Operon including NLS optimization is considerably lower than the
GPops/s values presented by Langdon in [67]. However, it is important to note that
this performance measure is not indicative of the resulting quality of program solu-
tions. To showcase this concept, we consider a recent large-scale symbolic regres-
sion benchmarking study involving Operon, 13 other symbolic regression tools,
and 7 traditional machine learning techniques, including neural networks [64]. Ulti-
mately, in the context of a diverse set of 252 regression problems, it was shown that
Operon was a clear winner above all other tools in terms of average solution quality,
yet it was not nearly the fastest. (The typical runtime performance of Operon was
still relatively fast—close to the median across all tools [64, Fig. 1].) Although the
system presented by Langdon [67] was not included in this study, it seems plausi-
ble that the NLS optimization could allow Operon to remain superior in terms of
solution quality, as further showcased by a recent paper from Burlacu regarding the
GECCO 2022 symbolic regression competition [18].

Overall, we emphasize that remarkable performance results were given by the
aforementioned CPU studies. Nevertheless, we make note of some potential limi-
tations. First, in regard to Langdon’s work involving the GPQuick tool [67], we
observe that the results given are only in the context of extremely large programs
consisting of around 400 million nodes, a small population size of 48, and a single
specialized regression problem with 48 fitness cases. Therefore, it is not clear how
the extended GPQuick tool would perform in the context of smaller programs, larger

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 16 of 48

population sizes, and a wider range of applications. Separately, in regard to Land-
gon’s work on “incremental evaluation” [68], we establish that it is not clear how
the given results would apply to contexts employing significantly smaller programs,
although we estimate that the results would be less pronounced, since smaller sizes
can often prevent the code bloat that was expected to allow for near semantic equiv-
alence [68]. Lastly, in regard to the original Operon study by Burlacu et al. [19],
although the listed performance results may not generalize to all GP configurations,
most of the chosen configurations are common [19, Table 4], and larger studies were
additionally performed within [18, 64].

3.1.3 FPGA solutions

As already showcased, there exist numerous works that discuss mechanisms for
accelerating tree-based GP within the context of CPU and GPU devices. However,
for FPGA devices, there are comparatively few works [34, 35, 60, 104].

In the early years of GP (circa 1998), Koza et al. began to explore the potential
of FPGA devices [60], although the available FPGA technology greatly limited the
feasibility of certain GP applications—for example, applications requiring support
for floating-point arithmetic were generally impractical [45]. As a proof-of-concept,
Koza et al. employed a Xilinx XC6216 FPGA to evolve sorting networks [60].

Soon after the aforementioned work from Koza et al., in the year 1999, Sidhu
et al. utilized a novel multi-context FPGA that supported a set of possible circuit
configurations [104]. With such a device, various “tree templates” were evolved
directly on the FPGA, in a manner that would now be similar to partial reconfigura-
tion (Sect. 2.3). For practical reasons, the tree templates implemented on the chosen
FPGA had to represent complete binary trees, which limited the possible program
shapes and sizes. Notably, both a Boolean and regression problem were evolved, but
the chosen Xilinx XC6264 FPGA technology necessitated a maximum possible pro-
gram depth of 7, along with other significant constraints.

After the aforementioned publication from Sidhu et al. [104], it appears that work
on FPGA systems for tree-based GP stopped until the mid-2010s, when Funie et al.
created various FPGA-based GP systems for performing financial trading strate-
gies [34, 35]. Here, we focus on the implementation given within [35], since it is the
only one that was purely tree-based. In this work, a fully-pipelined, mixed-precision
design was created for accelerating program evaluation. Notably, when compared to a
baseline multi-threaded high-frequency trading system executing on two six-core Intel
Xeon E5-2640 CPUs, a Maxeler MPCX node containing the aforementioned CPUs
and a Stratix V 5SGSMD8N1F45C2 FPGA was able to achieve speedups of up to
22× [35]. We note that Funie et al. restricted programs to be complete binary trees
with depths up to 4, although this was said to be sufficient for their chosen application.

It seems that until our recent work [27], which this current paper is extending,
there were no other FPGA-based systems for standard tree-based GP. Importantly,
we submit that with modern FPGA devices now natively supporting floating-point
multiply-adders, along with numerous other resources and the potential for higher
clock frequencies [117], improvements of multiple orders of magnitude may be
accessible with FPGAs (Sects. 6 and 7). Compared to the architectures given in [35,

Genetic Programming and Evolvable Machines (2025) 26:8 Page 17 of 48 8

60, 104], ours has several important contributions. Most significantly, our system
dynamically compiles programs from a compressed prefix notation into configuration
data for a reconfigurable pipeline, whereas previous work used a simpler, less flexible
mechanism by which larger, fixed-size programs must be compiled. Ultimately, our
compressed prefix notation allows for significantly reduced communication times as
well as significantly reduced size requirements for on-chip RAM. In addition, with
the ability to dynamically compile arbitrary expressions directly on the target device,
future extensions of our design can also accelerate evolutionary stages directly on
chip. Besides dynamic compilation, we explore the use of a higher-end FPGA device,
multiple primitive sets, a range of fitness case amounts, different tree sizes, and 32-bit
floating point, all while comparing to a range of modern GP tools.

3.2 Other GP systems

Regarding program representations other than the traditional tree, comparatively few
works have focused on the performance of program evaluation. In brief, besides CPU
studies, there have been GPU and FPGA solutions for Linear GP [21, 32, 46, 77,
126], Cartesian GP [30, 42, 80, 100, 102], and Geometric Semantic GP [38, 76, 120].
In addition, GPU solutions have been created for grammar-guided GP [20] and Tan-
gled Program Graphs [132]. For stack-based GP, at least one GPU study has been
conducted [101], although this was for simple stack-based GP [88], and not for a
more complex system like PushGP [109]. Finally, we note that the application area of
evolvable hardware [129, 130] has leveraged FPGA devices, although this has been
with the primary intention of evolving circuits, rather than accelerating the GP proce-
dure via a single circuit, which is the purpose of our architecture presented in Sect. 4.

4 Accelerator architecture

In this section, we detail our accelerator architecture for the evaluation phase of tree-
based GP. We focus on evaluation since it is the primary performance bottleneck
(Sect. 3). In future work, we plan to investigate acceleration of the entire GP process.

Overall, as depicted in Fig. 2, our accelerator leverages a specialized full tree
of generic computing resources in order to compute any program relevant to a GP
primitive set, as long as the depth of the program is not larger than the depth of
the tree, the latter of which is defined by the user. By then pipelining the generic
resources, the accelerator can generate an output for an entire program expres-
sion every clock cycle after some initial latency, since a new input can continually
be pushed in every cycle [43, 44].12 To further increase throughput, the accel-
erator also dynamically compiles programs for the tree during evaluation, so that

12 The latency of a “function unit” ultimately depends on the primitive set, but for our experiments it
was anywhere from tens to hundreds of cycles (Sect. 5). Importantly, latency is amortized when oper-
ating on enough data/programs, and what matters more is throughput, as we showcase in our results
(Sect. 6).

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 18 of 48

the tree may switch between programs within a single clock cycle. Importantly,
such forms of parallelism have not been achieved via general-purpose CPU/GPU
architectures.

The accelerator architecture currently consists of four major components, as
shown in Fig. 3. The program memory (Sect. 4.1) stores candidate program solu-
tions, where each candidate is encoded in a language defined by the specification of

Fig. 3 High-level overview of the accelerator architecture. The accelerator stores programs (e.g.,
sin(v0) + 1.0) in a program memory, which are dynamically compiled by the b program compiler into
configuration data for the c program evaluator. The program evaluator uses a reconfigurable function
tree pipeline to execute a compiled expression for a set of fitness cases, resulting in a set of outputs to
which the d fitness evaluator compares a set of desired outputs

Fig. 2 A portrayal of how our GP accelerator can parallelize the evaluation of different data points and
different solutions every clock cycle via a reconfigurable tree pipeline. Each node of the pipeline can
perform any function within the GP primitive set, as well as a bypass, which allows for arbitrary program
shapes

Genetic Programming and Evolvable Machines (2025) 26:8 Page 19 of 48 8

a particular primitive set. The program compiler (Sect. 4.2) reads program expres-
sions from program memory and dynamically compiles them into configuration
information for the program evaluator, which we implement as a reconfigurable
function tree pipeline (Sect. 4.3). This function tree pipeline executes a compiled
expression for all relevant fitness cases, resulting in a new output for the entire pro-
gram every clock cycle after some initial latency, as shown in Fig 2. Finally, the
fitness evaluator (Fig. 3d) compares the output of a current program to the relevant
target data by way of some metric, which is root-mean-square error for this work.

4.1 Program memory

The architecture currently implements program memory with on-chip RAM
resources and memory-mapped I/O. For a primitive set P = F ∪ V ∪ C , with func-
tion set F, variable terminal set V, and a set of 32-bit constant terminals C (e.g.,
all single-precision floating-point values), we define a 64-bit machine code for
program nodes:

1. The most-significant 16 bits of the machine code represent an opcode which
specifies either the type of primitive or the null word, the latter of which is used
to indicate the end of a program expression within memory. The null word is
assigned opcode 0, each function is assigned an opcode in the range [1, |F|], each
constant is assigned opcode |F| + 1 , and each variable is assigned an opcode in
the range [|F| + 1 + 1, |F| + 1 + |V|].

2. The least-significant 32 bits of the machine code specify a constant value, which
is only relevant if the opcode indicates that the node is a constant.

3. The remaining 16 bits specify the depth of a node within the context of a program,
which is relevant to the program compiler (Sect. 4.2).

We encode program expressions via a prefix (i.e., Polish) notation. In essence, such
a representation flattens tree-based programs into a linear structure [89]. For exam-
ple, Fig. 3a shows how our architecture could support the program sin(v0) + 1.0 by
way of a simple primitive set consisting of addition (+), sine (sin), two variable ter-
minals (v0 and v1), and the set of all single-precision floats. Due to the presence of
the null word, any additional program can immediately follow a previous program
within memory. Note that, as with standard prefix notation, children nodes are not
necessarily placed next to one another in contiguous memory.

4.2 Program compiler

We use the term “compile” to refer to the generic process of translating a source
language to a target language. Within our system, the program compiler is special-
ized circuitry that dynamically compiles prefix-based tree expressions—encoded
with the language defined in Sect. 4.1—into low-level configuration data relevant

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 20 of 48

to the program evaluator.13 Compilation executes in parallel to program evaluation,
so that it may be possible to switch between programs within a single clock cycle.
Currently, the program compiler is implemented as a finite-state machine (FSM)
that continually writes configuration information into a configuration buffer. The
configuration data contains three major components (Fig. 3b and c): (1) function
select values that configure individual function units within the program evaluator
(Sect. 4.3), (2) terminal select values that dictate whether a variable or constant ter-
minal is connected to a corresponding tree input, and (3) constant values that spec-
ify constant terminals.

To compile a program, the program compiler conducts a pre-order traversal on
a model of the relevant function tree (Sect. 4.3), so that compilation can execute in
parallel to program evaluation. Ultimately, the objective is to populate three memo-
ries with the three types of configuration information specified in the previous par-
agraph. Each memory allocates enough locations to store information for the full
physical tree, but any arbitrary program shape is supported, and only the relevant
memory locations are configured during compilation. The memory for function
select values is organized in a prefix fashion, i.e., index i corresponds to the func-
tion select value for the function unit whose index is i when listed in prefix nota-
tion (Sect. 4.3). Separately, the memories for terminal select and constant values are
organized such that index i corresponds to the function tree input (i.e., leaf node)
whose index is i when the inputs are listed in a linear fashion, from leftmost to right-
most leaf.

When compiling a program, if the current node under consideration has a depth
smaller than the current node in the physical tree—where the depth of the program
node is specified by the relevant portion of the machine code (Sect. 4.1)—the com-
piler first traverses to the top-leftmost portion of the physical tree that has this speci-
fied depth, where left children that are encountered along the way are configured
to perform the bypass function, so that the relevant node output will be bypassed
through the lower levels of the physical tree. In addition, throughout compilation,
we avoid backtracking through previously visited nodes by utilizing several prede-
fined lookup tables that identify the indices of the next function node and next ter-
minal input within the physical tree given a current function node index [28]. Once
compilation has finished, the three pertinent sets of outputs—function selects, ter-
minal selects, and constant values—are available in the first of two sets of buffers,
where the first set can shift into the second set in order to actively drive the sig-
nals of the program evaluator. If the program evaluator is ready to accept a program
(Sect. 4.3), then the configuration information from the first set of buffers is shifted
into the second set of buffers. Otherwise, the configuration is reserved until the pro-
gram evaluator is ready. For more details, refer to the Python implementation given
in our codebase [28].

Notably, depending on the shapes/sizes of programs being compiled and the
number of fitness cases that are to be streamed into a function tree (Sect. 4.3), the

13 Since we are ultimately translating from one machine code to another, we could also potentially refer
to our compilation as a form of “microcode translation” [44], although we choose not to do so.

Genetic Programming and Evolvable Machines (2025) 26:8 Page 21 of 48 8

cost of compiling a program may be completely amortized such that there is no dead
cycles in between evaluating consecutive programs. Fortunately, for any function
tree structure, there will always be some threshold for the number of fitness cases
such that, for any number of fitness cases above this threshold, compilation will
be completely amortized. Separately, since the program compiler FSM needs rela-
tively few resources (currently, less than 2% of all area for our target device), we can
extend our architecture to support multiple compiler instantiations. With this abil-
ity, multiple programs could be compiled in parallel—perhaps to effectively support
multiple function trees, or perhaps to ensure that the cost of compiling a single tree
can be completely amortized. For the experiments in this paper, we support the com-
pilation of one program at a time, and we incorporate a multiple-buffering approach,
following the above.

4.3 Program evaluator

The program evaluator (Fig. 3c) is a reconfigurable function tree that serves two
purposes: (1) provide configurable resources that enable the program compiler to
implement arbitrary expressions specified by program memory; and (2) provide a
pipeline that enables streaming of fitness case data such that program outputs can
be computed every clock cycle. The main motivation behind this architecture is that,
with tree-based GP, every program expression is a tree. Therefore, if the architecture
provides a physical tree of generic resources such that each resource is capable of
computing all function primitives, then the tree can compute entire programs in par-
allel. However, even more notably, if we additionally design the generic resources
(i.e., function units) to be pipelined, then the architecture can generate an output for
an entire program every clock cycle after some initial latency, as shown in Fig. 2.
Although pipelining the tree precludes the existence of arbitrary control structures,
such structures are usually unnecessary [18, 64], and pipelining enables data-level
and/or function-level parallelism [43, 44]. Lastly, as described in Sect. 4.2, our
architecture includes a compiler in hardware that translates compact prefix-based
expressions into machine codes for the tree while it is evaluating, so that the tree
may switch between programs within a single clock cycle. Importantly, generating
outputs for entire programs every clock cycle and changing programs within a sin-
gle cycle are forms of parallelism that have not been achieved with general-purpose
CPU/GPU architectures.

For the program evaluator, the user must specify the relevant primitive set and
the depth of the underlying function tree, which define (1) the maximum func-
tion arity, (2) the operations supported by each function unit, and (3) the possible
program shapes and sizes. A function tree with depth d can compute arbitrary
programs that adhere to both (1) a maximum depth of d + 1 , where the extra level
accounts for terminal nodes, and (2) the syntax of the relevant primitive set. To
be able to implement any program not represented by a full tree, a special bypass
(or identity) function is used to feed the leftmost input of a function unit to its
output through registers whenever that node within the tree is not to be used by
a program. In regard to function primitives, we currently support any form of

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 22 of 48

computation that can be unrolled and pipelined by the target device. Notably,
with such primitives, we can always achieve a new output every cycle after some
initial latency, and latency will be amortized when operating on enough data/
programs. In the future, we plan to implement some support for variable-latency
functions, so that we may pursue some more complex GP applications, such as
those regarding general program synthesis [59]. For now, to ensure that all levels
of the tree output results at the same time, we give each function primitive the
same latency, utilizing some delay register(s) when required.

In addition to a function tree, the program evaluator also contains variable
memories, which support variable terminals. The variable memories store fit-
ness cases for every feature of the relevant training data. At runtime, an external
entity (e.g., a processor) loads fitness case data into the variable memories using
memory-mapped I/O. (Constants are specified within program machine codes,
as described in Sect. 4.1.) Next, the program evaluator waits until the program
compiler provides configuration information for a program expression. Upon
receiving such data, the program evaluator triggers the fitness case scheduler,
which begins streaming all relevant fitness case data (i.e., all relevant variables/
constants) through the function tree, as dictated by the program compiler. Upon
inputting the last fitness case into the function tree, the fitness case scheduler sig-
nals the program compiler to provide a following program, if any are available.
Since the program compiler operates independently of the program evaluator, it
is possible for the function tree to start evaluating a new program one cycle after
input data for a final fitness case is passed into the function tree.

As of now, each variable memory fans out to every input of the tree to maximize
throughput. Since multiple tree inputs will only ever use the same fitness case of
a particular variable at any given time [89], we simply fan out the same variable
memory to every function tree input. Although it is possible for this strategy to
cause routing bottlenecks when compiling the design, we have been able to sup-
port multiple variables in combination with tree structures having well over a hun-
dred inputs (Sect. 6). For constants, we allocate a 32-bit register for each tree input,
which can be configured by the program compiler whenever appropriate (Sect. 4.2).
For variable memory, we currently target on-chip embedded memory—rather than
larger, off-chip RAM—so that we may maintain the highest possible memory band-
width. Although we already are able to support relatively large amounts of fitness
cases and constants via embedded memory (Sect. 6), we expect to eventually target
newer FPGA systems with on-board high-bandwidth memory [52], so that we may
readily consider applications demanding even larger amounts of data. More com-
mon DDR memory may also be viable, although we save this for future work.

5 Experiments

In this section, we detail our design of experiments, where the overall goal of these
experiments was to compare our architecture (Sect. 4) with the core evaluation
engines given by three tree-based GP software tools: DEAP [29], TensorGP [12],
and Operon [19]. The computing technologies we use are listed in Sect. 1.

Genetic Programming and Evolvable Machines (2025) 26:8 Page 23 of 48 8

Note that we do not compare against other FPGA-based GP systems due to the
fact that no comparable tree-based system is actively maintained and/or open-
source. In addition, even if such a system was available, the relevant code would
likely not be readily portable to our chosen FPGA, in which case considerable effort
would need to made to re-implement the other FPGA solution, which is not the aim
of this study. Rather, our goal is to assess the general viability of FPGA acceleration
for tree-based GP when compared to modern CPU and GPU solutions. Nevertheless,
to provide the reader with some initial comparisons between FPGA-based GP sys-
tems, we detailed several related works within Sect. 3.1.

5.1 Comparison measures

We use three measures to compare each device/tool: (1) nodes per second (NPS),
(2) (average) electric power, and (3) nodes per watt (NPW). The NPS measure is
defined as a total number of GP nodes divided by a total runtime.14 Electric power
is defined as a total amount of electrical energy divided by a total runtime. Finally,
the NPW measure is defined as NPS divided by power. Overall, NPS provides an
estimate of performance (i.e., throughput) in terms of GP nodes, power provides an
estimate of device energy consumption per unit time, and NPW relates performance
to power. Notably, the totals used in the NPS and power calculations can be for
multiple experiments as long as only ratio is computed, similar to how it has been
documented for the floating-point operations per second (FLOPS) performance
measure [107]. More specifically, for a single-number performance/power meas-
ure, we would like an estimate to be (1) proportional to a total amount of work and
(2) inversely proportional to a total amount of runtime [107], since this aligns with
Amdahl’s Law [8], whereas averaging across multiple performance/power ratios can
be arbitrarily outweighed by a single ratio, no matter the total runtime [107]. With
meaningful aggregate performance (e.g., NPS) and power estimates, meaningful
aggregate performance-per-watt (e.g., NPW) estimates can also be computed.

For each tool and for each combination of various primitive sets and numbers
of fitness cases (detailed in the following subsections), we conduct a performance
experiment in which we measure evaluation runtimes for each of 32 program
bins, with each bin consisting of 512 distinct random programs. From runtimes,
we calculate nodes-per-second (NPS) estimates by dividing a relevant total num-
ber of nodes by a corresponding runtime. Due to significant performance differ-
ences between each GP tool, we use a different total number of executions for
certain tools. For Operon and TensorGP, we run the set of experiments 11 times.
For DEAP, which executed the set of bin experiments in about 44 h (due to poor
scaling at larger numbers of fitness cases), we run each experiment just once.
Ultimately, running each DEAP experiment once is justified by the fact that any
fluctuations in runtime due to other system processes are insignificant when com-
pared to the processes used by the experiments, as indicated by the narrow 75th

14 Frequently, the statistic GP operations per second (GPops/s) is used to compare the runtime perfor-
mance of GP tools [23], but we use NPS to emphasize that our tests do not leverage evolution.

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 24 of 48

/25th percentile regions for the runtimes of TensorGP given in Figs. 4, 5 and
6. Lastly, for the FPGA, we also run the set of performance experiments only
once, since the relevant evaluation circuitry has a deterministic runtime, which is
tracked by special clock cycle counters allocated within the device.

Fig. 4 Median sample nodes per second (NPS) vs. program bin number and maximum program size, for
the nicolau_a primitive set. For Operon and TensorGP, NPS values corresponding to the 75th/25th percen-
tiles for runtime are also plotted. Note that the legend from a applies to all sub-figures, and note the use
of a log scale

Genetic Programming and Evolvable Machines (2025) 26:8 Page 25 of 48 8

In addition to the performance experiments, we perform a separate set of power
experiments using the same tools and combinations of parameters. For these experi-
ments, we perform the same numbers of runs as previously prescribed, except we
perform 11 runs for the FPGA, since power draw is not deterministic. Importantly,
we separate power experiments from performance experiments due to the fact that

Fig. 5 Sample median nodes per second (NPS) vs. program bin number and maximum program size, for
the nicolau_b primitive set. For Operon and TensorGP, NPS values corresponding to the 75th/25th percen-
tiles for runtime are also plotted. Note that the legend from a applies to all sub-figures, and note the use
of a log scale

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 26 of 48

CPU-based measurements for power/energy can have a significant effect on the
results of individual runs for the CPU-based Operon, since the runtime/energy of
an individual Operon experiment is often a fraction of the runtime/energy incurred
by an internal measurement, which can cause such measurements to become largely
skewed. These issues are also relevant to DEAP and the CPU version of TensorGP,

Fig. 6 Sample median nodes per second (NPS) vs. program bin number and maximum program size, for
the nicolau_c primitive set. For Operon and TensorGP, NPS values corresponding to the 75th/25th percen-
tiles for runtime are also plotted. Note that the legend from a applies to all sub-figures, and note the use
of a log scale

Genetic Programming and Evolvable Machines (2025) 26:8 Page 27 of 48 8

but they are less pronounced than with Operon, since the runtime of these other
tools is ultimately shown to be much higher. Separately, such measurement issues
are not as relevant to the GPU and FPGA, since the bulk of the computation for
power/energy measurements for these devices is handled by the CPU. However, we
aim to establish as consistent of a solution as possible for all devices, which we
describe in the following.

For the CPU-based tools, we measure power by independently measuring runt-
ime and energy consumption of each program bin experiment, where we reference
special hardware counters for energy, as detailed in our code [28, 73]. In order to
ensure that measuring runtime and energy has a practically-negligible effect on
power results, we choose to run each program bin experiment continually such that
we can bound the runtime and energy of an internal power measurement to be at
most 1% of the total runtime/energy for an experiment, so that any effect on result-
ing power values is also bounded by 1%.15 We do not use any smaller percentage
for an upper-bound due to practical implications on total runtime, as we showcase
below. From a sample size of 1000 CPU power measurements, we establish that 17 s
is a reasonable runtime for each bin experiment in order to have this upper-bound
criterion be met by each tool [28]. However, to also minimize possible power dis-
crepancies at the beginning of an experiment, we ramp up the CPU by running the
relevant experiment for at least one second before beginning a power measurement,
for all tools except DEAP.16 Therefore, each bin experiment is generally to take
at least 18 s (at least 17 s for DEAP), which ultimately means that the total set of
power experiments for each CPU-based tool—across all bins and across all runs—is
often at least 26.4 h.17 Following from the established 1% bound on power measure-
ments, we ultimately find that there is a potential swing of about ± 2.8 Watts for the
CPU-based measurements [28].

For the GPU and FPGA, there do not exist special hardware counters for track-
ing energy consumption, and we instead take instantaneous power measurements
using firmware provided by Nvidia and Intel [28, 49, 85]. To estimate average power
for each bin experiment, we simply average a set of instantaneous power measure-
ments,18 which is reasonable since average power is equivalent to the integral of
instantaneous power over time [48]. To remain consistent with the CPU-based tools
while also remaining practical in terms of runtime, we utilize the same 1-second
ramp-up and 17-second loop previously established, and we aim to most accurately
compute average power by taking as many instantaneous power measurements as

15 For DEAP, in which some bin experiments would take more an hour and the relevant hardware energy
counters would overflow multiple times, we had to create a more involved process, which made it more
difficult to estimate the effect that the measurements had on runtime/energy. Instead, we estimated the
worst-case power difference by running two separate experiments for the least complex bin experiment
(for which measurements should have the largest effect) and ensured that this was within 1% [28].
16 We choose not to perform this ramp-up for DEAP, since many bin experiments can take over an hour,
in which case the total runtime of power experiments for DEAP would be more than 80 h.
17 In reality, the runtime can be significantly longer for TensorGP and DEAP, since running some bin
experiments once or twice can take longer than either 17 s or 1 s.
18 Note that this is not the same thing as averaging average power ratios (Sect. 5.1).

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 28 of 48

possible within the 17-second loop. Ultimately, we find that this means at least 489
and 597 instantaneous power measurements are taken for each FPGA and GPU bin
experiment, respectively [28], where we allow the particular number of measure-
ments to differ between bins and tools, which is reasonable given stochastic effects
and given that we are averaging over all instantaneous power measurements. Over-
all, as with the CPU-based tools, the runtime of all GPU/FPGA power experiments
is at least 26.4 h.

Lastly, following from the aforementioned performance and power experiments,
we estimate nodes-per-watt (NPW) values. Notably, although runtimes are different
between the two sets of experiments—which is appropriate due to the challenges in
measuring power for Operon, as described above—both the performance and power
measurements correspond to the same program bins, which allows us to meaning-
fully consider a division between the relevant NPS and power ratios.

5.2 Primitive sets

Three distinct primitive sets are chosen. These primitive sets are inspired by work
from Nicolau et al. [83], and, as such, are respectively named nicolau_a , nicolau_b ,
and nicolau_c . The first primitive set contains functions with the self-explanatory
names add , sub , and mul , as well as a function by the name of aq , for “analytical
quotient,” defined by aq(x1, x2) = x1∕

√
1 + x

2
2
 , which is meant to behave similarly to

divide, but without the asymptotic conditions at zero [83]. The second primitive set
contains the same functions as the first, but also includes sin and tanh . Lastly, the
third primitive set contains the same functions as the second, but also includes exp ,
log , and sqrt , where log and sqrt were “protected” in the typical GP sense [59, 89].
We choose these specific primitive sets since they are relevant to symbolic regres-
sion [59, 64, 89], our primary target domain. To implement a primitive set, we uti-
lize standard Intel floating-point IP for our chosen FPGA [51]. For functions that are
not readily available, e.g., the aq function described above, we simply chain together
the relevant IP blocks.

For a primitive set containing function set F, |F| − 1 terminal variables and one
ephemeral random constant are employed so that the program generator (Sect. 5.3)
can consistently construct programs in which the proportion of functions/terminals
is approximately 0.5, so that the average runtime of a particular primitive set is not
dictated by having more of one primitive type. Thus, there are 3, 5, and 8 variables
for the defined nicolau_a , nicolau_b , and nicolau_c primitive sets, respectively.

5.3 Program generation

For each primitive set, we construct a set of 32 program bins, each containing
512 random programs with sizes in some fixed range, where the particular range
is dependent on the bin and primitive set, as we describe further below. The
maximum possible program depth/size is chosen to be the largest that the target
FPGA can support while also supporting up to 100,000 fitness cases for each of

Genetic Programming and Evolvable Machines (2025) 26:8 Page 29 of 48 8

the relevant variable terminal memories (Sect. 4.3). We manually determine the
maximum possible function tree depth for each primitive set through multiple
hardware compilations; ultimately, depth values 8, 6, and 6 are respectively cho-
sen for nicolau_a , nicolau_b , and nicolau_c . For a maximum possible function
tree depth d, it is possible to support a program depth of up to d + 1 (Sect. 4.3),
which corresponds to a maximum possible program size of 2d+2 − 1 , since every
primitive set contains functions with arity of at most two. For a maximum size s,
we evenly divide the range of program sizes [1, s] into 32 bins.

To randomly generate program expressions for each set of bins—which are
kept the same for each GP tool—we utilize DEAP [29]. We choose DEAP for
this task because it is simple to extend. DEAP offers, by default, several classic
GP program initialization algorithms: full, grow, and ramped half-and-half [59,
89]. Unfortunately, via the original version of these algorithms, the size of a
generated program is completely random beyond a specified depth constraint,
which makes it too cumbersome to generate 512 distinct random programs for
the bin structures established above. To circumvent this issue, we employ a cus-
tom version of the grow method that allows for the specification of a minimum/
maximum program size, from which a random value is chosen in a uniform man-
ner [28]. Overall, choosing 512 distinct random programs for each bin structure
means that 16,384 programs are used to evaluate each of the three primitive sets,
which corresponds to a total of 49,152 random programs.

5.4 Fitness cases

We use the term “fitness case” in the conventional sense [89], which is to refer
to a data point corresponding to all relevant variables, which is multi-dimen-
sional in general. As described in Sect. 5.2, we utilize 3, 5, and 8 variables for
the nicolau_a , nicolau_b , and nicolau_c primitive sets, respectively. For each
primitive set, we use five amounts of fitness cases: 10, 100, 1,000, 10,000, and
100,000. For each number of fitness cases, we randomly generate input/target
data in the range [0, 1), and we use the same data for each of the evaluation
engines. We note that using random data should elucidate the fact that our per-
formance results are relevant to any GP application that can utilize the chosen
(1) primitive sets, (2) maximum number of variables, and (3) maximum number
of fitness cases, which, as shown in [64], allows for many.

6 Results

Figures 4, 5, and 6 compare the performance of each evaluation engine in terms
of nodes-per-second (NPS) values, for all fifteen combinations of the three primi-
tive sets and five numbers of fitness cases. For each combination, we plot results
for the five GP tools: (1) DEAP, (2) TensorGP with CPU, (3) TensorGP with
GPU, (4) Operon, and (5) our FPGA-based accelerator. In particular, for each plot

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 30 of 48

representing a GP tool and for each program bin containing 512 programs, we mark
the NPS value corresponding to the median runtime of the relevant set of runs,
where the number of fitness cases changes between subfigures. In addition, for the
tools in which performance experiments were run more than once (i.e., TensorGP
and Operon), regions for NPS values associated with the 75th and 25th percentiles of
runtime are plotted around each sample point; only a few of such percentile regions
are noticeable, meaning that most runtimes vary little between multiple runs.

Table 2 Aggregate NPS values across all primitive sets, for each number of fitness cases

Additionally, the last row provides an average across all experiments. The best values are given in bold.
See Sect. 5.1 for more details on such aggregate ratios

No. Cases DEAP TGP (CPU) TGP (GPU) Operon FPGA

10 9.836e+04 4.629e+04 4.084e+04 1.319e+08 5.599e+07
100 6.032e+05 4.633e+05 4.074e+05 1.473e+09 5.492e+08
1000 7.736e+05 3.963e+06 4.107e+06 1.473e+10 3.366e+09
10000 7.926e+05 3.624e+07 4.146e+07 8.744e+09 4.138e+09
100000 7.958e+05 1.249e+08 4.126e+08 9.317e+09 3.929e+09
All Tests 7.946e+05 6.311e+07 9.127e+07 9.191e+09 3.895e+09

Table 3 Aggregate power values
across all primitive sets, for each
number of fitness cases

Additionally, the last row provides an average across all experiments.
The best values are given in bold. See Sect. 5.1 for more details on
such aggregate ratios

No. Cases DEAP TGP (CPU) TGP (GPU) Operon FPGA

10 117.9 91.8 91.5 210.6 61.0
100 195.5 91.4 90.6 212.9 65.9
1000 247.5 91.5 90.9 247.3 78.8
10000 251.4 91.9 91.2 268.8 81.7
100000 251.8 106.4 93.6 274.3 80.8
All Tests 249.7 95.0 91.5 242.8 73.7

Table 4 Aggregate NPW values across all primitive sets, for each number of fitness cases

Additionally, the last row provides an average across all experiments. The best values are given in bold.
See Sect. 5.1 for more details on such aggregate ratios

No. Cases DEAP TGP (CPU) TGP (GPU) Operon FPGA

10 8.340e+02 5.041e+02 4.466e+02 6.265e+05 9.180e+05
100 3.085e+03 5.068e+03 4.495e+03 6.921e+06 8.337e+06
1000 3.126e+03 4.332e+04 4.519e+04 5.958e+07 4.272e+07
10000 3.152e+03 3.945e+05 4.548e+05 3.253e+07 5.063e+07
100000 3.161e+03 1.174e+06 4.408e+06 3.397e+07 4.864e+07
All Tests 3.181e+03 6.639e+05 9.970e+05 3.786e+07 5.288e+07

Genetic Programming and Evolvable Machines (2025) 26:8 Page 31 of 48 8

In addition to the aforementioned figures, Tables 2, 3 and 4 provide aggregate
estimates for NPS, power, and nodes-per-watt (NPW), where the provided esti-
mates are relevant to all performance/power experiments associated with a given
number of fitness cases. More specifically, for a given number of fitness cases, esti-
mates are computed by dividing two totals, where each total is relevant to all per-
formance/power experiments associated with that number of fitness cases, i.e., all
runs of each program bin, across all primitive sets. For example, aggregate NPS
estimates are computed by forming the total number of GP nodes relevant to all
performance experiments corresponding to a given number of fitness cases—i.e., all
runs of each program bin, across all primitive sets—and then by dividing this total
by the total runtime associated with all such node computation. As we described in

Table 5 NPS improvement for
the FPGA versus all other tools,
across all primitive sets, for each
number of fitness cases

Additionally, the last row provides an average across all experiments.
See Sect. 5.1 for more details on such aggregate ratios

No. Cases DEAP TGP (CPU) TGP (GPU) Operon

10 569.3× 1210× 1371× 0.4245×
100 910.3× 1185× 1348× 0.3727×
1000 4351× 849.5× 819.7× 0.2285×
10000 5220× 114.2× 99.80× 0.4732×
100000 4937× 31.45× 9.522× 0.4217×
All Tests 4902× 61.72× 42.67× 0.4238×

Table 6 Power improvement for
the FPGA versus all other tools,
across all primitive sets, for each
number of fitness cases

Additionally, the last row provides an average across all experiments.
See Sect. 5.1 for more details on such aggregate ratios

No. Cases DEAP TGP (CPU) TGP (GPU) Operon

10 1.93× 1.51× 1.50× 3.45×
100 2.97× 1.39× 1.38× 3.23×
1000 3.14× 1.16× 1.15× 3.14×
10000 3.08× 1.12× 1.12× 3.29×
100000 3.12× 1.32× 1.16× 3.40×
All Tests 3.39× 1.29× 1.24× 3.30×

Table 7 NPW improvement for
the FPGA versus all other tools,
across all primitive sets, for each
number of fitness cases

Additionally, the last row provides an average across all experiments.
See Sect. 5.1 for more details on such aggregate ratios

No. Cases DEAP TGP (CPU) TGP (GPU) Operon

10 1101× 1821× 2056× 1.465×
100 2702× 1645× 1855× 1.205×
1000 13670× 986.1× 945.2× 0.7170×
10000 16060× 128.3× 111.3× 1.556×
100000 15390× 41.44× 11.04× 1.432×
All Tests 16620× 79.65× 53.04× 1.397×

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 32 of 48

Sect. 5.1, computing single-number estimates of our chosen measures for multiple
experiments is meaningful as long as we compute only ratio. Ultimately, we pro-
vide these aggregate estimates in order to identify general trends for performance,
power, and performance-per-watt, all within a reasonable amount of space. In addi-
tion, Tables 5, 6 and 7 provide ratios of improvement for NPS, power, and NPW
when comparing the FPGA to all other tools. For more fine-grained trends involving
program bins and primitive sets, we refer the reader to our code [28], as well as to
Figs. 4, 5, and 6, which we consider further in the following.

Overall, in terms of raw performance (i.e., NPS), our accelerator mostly per-
formed second-best behind Operon, but due to significant power improvements
(Table 6), the FPGA was generally superior to all other tools in terms of perfor-
mance-per-watt (i.e., NPW), as shown in Table 7. On average, across all NPS exper-
iments, the FPGA was 4,902× faster than DEAP, 61.72× faster than TensorGP exe-
cuting with the CPU, 43.14× faster than TensorGP executing with the GPU, and
0.4238× faster (i.e., 2.36× slower) than Operon. In terms of power, the FPGA was
3.39× better than DEAP, 1.29× better than the CPU-based TensorGP, 1.24× better
than the GPU-based TensorGP, and 3.30× better than Operon. When relating perfor-
mance to power through the performance-per-watt (i.e., NPW) measure, the FPGA
was on average 16,620× better than DEAP, 79.65× better than the CPU-based Ten-
sorGP, 53.04× better than the GPU-based TensorGP, and 1.397× better than Operon.

In regard to Operon, our accelerator also sometimes obtained the highest NPS
values, e.g., for the larger programs and larger number of fitness cases with the
nicolau_a primitive set (Fig. 4), and for the smaller programs and smaller numbers
of fitness cases across all primitive sets. In some other instances, our accelerator
performed very similarly to Operon in terms of NPS, e.g., for the medium-sized
programs and medium-sized numbers of fitness cases with nicolau_b (Fig. 5). In
general, the speedups we achieved stemmed from the fact that our accelerator could
fully parallelize program evaluation once a program was compiled for the physi-
cal tree. For larger numbers of fitness cases (e.g., 10K and 100K), compilation was
completely amortized after the first program (Sect. 4.2), which allowed for maxi-
mal throughput. Interestingly, although the program tree structures for primitive sets
nicolau_b and nicolau_c utilized the same depths/sizes, which should potentially
allow for identical runtime, the hardware synthesis tool had to use a lower clock
frequency for nicolau_c in order to support more complex primitives, which allowed
nicolau_b to have better performance. Such discrepancies in clock frequency when
performing multiple design compilations also explain the small drop in power for
the FPGA between 10K and 100K fitness cases (Table 3).

In regard to TensorGP, our accelerator was able to consistently outperform
a modern GPU device, where our results align with prior work authored by the
developers of TensorGP [12]. Following from the power results in Table 3, we
note that TensorGP appears to struggle with fully utilizing the relevant CPU and
GPU, which are rated for a maximum power draw of 280 and 350 Watts, respec-
tively. In a separate set of experiments for TensorGP not reported here, we noticed
that for extremely large numbers of fitness cases (e.g., 16 million), CPU/GPU uti-
lization and power draw finally tended toward maximum values. The fact that the
GPU is not utilized more for our particular set of experiments is not necessarily

Genetic Programming and Evolvable Machines (2025) 26:8 Page 33 of 48 8

limited to the implementation of TensorGP, due to general challenges associated
with GPU-based GP (Sect. 3.1.1). However, given our results for the other CPU-
based tools, the fact that the CPU is not more utilized by TensorGP may indicate
some inefficiencies with employing TensorFlow for smaller datasets (Sect. 3.1.1).
Again, we emphasize that our performance results for TensorGP align with prior
work authored by the developers of TensorGP [12], which should remove any
concerns of our experiments somehow causing a significant issue.

In regard to DEAP, our accelerator was able to consistently outperform the rel-
evant CPU system by multiple orders of magnitude, especially for larger numbers
of fitness cases, where three orders of magnitude was achieved for performance,
and where four orders of magnitude was achieved for performance-per-watt.
Interestingly, DEAP sometimes performed better than TensorGP for the smaller
numbers of fitness cases, although TensorGP scaled much better with larger num-
bers of fitness cases.

All in all, in terms of raw performance, we emphasize that a single pipelined
program tree by way of our accelerator could keep up with and sometimes outpace
a two-socket, 28-core, 56-thread CPU system running the state-of-the-art Operon
tool, and our system consistently outperformed a modern GPU running the recent

Table 8 FPGA design statistics for the fifteen compilations performed

Clock represents the resulting clock frequency, which is given in Megahertz. Logic represents the number
of consumed logic resource blocks, which are known as “adaptive logic modules (ALMs)” in the context
of the relevant Intel FPGA. DSP represents the number of consumed “digital signal processing” blocks,
which effectively are floating-point multiply-adders in this application. Memory represents the number
of consumed “M20K” memory resources, which are the largest embedded memory blocks given by the
relevant Intel FPGA. Lastly, note that the size of the designs could not be increased due to challenges
regarding exponential growth, as described in Section 7.1

No. Cases Clock Logic DSP Memory

Nicolau A 10 194 522,520 (56.0%) 3,328 (57.8%) 3,964 (33.8%)
100 191 522,821 (56.0%) 3,328 (57.8%) 3,965 (33.8%)
1000 189 522,599 (56.0%) 3,328 (57.8%) 3,968 (33.9%)
10000 197 525,539 (56.3%) 3,328 (57.8%) 4,041 (34.5%)
100000 170 524,841 (56.2%) 3,328 (57.8%) 4,744 (40.5%)

Nicolau B 10 189 591,687 (63.4%) 3,118 (54.1%) 2,659 (22.7%)
100 190 591,150 (63.4%) 3,118 (54.1%) 2,660 (22.7%)
1000 185 594,730 (63.7%) 3,118 (54.1%) 2,665 (22.7%)
10000 197 595,602 (63.8%) 3,118 (54.1%) 2,774 (23.7%)
100000 184 599,027 (64.2%) 3,118 (54.1%) 3,829 (32.7%)

Nicolau C 10 163 717,705 (76.9%) 5,086 (88.3%) 3,811 (32.5%)
100 159 729,097 (78.1%) 5,086 (88.3%) 3,812 (32.5%)
1000 159 717,885 (76.9%) 5,086 (88.3%) 3,820 (32.6%)
10000 148 732,517 (78.5%) 5,086 (88.3%) 3,983 (34.0%)
100000 154 720,037 (77.2%) 5,086 (88.3%) 5,566 (47.5%)

Average 178 613,850 (65.8%) 3,844 (66.7%) 3,751 (32.0%)

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 34 of 48

high-performance TensorGP tool, as well as the same CPU system running both
TensorGP and the popular DEAP tool. When additionally considering power and
performance-per-watt measures, the FPGA was shown to be generally superior to all
other systems. Importantly, in the following section, we detail six future extensions
that could allow for at least a 64–192× speedup over our initial design. Therefore,
taken altogether, our initial results showcase considerable potential for FPGA-based
GP, and there is clear motivation to continue this line of work.

To conclude this section, we include some FPGA design statistics in Table 8,
which resulted from the fifteen compilations performed for the fifteen combinations
of primitive set and number of fitness cases (Sect. 5). The table provides details for
clock frequency and the utilization of ALMs (i.e., logic blocks), DSPs (i.e., float-
ing-point multiply-add blocks), and M20Ks (i.e., embedded memory). Notably, the
resulting clock frequencies are fairly low, due to the current accelerator architecture
not being fully optimized for timing, and due to the designs taking up a fairly large
percentage of the total FPGA area. Importantly, the size of the designs could not be
increased due to challenges regarding exponential growth, as we describe in the next
section.

7 Current challenges and potential optimizations

Below, we list three challenges of our initial accelerator architecture. Then, we pre-
sent six potential optimizations that could alleviate the three challenges and allow
for an updated accelerator to achieve a speedup over our current design by at least
64–192× , in addition to allowing support for larger program depths/sizes. After this,
we discuss some important considerations that follow from the present challenges.

7.1 Current challenges

Broadly speaking, there are three main challenges with the current architecture:

1. Exponential Growth. For an m-ary function tree with m > 1 , where m is the maxi-
mum function arity of the primitive set, the amount of area needed to implement
the tree grows exponentially with increasing tree depth. Namely, for m > 1 and
a function tree depth of d, 1−m

d+1

1−m
 generic function units are needed for the tree,

which can prevent up to 100
m

% of some device resource(s) from being used when
maximizing d. (For m = 1 , only d + 1 function units are needed.)

2. Function Unit Complexity. For a function tree (Sect. 4.3) to be able to support
arbitrary programs, every function unit must support all function primitives
defined by the primitive set. Therefore, depending on the number of function
primitives and the types of low-level device resources utilized for these primi-
tives, the maximum depth/size of function trees—and, thus, programs—can be
restricted. For our experiments that utilized primitives relying on floating-point
operations, we were ultimately constrained by the number of ALM and DSP
blocks available within the target FPGA device, as shown in Table 8. More spe-

Genetic Programming and Evolvable Machines (2025) 26:8 Page 35 of 48 8

cifically, due to the challenge of exponential growth (detailed in the previous
list item), we could not scale up tree depth any further, since this would require
roughly double the amount of ALM/DSP resources, which is impossible for the
current FPGA device.

3. Low Resource Utilization. If each function unit in the tree is capable of comput-
ing every function primitive, then for |F| function primitives, the utilization of
each function unit in terms of these high-level primitives is at most 1

|F| , and likely
worse since programs are often not full trees. The utilization of low-level device
primitives (e.g., DSPs) can be significantly lower, depending on the function
implementation.

7.2 Potential optimizations

We note that the following optimizations are independent from one another,19
and, thus, if all could be achieved simultaneously, a speedup between
2 ⋅ 2 ⋅ 4 ⋅ 2 ⋅ 2 = 64× and 2 ⋅ 6 ⋅ 4 ⋅ 2 ⋅ 2 = 192× could be achieved over our current
accelerator, where additional speedups may be possible when considering timing
optimization. We highlight that these potential optimizations, when paired with our
results in Sect. 6, provide considerable motivation for the continued exploration of
FPGA-based GP systems.

1. Use Compacted Trees. To be able to more effectively leverage device resources
as well as support larger program depths/sizes, we plan to explore various “com-
pacted tree” architectures. Ideally, such an architecture would allow for the use of
all resources that are currently unused due to exponential growth in area—either
through the use of a single, more efficient compute engine or through multiple
compute engines—and such an architecture would also offer native support for
larger depths/sizes. One option may be to construct a unified parallel/sequen-
tial tree structure, similar to what has been developed for tree-based accumula-
tors [124]. Another possibility may be to design a linear architecture that natively
handles flattened tree (e.g., prefix/postfix) representations. If either option could
result in a fully-pipelined architecture, the latter may be able to more effectively
map flattened programs onto function unit resources, but such an architecture
would seemingly require state memory (e.g., a temporary stack) to be duplicated
or included in the pipeline in order to maximize throughput, which would likely
infer significantly more memory resources than a spatially parallel tree representa-
tion. For the current study, if we could leverage all resources not currently used
due to exponential growth, we could improve upon our performance results by
upwards of 2×.

2. Multiplex Function Unit Resources. Function unit primitives experience poor
utilization due to the fact that they are implemented with independent IP blocks.

19 A possible exception could occur when dealing with timing optimization, since the resulting clock
frequency may unexpectedly get better or worse with design changes.

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 36 of 48

This issue could be improved upon by implementing a function unit via a sin-
gle IP block that multiplexes a minimal amount of some devices resource(s),
e.g., ALMs and DSPs. Such an “overlay” (Sect. 2.3) could free up a significant
amount of resources, allowing for further parallelization of program evaluation.
For example, in the context of the most complex primitive set used for this paper,
nicolau_c , the most expensive primitive was tanh , which utilized 13

42
≈ 31% of all

DSPs allocated for each function unit. (The function units were also primarily
responsible for ALM consumption.) Thus, with an appropriate overlay, 29

42
≈ 69%

of all DSPs for function units could be recovered. Carrying out a similar process
for all primitive sets used in this paper, about 50% of all DSPs utilized for func-
tion units could be recovered on average, which could translate into an average
speedup by up to 2× . However, in general, for a primitive set containing |F| func-
tions, an optimal overlay could allow for up to an |F|× speedup if all functions
were to utilize the same amount of low-level resources. Therefore, in our case,
where we currently utilize an average of approximately six functions, we estimate
that we could achieve a speedup of 2–6× by using optimized (or alternate) func-
tions.

3. Design for Higher Clock Frequencies. For our accelerator, throughput (i.e., per-
formance) is directly proportional to clock frequency. With modern FPGAs, it is
not uncommon for designs to achieve much higher clock frequencies [84, 114,
117]. Our current accelerator has not been fully optimized, and, as such, we
achieved an average clock frequency of 178 MHz across the fifteen hardware
compilations performed for this paper. Notably, for our current FPGA, we refer
to the extensive study given in [117] that showcases how frequencies in the range
400–850 MHz are attainable for various designs. To be conservative, we do not
assume that we could achieve such clock frequencies, but we provide them as
a potential goal. In any event, we reiterate that we have not fully optimized for
timing.

4. Use a Higher-End FPGA Device. With a more modern, higher-end FPGA imple-
mented on newer process-node technology (e.g., [52]), we should be able to
support at least 1.4× ALM resources, 2 × more DSP resources, and 1.5× more
embedded memory resources, all in addition to higher clock frequencies [24].
Separately, such newer devices allow for an additional 2 × more DSP resources
when using half-precision floating-point or the recent bfloat16 precision [24].
Since positive results were reported for the state-of-the-art Operon tool when
using single-precision floating point instead of double-precision floating
point [19], it seems plausible that further reductions in precision could also pro-
vide meaningful results. Therefore, with up 4 × more DSP resources, we expect
that we can further parallelize our current floating-point computations by up to
4 × , implying a speedup of up to 4 ×.

5. Use Multiple FPGAs. The CPU results presented in Sect. 6 rely on a dual-socket
server populated with two CPU packages, whereas we currently only utilize a
single FPGA for our accelerator. Therefore, out of fairness, we could parallelize
our design across two FPGAs (e.g., by instantiating multiple evaluation engines),
which would allow for up to a 2 × speedup. However, there are two considerations

Genetic Programming and Evolvable Machines (2025) 26:8 Page 37 of 48 8

to note here: (1) we would ideally also utilize two GPU devices for the TensorGP
results, and (2) when using newer CPU device technologies, a single CPU may
be able to provide comparable results to the server utilized in this paper. Regard-
ing the second point, we emphasize that with the current experimental setup, the
CPU and FPGA both leverage 14nm device technologies, suggesting that utilizing
two FPGA devices would still be fair. Future systems could leverage additional
FPGAs, if appropriate.

6. Double-buffer GP Runs. When our accelerator enters the context of a full GP
system, including evolution, we expect that we can execute two GP runs simulta-
neously, by evolving one population whilst evaluating another. Such an optimi-
zation would generally not make sense for a typical GP system (with exception
to possibly a combined CPU/GPU system), since any additional compute cores
would likely be used to further parallelize program evaluation. If the total time
taken for evolution can be no more than the total time taken for evaluation, then
this optimization should allow our accelerator to achieve a speedup of up to 2 ×.

7.3 Final considerations

Following from the previous sections, we establish some final considerations. Per-
haps the most notable challenge of the initial tree architecture is the exponential
growth in area when scaling up program depth. For example, regarding the exper-
iments described in Sect. 5, the current architecture only supports program depth
values up to 10 for the most basic primitive set chosen, and only depth values up
to 8 for the most complex primitive sets chosen, where the utilization for the func-
tion units within the respective trees can be fairly low, depending on program size.
Although these appear to be the largest depths ever recorded for an FPGA-based
GP system [35, 104], it is common for larger depth values to be used [59, 89], but
not necessarily. Nevertheless, to improve upon this limitation, two possible archi-
tectural advancements have already been suggested in Sect. 7.1: (1) a unified “par-
allel/sequential” tree, inspired by prior work on tree-based accumulator architec-
tures [124], and (2) a linear architecture that natively handles flattened tree (e.g.,
prefix/postfix) representations. To us, the linear architecture currently seems to be
the most interesting of the two suggestions, since it could potentially be applicable
to other forms of GP, e.g., linear GP, stack-based GP, etc. [17, 89, 110]. However,
as we have already noted, to have a linear architecture that is fully pipelined would
seemingly require duplicates of state memory (e.g., multiple temporary stacks) in
order to maximize throughput, which would likely infer significantly more memory
resources than a tree representation.

Interestingly, the linear architecture could either be implemented so that it fully
unrolls a program through a physical chain of function units, or so that it only uti-
lizes a single function unit with feedback, which could be envisioned as a special-
ized CPU. With the former, more FPGA resources could be allocated to a single
evaluation engine, so that the total number of engines could be less when scaling
up, which may ultimately help if additional hardware is to be associated with each
engine (e.g., hardware for local search). With the latter, we would ideally implement

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 38 of 48

as many engines as there are programs, but the actual amount would depend on the
complexity of the function set as well as the population size. For both linear archi-
tecture variants, it seems that the same amount of state memory duplicates would
be needed, but the former would likely also require that inputs be pipelined, which
would add an amount of memory that grows proportionally to either (1) the product
of program size and the number of variables, if all variables were passed through the
pipeline, or (2) the square of program size, if each function unit within the pipeline
selected from a single set of variable memories, with a linearly increasing delay for
units further in the chain.

Thus, the linear architecture involving only a single function unit with feedback
might be preferable to the fully-unrolled variant, but some mixture of both ideas
could also potentially work. With the single-unit architecture, there is another pos-
sible benefit: support for recursion and arbitrary control flow may be significantly
easier to implement. Unfortunately, there is also a challenge that is most relevant
to the single-unit linear architecture: with multiple evaluation engines executing in
parallel, the management of multiple simultaneous program outputs is necessitated,
which can make other aspects of the design more complex, especially if additional
computation directly follows from program evaluation (e.g., local search). In the
case of the single-unit architecture, if hundreds of evaluation engines would have
to be in parallel in order to extract significant performance benefits, the amount of
memory (or bandwidth) that would be required to support program outputs might
become impractical. Overall, future work should consider all of such trade-offs in
more detail.

On a separate note, we refer back to Sect. 7.2, in which we mention the pos-
sibility of the average speedup of our accelerator improving by upwards of 192× .
Importantly, following from Amdahl’s Law [8], the speedup of an overall GP system
depends on the workload proportions between program evaluation and the remainder
of the GP procedure. When incorporating evolution, if there are fixed workload pro-
portions, continually improving only evaluation would eventually cause evolution
to become the bottleneck, which would subsequently bottleneck GPops/s improve-
ments. However, by Gustafson’s Law [41], perhaps we could alter the GP proce-
dure such that program evaluation and/or evolution could have a dynamic workload.
Notably, if we double-buffer GP runs (Sect. 7.2), and if we continually maintain that
evolution takes no longer than evaluation (e.g., through increased parallelism), then
evaluation would never be bottlenecked by evolution and all improvements to evalu-
ation can be useful.

In addition to the previous points, we establish that if evolution is also to be
implemented within the FPGA, then it is possible that some of the resources that
would be needed for an additional evaluation speedup would ultimately have to be
allocated elsewhere. Therefore, we note that the upper end of the 64–192× speedup
range may be optimistic, but we conclude that some significant speedups should still
be possible. These potential speedups would likely also affect performance-per-watt
(i.e., NPW) values in a similar manner, but it is not yet clear how the correspond-
ing optimizations would affect power consumption, so we do not provide exact esti-
mates for possible performance-per-watt improvements. Future work should also
consider whether or not some meaningful combination of a CPU and FPGA could

Genetic Programming and Evolvable Machines (2025) 26:8 Page 39 of 48 8

be designed such that the FPGA is not responsible for all the complexities of the GP
system. For instance, if some complex local search procedure (e.g., nonlinear least
squares fitting) is desired, perhaps this could be meaningfully done by the CPU at
infrequent intervals of time, so that any runtime penalty would not be severe.

8 Conclusion

In this paper, we leveraged a modern FPGA device to implement a hardware accel-
erator that more closely aligns with the computing model of tree-based GP when
compared to CPU/GPU solutions. Specifically, the presented architecture dynami-
cally compiles program trees for a reconfigurable function tree pipeline that can
generate outputs for entire program expressions every clock cycle and transition
between separate programs within a single cycle. We showed that our accelerator on
a 14nm FPGA achieves an average speedup of 43× when compared to a recent open-
source GPU solution implemented on 8nm process-node technology, and an average
speedup of 4,902× when compared to a popular baseline GP software tool running
parallelized across all cores of a 2-socket, 28-core (56-thread), 14nm CPU server.
Despite our single-FPGA accelerator being 2.4× slower on average when compared
to the recent state-of-the-art Operon tool executing on the same 2-processor CPU
system, our tool was the fastest in several instances, and when considering energy
consumption, our tool was 1.4× better than Operon in terms of performance-per-
watt. Importantly, we also described six future extensions that could provide at least
a 64–192× speedup over our current design, which motivates the continued explora-
tion of FPGA-based GP systems.

Although the processes of evolution were not yet implemented, we note that it is
plausible that workload proportions for program evaluation will be similar to what
was presented in the original study of Operon (Sect. 3.1.2), since the accelerator
exhibits evaluation performance close to Operon [19], and since we can likely dou-
ble-buffer GP runs in order to ensure that evolution does not bottleneck evaluation
(Sect. 7.2). Thus, just as we argued for Operon within Sect. 3.1.2, this could allow
our accelerator to exhibit the largest GPops/s values ever reported. Separately, within
Sect. 7.3, we established that useful accelerator architectures may be possible for
program representations other than trees. For instance, we described some “linear”
architectures that may be widely applicable. If similar performance enhancements
could be expected for other GP domains, significant benefits may manifest when
compared to the pre-existing systems developed for these domains. As an exam-
ple, consider the recent GP framework known as Tangled Program Graphs (TPG),
through which individual programs are typically represented as in linear GP [56].
So far, not many significant optimizations for the training procedure of TPG have
been explored, yet remarkable results have still been reported; for instance, TPG
has discovered multi-task, high-dimensional reinforcement learning policies with
over 1000× fewer operations than Deep-Q Learning when using the same amount
of training time [56]. Notably, we posit that the evaluation scheme provided by TPG
is just as challenging (if not more challenging) to optimize for CPU/GPU systems,
due to the reasons discussed in Sect. 1. Therefore, the benefits of domain-specific

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 40 of 48

architectures could end up being even more significant for complex systems such as
TPG, which further motivates this line of work.

Overall, we affirm that extending the work presented in this paper is a worthwhile
pursuit. When taking everything together, FPGAs may ultimately allow for faster
and/or less costly GP runs, in which case it may also be possible for better solu-
tions to be found when allowing an FPGA to consume the same amount of runtime/
energy as another computing platform. From our initial results, it seems likely that
some highly significant performance enhancements can be achieved with modern
FPGA devices, and once considerations of power and energy are made, even more
benefits may be present. Notably, designs established for FPGA platforms should
also be applicable to ASICs (Sect. 2.2), which may be an important next step after
the development of a full FPGA-based GP system, since this could lead to even
higher performance and energy efficiency, similar to how tensor processing units
(TPUs) have extracted additional benefits for neural network contexts [54]. There
has been some preliminary work on the design of ASICs for GP (e.g., [74]), but
there is still much left to explore.

Author Contributions All authors contributed to the conception, design, or analysis of the study. The
manuscript was prepared by Christopher Crary and was reviewed by all authors.

Funding This material is based upon work supported by the National Science Foundation under Grant
Nos. CNS-1718033 and CCF-1909244.

Data availibility See reference [28].

Declarations

Conflict of interest The authors have no conflict of interest to declare.

References

 1. M. Abadi , P. Barham, J. Chen, et al., TensorFlow: A system for large-scale machine learning, in
ed. by K. Keeton, T. Roscoe, Proceedings of the 12th USENIX symposium on Operating Sys-
tems Design and Implementation (OSDI 2016) (ACM, New York, NY, USA, 2016), pp. 265–283,
https:// doi. org/ 10. 5555/ 30268 77. 30268 99

 2. B. Acun, B. Lee , F. Kazhamiaka, et al., Carbon explorer: A holistic framework for designing car-
bon aware datacenters, in ed. by TM. Aamodt, NE. Jerger, M. Swift, Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2023), vol 2. (ACM, New York, NY, USA, 2023) pp. 118–132, https:// doi. org/
10. 1145/ 35756 93. 35757 54

 3. A. Agrawal, A. Modi, A. Passos, et al., TensorFlow Eager: A multi-stage, Python-embedded DSL
for machine learning, in ed. by A.Talwalkar, V. Smith, M. Zaharia, Proceedings of the Second
Conference on Machine Learning and Systems (MLSys 2019), pp. 178–189 (2019). https:// proce
edings. mlsys. org/ paper_ files/ paper/ 2019/ file/ b3cd7 3d353 d39e5 cf6f6 e9ff8 d14c8 7f- Paper. pdf

 4. G. Alok, Architecture apocalypse dream architecture for deep learning inference and compute -
Versal AI core, in Proceedings of the of the Embedded World 2020 Exhibition and Conference,
(2020). https:// downl oad. amd. com/ docnav/ docum ents/ aem/ white_ papers- EW2020- Deep- Learn
ing- Infer ence- AICore. pdf

https://doi.org/10.5555/3026877.3026899
https://doi.org/10.1145/3575693.3575754
https://doi.org/10.1145/3575693.3575754
https://proceedings.mlsys.org/paper_files/paper/2019/file/b3cd73d353d39e5cf6f6e9ff8d14c87f-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/b3cd73d353d39e5cf6f6e9ff8d14c87f-Paper.pdf
https://download.amd.com/docnav/documents/aem/white_papers-EW2020-Deep-Learning-Inference-AICore.pdf
https://download.amd.com/docnav/documents/aem/white_papers-EW2020-Deep-Learning-Inference-AICore.pdf

Genetic Programming and Evolvable Machines (2025) 26:8 Page 41 of 48 8

 5. Amazon (2024) EC2 F1. https:// aws. amazon. com/ ec2/ insta nce- types/ f1/
 6. AMD Versal ACAP DSP engine architecture manual (AM004), (2018). https:// docs. amd. com/r/ en-

US/ am004- versal- dsp- engine/ DSP58- Archi tectu re
 7. AMD, Heterogeneous Accelerated Compute Cluster (HACC) program (2024). https:// www. amd.

com/ en/ corpo rate/ unive rsity- progr am/ aup- hacc. html
 8. G. M. Amdahl, Validity of the single processor approach to achieving large scale computing capa-

bilities. In: Proceedings of the April 18-20, 1967, Spring Joint Computer Conference (AFIPS ’67,
Spring). Thompson Book Company, (Washington, D.C., 1967) pp. 483–485. https:// doi. org/ 10.
1145/ 14654 82. 14655 60

 9. A. Michael, P. Greg, K. Ronny, S. Nick, M. Vishal, B. Gonzalo, R. Sridhar, NVIDIA Hopper archi-
tecture in-depth (2022). https:// devel oper. nvidia. com/ blog/ nvidia- hopper- archi tectu re- in- depth/

 10. Apple (2022) M1 Ultra chip. https:// www. apple. com/ newsr oom/ 2022/ 03/ apple- unvei ls- m1- ultra-
the- worlds- most- power ful- chip- for-a- perso nal- compu ter/

 11. D.A. Augusto, H.J. Barbosa, Accelerated parallel genetic programming tree evaluation with
OpenCL. J. Parallel Distrib. Comput. 73(1), 86–100 (2013). https:// doi. org/ 10. 1016/j. jpdc. 2012. 01.
012

 12. F. Baeta, J. Correia, T. Martins et al., Exploring genetic programming in TensorFlow with Ten-
sorGP. SN Comput. Sci. 3(154), 1–16 (2022). https:// doi. org/ 10. 1007/ s42979- 021- 01006-8

 13. W. Banzhaf, P. Nordin, R.E. Keller et al., Genetic programming—an introduction (Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1998)

 14. W. Banzhaf , S. Harding, WB. Langdon, et al., Accelerating genetic programming through graph-
ics processing units, in et. by R. Riolo, T. Soule, B. Worzel, Genetic Programming Theory and
Practice VI. (Springer US, Boston, MA, 2009) pp. 1–19, https:// doi. org/ 10. 1007/ 978-0- 387- 87623-
8_ 15

 15. N. Bashir, T. Guo , M. Hajiesmaili, et al., Enabling sustainable clouds: The case for virtualizing the
energy system, in ed. by C. Curino, G. Koutrika, R. Netravali, Proceedings of the ACM Sympo-
sium on Cloud Computing (SoCC 2021) (ACM, New York, NY, USA, 2021) pp. 350–358, https://
doi. org/ 10. 1145/ 34728 83. 34870 09

 16. V. Betz, J. Rose, VPR: a new packing, placement and routing tool for FPGA research, in: W. Luk,
Y.K. CP, M. Glesner, Proceedings of the 7th International Workshop on Field-Programmable Logic
and Applications (FPL 1997) (Springer Berlin, Heidelberg, LNCS, 1997) pp. 213–222, https:// doi.
org/ 10. 1007/3- 540- 63465-7_ 226

 17. M. Brameier, W. Banzhaf, W. Banzhaf, Linear Genetic Programming. (Springer, New York, NY,
USA, 2007). https:// doi. org/ 10. 1007/ 978-0- 387- 31030-5

 18. B. Burlacu, GECCO’2022 symbolic regression competition: Post-analysis of the Operon frame-
work, in ed. by S. Silva, L. Paquete, Proceedings of the 2023 Genetic and Evolutionary Computa-
tion Conference Companion (GECCO 2023) (ACM, New York, NY, USA, 2023) pp. 2412–2419,
https:// doi. org/ 10. 1145/ 35831 33. 35963 90

 19. B. Burlacu, G. Kronberger, M. Kommenda, Operon C++: An efficient genetic programming
framework for symbolic regression, ed. by C. Artemio Coello, Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion (GECCO 2020) (ACM, New York, NY,
USA, 2020) pp. 1562–1570, https:// doi. org/ 10. 1145/ 33779 29. 33980 99

 20. A. Cano, B. Krawczyk, Evolving rule-based classifiers with genetic programming on GPUs for
drifting data streams. Pattern Recogn. 87, 248–268 (2019). https:// doi. org/ 10. 1016/j. patcog. 2018.
10. 024

 21. S.M. Cheang, K.S. Leung, K.H. Lee, Genetic parallel programming: design and implementation.
Evol. Comput. 14(2), 129–156 (2006). https:// doi. org/ 10. 1162/ evco. 2006. 14.2. 129

 22. D.M. Chitty, Fast parallel genetic programming: multi-core CPU versus many-core GPU. Soft
Comput. 16(10), 1795–1814 (2012). https:// doi. org/ 10. 1007/ s00500- 012- 0862-0

 23. D.M. Chitty, Faster GPU-based genetic programming using a two-dimensional stack. Soft Comput.
21(14), 3859–3878 (2017). https:// doi. org/ 10. 1007/ s00500- 016- 2034-0

 24. J. Chromczak, M. Wheeler, C. Chiasson, et al., Architectural enhancements in Intel Agilex FPGAs,
in ed. by S. Neuendorffer, L. Shannon, Proceedings of the 2020 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA 2020) (ACM, New York, NY, USA, 2020) pp.
140–149, https:// doi. org/ 10. 1145/ 33730 87. 33753 08

 25. K. Compton, S. Hauck, Reconfigurable computing: a survey of systems and software. ACM Com-
put. Surveys (CSUR) 34(2), 171–210 (2002). https:// doi. org/ 10. 1145/ 508352. 508353

https://aws.amazon.com/ec2/instance-types/f1/
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/DSP58-Architecture
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/DSP58-Architecture
https://www.amd.com/en/corporate/university-program/aup-hacc.html
https://www.amd.com/en/corporate/university-program/aup-hacc.html
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://doi.org/10.1016/j.jpdc.2012.01.012
https://doi.org/10.1016/j.jpdc.2012.01.012
https://doi.org/10.1007/s42979-021-01006-8
https://doi.org/10.1007/978-0-387-87623-8_15
https://doi.org/10.1007/978-0-387-87623-8_15
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1007/3-540-63465-7_226
https://doi.org/10.1007/3-540-63465-7_226
https://doi.org/10.1007/978-0-387-31030-5
https://doi.org/10.1145/3583133.3596390
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1016/j.patcog.2018.10.024
https://doi.org/10.1016/j.patcog.2018.10.024
https://doi.org/10.1162/evco.2006.14.2.129
https://doi.org/10.1007/s00500-012-0862-0
https://doi.org/10.1007/s00500-016-2034-0
https://doi.org/10.1145/3373087.3375308
https://doi.org/10.1145/508352.508353

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 42 of 48

 26. J. Coole, G. Stitt, Adjustable-cost overlays for runtime compilation, in L. Shannon, D. Andrews,
Proceedings of the 2015 IEEE 23rd Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM 2015). IEEE, pp 21–24, (2015). https:// doi. org/ 10. 1109/ FCCM.
2015. 49

 27. C. Crary, W. Piard, G. Stitt, et al., Using FPGA devices to accelerate tree-based genetic program-
ming: A preliminary exploration with recent technologies, in ed. by G. Pappa, M. Giacobini, Z.
Vasicek, Proceedings of the 26th European Conference on Genetic Programming (EuroGP 2023,
Part of EvoStar), (Springer, Cham, LNCS, 2023) pp. 182–197, https:// doi. org/ 10. 1007/ 978-3- 031-
29573-7_ 12

 28. C. Crary, W. Piard, G. Stitt, et al., Code repository (2024). https:// github. com/ chris tophe rcrary/
journ al- gpem- 2023/

 29. FM De Rainville, FA. Fortin, MA. Gardner, et al., DEAP: A Python framework for evolutionary
algorithms, in Soule T, Moore JH (eds) Proceedings of the Fourteenth International Conference on
Genetic and Evolutionary Computation Companion (GECCO 2012), (ACM, New York, NY, USA,
2012) pp. 85–92, https:// doi. org/ 10. 1145/ 23307 84. 23307 99

 30. R. Dobai, L. Sekanina, Low-level flexible architecture with hybrid reconfiguration for evolvable
hardware. ACM Trans. Reconfig. Technol. Syst. (TRETS) 8(3), 1–24 (2015). https:// doi. org/ 10.
1145/ 27004 14

 31. G. Dréan , The Chips Industry: Moore and Rock’s Laws, (ISTE Ltd, London, UK, 2019), pp. 125–
135. https:// doi. org/ 10. 1002/ 97811 19468 967. ch6

 32. S. Eklund (2003) Time series forecasting using massively parallel genetic programming, in ed. by
M. Cosnard, A. Gottlieb, J. Dongarra, Proceedings of the 17th International Parallel and Distrib-
uted Processing Symposium (IPDPS 2003). IEEE, https:// doi. org/ 10. 1109/ IPDPS. 2003. 12132 72

 33. Esmaeilzadeh H, Blem E, St. Amant R, et al., Dark silicon and the end of multicore scaling, in ed.
by R. Iyer, Q. Yang, A. González, Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA 2011) (ACM, New York, NY, USA, 2011) pp. 365–376. https:// doi.
org/ 10. 1145/ 20000 64. 20001 08

 34. AI. Funie, M. Salmon, W. Luk, A hybrid genetic-programming swarm-optimisation approach for
examining the nature and stability of high frequency trading strategies, in ed. by XW. Chen, G.
Qu, P. Angelov, et al., Proceedings of the 13th International Conference on Machine Learning and
Applications (ICMLA 2014). IEEE, pp 29–34, (2014). https:// doi. org/ 10. 1109/ ICMLA. 2014. 11

 35. A.I. Funie, P. Grigoras, P. Burovskiy et al., Run-time reconfigurable acceleration for genetic pro-
gramming fitness evaluation in trading strategies. J. Signal Process. Syst. 90(1), 39–52 (2018).
https:// doi. org/ 10. 1007/ s11265- 017- 1244-8

 36. M.B. Gokhale, P.S. Graham, Reconfigurable Computing: Accelerating Computation with Field-
Programmable Gate Arrays, (Springer, New York, NY, USA, 2006). https:// doi. org/ 10. 1007/ b1368
34

 37. D. Goldberg, What every computer scientist should know about floating-point arithmetic. ACM
Comput. Surv. (CSUR) 23(1), 5–48 (1991). https:// doi. org/ 10. 1145/ 103162. 103163

 38. C. Goribar-Jimenez, Y. Maldonado, L. Trujillo, et al., Towards the development of a complete GP
system on an FPGA using geometric semantic operators, in ed. by JA. Lozano, C. Coello, J. Cebe-
rio, Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC 2017). IEEE, pp
1932–1939, (2017). https:// doi. org/ 10. 1109/ CEC. 2017. 79695 37

 39. V. G. Gudise, G. K. Venayagamoorthy, FPGA placement and routing using particle swarm opti-
mization, in ed. by A. Smailagic, M. Bayoumi, Proceedings of the 2004 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI 2004). IEEE, pp 307–308 (2004). https:// doi. org/ 10. 1109/
ISVLSI. 2004. 13395 67

 40. P. Gupta, CUDA refresher: The CUDA programming model (2020). https:// devel oper. nvidia. com/
blog/ cuda- refre sher- cuda- progr amming- model/

 41. J.L. Gustafson, Reevaluating Amdahl’s Law. Commun. ACM 31(5), 532–533 (1988). https:// doi.
org/ 10. 1145/ 42411. 42415

 42. S. L. Harding, W. Banzhaf, Hardware acceleration for CGP: Graphics processing units, in ed. by J.
F. Miller, Cartesian Genetic Programming, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011),
pp. 231–253, https:// doi. org/ 10. 1007/ 978-3- 642- 17310-3_8

 43. S.L. Harris, D. Harris, Digital design and computer architecture: ARM edition, 1st edn. (Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2015)

 44. J.L. Hennessy, D.A. Patterson, Computer architecture: a quantitative approach, 6th edn. (Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2017)

https://doi.org/10.1109/FCCM.2015.49
https://doi.org/10.1109/FCCM.2015.49
https://doi.org/10.1007/978-3-031-29573-7_12
https://doi.org/10.1007/978-3-031-29573-7_12
https://github.com/christophercrary/journal-gpem-2023/
https://github.com/christophercrary/journal-gpem-2023/
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.1145/2700414
https://doi.org/10.1145/2700414
https://doi.org/10.1002/9781119468967.ch6
https://doi.org/10.1109/IPDPS.2003.1213272
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1109/ICMLA.2014.11
https://doi.org/10.1007/s11265-017-1244-8
https://doi.org/10.1007/b136834
https://doi.org/10.1007/b136834
https://doi.org/10.1145/103162.103163
https://doi.org/10.1109/CEC.2017.7969537
https://doi.org/10.1109/ISVLSI.2004.1339567
https://doi.org/10.1109/ISVLSI.2004.1339567
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1007/978-3-642-17310-3_8

Genetic Programming and Evolvable Machines (2025) 26:8 Page 43 of 48 8

 45. D. L. N. Hettiarachchi, V. S. P. Davuluru, E. J. Balster, Integer vs. floating-point processing on
modern FPGA technology, in ed. by S. Chakrabarti, R. Paul, Proceedings of the 10th Annual Com-
puting and Communication Workshop and Conference (CCWC 2020). IEEE, pp 606–612, (2020).
https:// doi. org/ 10. 1109/ CCWC4 7524. 2020. 90311 18

 46. M. I. Heywood, A. N. Zincir-Heywood, Register based genetic programming on FPGA computing
platforms, in ed. by R. Poli, W. Banzhaf, W. B, Langdon, et al., Proceedings of the 3rd European
Conference on Genetic Programming (EuroGP 2000), (Springer, Berlin, Heidelberg, Berlin, Hei-
delberg, LNCS, 2000), pp. 44–59, https:// doi. org/ 10. 1007/ 978-3- 540- 46239-2_4

 47. S. Hooker, The hardware lottery. Commun. ACM 64(12), 58–65 (2021). https:// doi. org/ 10. 1145/
34670 17

 48. P. Horowitz, W. Hill, I. Robinson, The art of electronics, 3rd edn. (Cambridge University Press,
Cambridge, UK, 2015)

 49. Intel (2016) Intel FPGA Programmable Acceleration Card D5005 data sheet. https:// cdrdv2- public.
intel. com/ 691516/ ds- pac- d5005- 683568- 691516. pdf

 50. Intel (2018) BFLOAT16 - hardware numerics definition. https:// www. intel. com/ conte nt/ dam/ devel
op/ exter nal/ us/ en/ docum ents/ bf16- hardw are- numer ics- defin ition- white- paper. pdf

 51. Intel (2021) Floating-point IP cores user guide. https:// cdrdv2- public. intel. com/ 666430/ ug_ altfp_
mfug- 683750- 666430. pdf

 52. Intel (2024) Intel Agilex M-Series FPGA and SoC FPGA product table. https:// cdrdv2. intel. com/
v1/ dl/ getCo ntent/ 721636

 53. Intel (2024) The story of the Intel 4004. https:// www. intel. com/ conte nt/ www/ us/ en/ histo ry/
museum- story- of- intel- 4004. html

 54. N. Jouppi, C. Young, N. Patil et al., Motivation for and evaluation of the first tensor processing
unit. IEEE Micro 38(3), 10–19 (2018). https:// doi. org/ 10. 1109/ MM. 2018. 03227 1057

 55. N. Kapre, S. Bayliss, Survey of domain-specific languages for FPGA computing, in ed. by P. Ieene,
W. Najjar, J. Anderson, et al., Proceedings of the 26th International Conference on Field Program-
mable Logic and Applications (FPL 2016) (EPFL, Lausanne, Switzerland, 2016) pp. 1–12, https://
doi. org/ 10. 1109/ FPL. 2016. 75773 80

 56. S. Kelly, M.I. Heywood, Emergent solutions to high-dimensional multitask reinforcement learning.
Evol. Comput. 26(3), 347–380 (2018). https:// doi. org/ 10. 1162/ evco_a_ 00232

 57. S. Kelly , R. J. Smith, M. I. Heywood, Emergent policy discovery for visual reinforcement learn-
ing through tangled program graphs: a tutorial. in ed. by W. Banzhaf, L. Spector, L. Sheneman,
Genetic Programming Theory and Practice XVI (Springer, Cham, 2019), pp. 37–57, https:// doi.
org/ 10. 1007/ 978-3- 030- 04735-1_3

 58. M. Kommenda, B. Burlacu, G. Kronberger et al., Parameter identification for symbolic regression
using nonlinear least squares. Genet. Program Evolvable Mach. 21(3), 471–501 (2020). https:// doi.
org/ 10. 1007/ s10710- 019- 09371-3

 59. J.R. Koza, Genetic programming: on the programming of computers by means of natural selection,
1st edn. (MIT Press, Cambridge, MA, USA, 1992)

 60. J. R. Koza, F. H. Bennett, J. L. Hutchings, et al., Evolving computer programs using rapidly recon-
figurable field-programmable gate arrays and genetic programming, in ed. by J. Cong, S. Kaptano-
glu, Proceedings of the 6th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA 1998), (ACM, New York, NY, USA, 1998) pp. 209–219. https:// doi. org/ 10. 1145/
275107. 275141

 61. A. Krishnakumar, U. Ogras, R. Marculescu et al., Domain-specific architectures: research prob-
lems and promising approaches. ACM Trans. Embed. Comput. Syst. 22(2), 1–26 (2023). https://
doi. org/ 10. 1145/ 35639 46

 62. I. Kuon, J. Rose, Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 26(2), 203–215 (2007). https:// doi. org/ 10. 1109/ TCAD. 2006. 884574

 63. W. La Cava, T. Helmuth, L. Spector et al., A probabilistic and multi-objective analysis of lexicase
selection and �-lexicase selection. Evol. Comput. 27(3), 377–402 (2019). https:// doi. org/ 10. 1162/
evco_a_ 00224

 64. W. La Cava, P. Orzechowski, B. Burlacu, et al., Contemporary symbolic regression methods and
their relative performance, in ed. by J. Vanschoren, S. Yeung, Proceedings of the 35th Conference
in Neural Information Processing Systems (NeurIPS 2021), Track on Datasets and Benchmarks
1, (2021). https:// datas ets- bench marks- proce edings. neuri ps. cc/ paper/ 2021/ file/ c0c7c 76d30 bd3dc
aefc9 6f402 75bdc 0a- Paper- round1. pdf

https://doi.org/10.1109/CCWC47524.2020.9031118
https://doi.org/10.1007/978-3-540-46239-2_4
https://doi.org/10.1145/3467017
https://doi.org/10.1145/3467017
https://cdrdv2-public.intel.com/691516/ds-pac-d5005-683568-691516.pdf
https://cdrdv2-public.intel.com/691516/ds-pac-d5005-683568-691516.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://cdrdv2-public.intel.com/666430/ug_altfp_mfug-683750-666430.pdf
https://cdrdv2-public.intel.com/666430/ug_altfp_mfug-683750-666430.pdf
https://cdrdv2.intel.com/v1/dl/getContent/721636
https://cdrdv2.intel.com/v1/dl/getContent/721636
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://doi.org/10.1109/MM.2018.032271057
https://doi.org/10.1109/FPL.2016.7577380
https://doi.org/10.1109/FPL.2016.7577380
https://doi.org/10.1162/evco_a_00232
https://doi.org/10.1007/978-3-030-04735-1_3
https://doi.org/10.1007/978-3-030-04735-1_3
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1145/275107.275141
https://doi.org/10.1145/275107.275141
https://doi.org/10.1145/3563946
https://doi.org/10.1145/3563946
https://doi.org/10.1109/TCAD.2006.884574
https://doi.org/10.1162/evco_a_00224
https://doi.org/10.1162/evco_a_00224
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 44 of 48

 65. S. Lahti, P. Sjövall, J. Vanne et al., Are we there yet? a study on the state of high-level synthesis.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(5), 898–911 (2019). https:// doi. org/ 10.
1109/ TCAD. 2018. 28344 39

 66. S. Lahti, M. Rintala, T.D. Håmålåinen, Leveraging modern C++ in high-level synthesis. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 42(4), 1123–1132 (2023). https:// doi. org/ 10. 1109/
TCAD. 2022. 31936 46

 67. W. B. Langdon, Parallel GPQUICK, in ed. by M. López-Ibáñez, Proceedings of the 2019 Genetic
and Evolutionary Computation Conference Companion (GECCO 2019) (ACM, New York, NY,
USA, 2019), pp. 63–64, https:// doi. org/ 10. 1145/ 33196 19. 33267 70

 68. W. B. Langdon, Incremental evaluation in genetic programming, in ed. by T. Hu, N. Lourenço, E.
Medvet, Proceedings of the 24th European Conference on Genetic Programming (EuroGP 2021,
Part of EvoStar), (Springer, Cham, LNCS, 2021), pp. 229–246, https:// doi. org/ 10. 1007/ 978-3- 030-
72812-0_ 15

 69. W. B. Langdon, W. Banzhaf, A SIMD interpreter for genetic programming on GPU graphics cards,
in M. O’Neill, L. Vanneschi, S. Gustafson, et al., Proceedings of the 11th European Conference on
Genetic Programming (EuroGP 2008, Part of EvoStar), (Springer. Springer, Berlin, Heidelberg,
LNCS, 2008), pp. 73–85, https:// doi. org/ 10. 1007/ 978-3- 540- 78671-9_7

 70. W.B. Langdon, W. Banzhaf, Long-term evolution experiment with genetic programming. Artif.
Life 28(2), 173–204 (2022). https:// doi. org/ 10. 1162/ artl_a_ 00360

 71. K. Leswing (2024) Nvidia’s latest AI chip will cost more than $30,000, CEO says. https:// www.
cnbc. com/ 2024/ 03/ 19/ nvidi as- black well- ai- chip- will- cost- more- than- 30000- ceo- says. html

 72. P. Li, J. Yang, MA. Islam, et al., Making AI less “thirsty”: Uncovering and addressing the secret
water footprint of AI models. arXiv preprint arXiv: 2304. 03271 pp 1–16 (2023). https:// doi. org/ 10.
48550/ arXiv. 2304. 03271

 73. Linux Kernel development community (2024) Power capping framework. https:// www. kernel. org/
doc/ html/ next/ power/ power cap/ power cap. html

 74. J. Lu, H. Jia, N. Verma et al., Genetic programming for energy-efficient and energy-scalable
approximate feature computation in embedded inference systems. IEEE 67(2), 222–236 (2018).
https:// doi. org/ 10. 1109/ TC. 2017. 27386 42

 75. J. Ma, G. Zuo, K. Loughlin, et al., Debugging in the brave new world of reconfigurable hard-
ware, in ed. by B. Falsafi, M. Ferdman, S. Lu, et al., Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS 2022), (ACM, New York, NY, USA, 2022), pp. 946–962, https:// doi. org/ 10. 1145/ 35032 22.
35077 01

 76. Y. Maldonado, R. Salas, J.A. Quevedo et al., GSGP-hardware: instantaneous symbolic regression
with an FPGA implementation of geometric semantic genetic programming. Genet. Program Evol.
Mach. 25(2), 18 (2024). https:// doi. org/ 10. 1007/ s10710- 024- 09491-5

 77. P. Martin, A hardware implementation of a genetic programming system using FPGAs and Handel-
C. Genet. Program Evolv. Mach. 2(4), 317–343 (2001). https:// doi. org/ 10. 1023/A: 10129 42304 464

 78. E. J. McDonald, Runtime FPGA partial reconfiguration. In: Proceedings of the 2008 IEEE Aero-
space Conference (AERO 2008). IEEE, pp. 1357–1363 (2008). https:// doi. org/ 10. 1109/ AERO.
2008. 45263 68

 79. T. Mickle, J. Rennison, Nvidia becomes most valuable public company, topping Microsoft (2024).
https:// www. nytim es. com/ 2024/ 06/ 18/ techn ology/ nvidia- most- valua ble- compa ny. html? smid=
url- share

 80. J.F. Miller, Cartesian genetic programming: its status and future. Genet. Program Evolv. Mach.
21(1), 129–168 (2020). https:// doi. org/ 10. 1007/ s10710- 019- 09360-6

 81. D. Myers, R. Mohawesh, V.I. Chellaboina et al., Foundation and large language models: funda-
mentals, challenges, opportunities, and social impacts. Clust. Comput. 27(1), 1–26 (2024). https://
doi. org/ 10. 1007/ s10586- 023- 04203-7

 82. R. Nane, V.M. Sima, C. Pilato et al., A survey and evaluation of FPGA high-level synthesis tools.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(10), 1591–1604 (2016). https:// doi. org/
10. 1109/ TCAD. 2015. 25136 73

 83. M. Nicolau, A. Agapitos, Choosing function sets with better generalisation performance for sym-
bolic regression models. Genet. Program Evolvable Mach. 22(1), 73–100 (2020). https:// doi. org/
10. 1007/ s10710- 020- 09391-4

 84. E. Nurvitadhi, et al., Can FPGAs beat GPUs in accelerating next-generation deep neural net-
works?, in ed. by J. Greene, J. H. Anderson, Proceedings of the 2017 ACM/SIGDA International

https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1109/TCAD.2018.2834439
https://doi.org/10.1109/TCAD.2022.3193646
https://doi.org/10.1109/TCAD.2022.3193646
https://doi.org/10.1145/3319619.3326770
https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1007/978-3-540-78671-9_7
https://doi.org/10.1162/artl_a_00360
https://www.cnbc.com/2024/03/19/nvidias-blackwell-ai-chip-will-cost-more-than-30000-ceo-says.html
https://www.cnbc.com/2024/03/19/nvidias-blackwell-ai-chip-will-cost-more-than-30000-ceo-says.html
http://arxiv.org/abs/2304.03271
https://doi.org/10.48550/arXiv.2304.03271
https://doi.org/10.48550/arXiv.2304.03271
https://www.kernel.org/doc/html/next/power/powercap/powercap.html
https://www.kernel.org/doc/html/next/power/powercap/powercap.html
https://doi.org/10.1109/TC.2017.2738642
https://doi.org/10.1145/3503222.3507701
https://doi.org/10.1145/3503222.3507701
https://doi.org/10.1007/s10710-024-09491-5
https://doi.org/10.1023/A:1012942304464
https://doi.org/10.1109/AERO.2008.4526368
https://doi.org/10.1109/AERO.2008.4526368
https://www.nytimes.com/2024/06/18/technology/nvidia-most-valuable-company.html?smid=url-share
https://www.nytimes.com/2024/06/18/technology/nvidia-most-valuable-company.html?smid=url-share
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1007/s10586-023-04203-7
https://doi.org/10.1007/s10586-023-04203-7
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1007/s10710-020-09391-4
https://doi.org/10.1007/s10710-020-09391-4

Genetic Programming and Evolvable Machines (2025) 26:8 Page 45 of 48 8

Symposium on Field-Programmable Gate Arrays (FPGA 2017) (ACM, New York, NY, USA,
2017), pp. 5–14, https:// doi. org/ 10. 1145/ 30200 78. 30217 40

 85. Nvidia (2016) NVIDIA-SMI documentation. https:// devel oper. downl oad. nvidia. com/ compu te/
DCGM/ docs/ nvidia- smi- 367. 38. pdf

 86. M. O’Neill, L. Vanneschi, S. Gustafson et al., Open issues in genetic programming. Genet. Pro-
gram Evolv. Mach. 11(3), 339–363 (2010). https:// doi. org/ 10. 1007/ s10710- 010- 9113-2

 87. J.D. Owens, D. Luebke, N. Govindaraju et al., A survey of general-purpose computation on graph-
ics hardware. Comput. Graph. Forum 26(1), 80–113 (2007). https:// doi. org/ 10. 1111/j. 1467- 8659.
2007. 01012.x

 88. T. Perkis, Stack-based genetic programming, in Proceedings of the First IEEE Conference on Evo-
lutionary Computation (ICEC 1994). IEEE, pp 148–153 (1994). https:// doi. org/ 10. 1109/ ICEC.
1994. 350025

 89. R. Poli, W. B. Langdon, N. F. McPhee, A Field Guide to Genetic Programming, 1st edn. Lulu
Enterprises, UK Ltd, (2008). http:// www0. cs. ucl. ac. uk/ staff/W. Langd on/ ftp/ papers/ poli08_ field
guide. pdf

 90. A. Putnam, A.M. Caulfield, E.S. Chung et al., A reconfigurable fabric for accelerating large-scale
datacenter services. IEEE Micro 35(3), 10–22 (2015). https:// doi. org/ 10. 1109/ MM. 2015. 42

 91. A. Quenon, V. Ramos Gomes Da Silva, Towards higher-level synthesis and co-design with Python,
in ed. by R. Nigam, A. Sampson, S. Neuendorffer, et al., Proceedings of the 2021 Workshop on
Languages, Tools, and Techniques for Accelerator Design (LATTE 2021), (ACM, New York, NY,
USA, 2021), pp. 1–3, https:// capra. cs. corne ll. edu/ latte 21/ paper/ 20. pdf

 92. I. Rahkovsky, A. Toney, K.W. Boyack et al., AI research funding portfolios and extreme growth. J.
Front. Res. Metrics Anal. 6, 1–13 (2021). https:// doi. org/ 10. 3389/ frma. 2021. 630124

 93. R. Fernandez, D. de Bulnes, Y. Maldonado, L. Trujillo, Development of multiobjective high-level
synthesis for FPGAs. J. Sci. Program. 2020(7095048), 1–25 (2020). https:// doi. org/ 10. 1155/ 2020/
70950 48

 94. D. Robilliard, V. Marion-Poty, C. Fonlupt, Genetic programming on graphics processing units.
Genet. Program Evolv. Mach. 10(4), 447–471 (2009). https:// doi. org/ 10. 1007/ s10710- 009- 9092-3

 95. M. Roser, H. Ritchie, E. Mathieu, What is Moore’s Law? Our World in Data, (2023) . https:// ourwo
rldin data. org/ moores- law

 96. P.E. Ross, 5 Commandments [technology laws and rules of thumb]. IEEE Spectr. 40(12), 30–35
(2003). https:// doi. org/ 10. 1109/ MSPEC. 2003. 12499 76

 97. J. Ruiz-Rosero, G. Ramirez-Gonzalez, R. Khanna, Field programmable gate array applications-a
scientometric review. Computation 7(63), 1–111 (2019). https:// doi. org/ 10. 3390/ compu tatio n7040
063

 98. R. Sabherwal, V. Grover, The societal impacts of generative artificial intelligence: A balanced per-
spective. J. Assoc. Inf. Syst. 25(1):13–22 (2024). https:// doi. org/ 10. 17705/ 1jais. 00860

 99. R. Saleh, S. Wilton, S. Mirabbasi et al., System-on-chip: Reuse and integration. Proc. IEEE 94(6),
1050–1069 (2006). https:// doi. org/ 10. 1109/ JPROC. 2006. 873611

 100. R. Salvador, A. Otero, J. Mora et al., Self-reconfigurable evolvable hardware system for adaptive
image processing. IEEE Trans. Comput. 62(8), 1481–1493 (2013). https:// doi. org/ 10. 1109/ TC.
2013. 78

 101. V. Sathia, V. Ganesh, S. R.T. Nanditale, Accelerating genetic programming using GPUs (2021).
arXiv preprint arXiv: 2110. 11226 pp. 1–10. https:// doi. org/ 10. 48550/ arXiv. 2110. 11226

 102. L. Sekanina, Z. Vasicek, CGP acceleration using field-programmable gate arrays, in ed. by J. F.
Miller, Cartesian Genetic Programming, (Springer, 2011), pp. 217–230, https:// doi. org/ 10. 1007/
978-3- 642- 17310-3_7

 103. Semiconductor Research Corporation (2021) The decadal plan for semiconductors. https:// www.
src. org/ about/ decad al- plan/ decad al- plan- full- report. pdf

 104. R. P. S. Sidhu, A. Mei, V. K. Prasanna, Genetic programming using self-reconfigurable FPGAs, in
ed. by P. Lysaght, J. Irvine, R. Hartenstein, Proceedings of the 9th International Workshop on Field
Programmable Logic and Applications (FPL 1999), (Springer, Berlin, Heidelberg, LNCS, 1999),
pp. 301–312, https:// doi. org/ 10. 1007/ 978-3- 540- 48302-1_ 31

 105. A. Singleton (1994) Genetic programming with C++. Byte Magazine (February 1994):171–176
 106. S. Skalicky, J. Monson, A. Schmidt, et al., Hot & spicy: Improving productivity with Python and

HLS for FPGAs, in ed. by G. Schelle, S. Wilton, Proceedings of the 2018 IEEE 26th Annual Inter-
national Symposium on Field-Programmable Custom Computing Machines (FCCM 2018). IEEE,
pp 85–92 (2018). https:// doi. org/ 10. 1109/ FCCM. 2018. 00022

https://doi.org/10.1145/3020078.3021740
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.38.pdf
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1109/ICEC.1994.350025
https://doi.org/10.1109/ICEC.1994.350025
http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli08_fieldguide.pdf
http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/poli08_fieldguide.pdf
https://doi.org/10.1109/MM.2015.42
https://capra.cs.cornell.edu/latte21/paper/20.pdf
https://doi.org/10.3389/frma.2021.630124
https://doi.org/10.1155/2020/7095048
https://doi.org/10.1155/2020/7095048
https://doi.org/10.1007/s10710-009-9092-3
https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law
https://doi.org/10.1109/MSPEC.2003.1249976
https://doi.org/10.3390/computation7040063
https://doi.org/10.3390/computation7040063
https://doi.org/10.17705/1jais.00860
https://doi.org/10.1109/JPROC.2006.873611
https://doi.org/10.1109/TC.2013.78
https://doi.org/10.1109/TC.2013.78
http://arxiv.org/abs/2110.11226
https://doi.org/10.48550/arXiv.2110.11226
https://doi.org/10.1007/978-3-642-17310-3_7
https://doi.org/10.1007/978-3-642-17310-3_7
https://www.src.org/about/decadal-plan/decadal-plan-full-report.pdf
https://www.src.org/about/decadal-plan/decadal-plan-full-report.pdf
https://doi.org/10.1007/978-3-540-48302-1_31
https://doi.org/10.1109/FCCM.2018.00022

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 46 of 48

 107. J.E. Smith, Characterizing computer performance with a single number. Commun. ACM 31(10),
1202–1206 (1988). https:// doi. org/ 10. 1145/ 63039. 63043

 108. H.K.H. So, C. Liu, FPGA overlays, in FPGAs for software programmers. ed. by D. Koch, D.
Ziener (Springer International Publishing, Cham, 2016), pp.285–305

 109. L. Spector, A. Robinson, Genetic programming and autoconstructive evolution with the Push
programming language. Genet. Program Evolvable Mach. 3(1), 7–40 (2002). https:// doi. org/ 10.
1023/A: 10145 38503 543

 110. L. Spector, J. Klein, M. Keijzer, The Push3 execution stack and the evolution of control, in ed. by
H. G. Beyer, U. M. O’Reilly, Proceedings of the 7th Annual Genetic and Evolutionary Computa-
tion Conference Companion (GECCO 2005), (ACM, New York, NY, USA, 2005), pp. 1689–1696,
https:// doi. org/ 10. 1145/ 10680 09. 10682 92

 111. K. Staats, E. Pantridge, M. Cavaglia, et al., TensorFlow enabled genetic programming, in G.
Ochoa, Proceedings of the 2017 Genetic and Evolutionary Computation Conference Companion
(GECCO 2017), (ACM, New York, NY, USA, 2017) pp. 1872–1879. https:// doi. org/ 10. 1145/
30676 95. 30842 16

 112. G. Stitt, Are field-programmable gate arrays ready for the mainstream? IEEE Micro 31(6), 58–63
(2011). https:// doi. org/ 10. 1109/ MM. 2011. 99

 113. G. Stitt, J. Coole, Intermediate fabrics: virtual architectures for near-instant FPGA compilation.
IEEE Embed. Syst. Lett. 3(3), 81–84 (2011). https:// doi. org/ 10. 1109/ LES. 2011. 21677 13

 114. G. Stitt, A. Gupta, M. N. Emas, et al., Scalable window generation for the Intel Broadwell+Arria
10 and high-bandwidth FPGA systems, in ed. by J. H. Anderson, K. Bazargan, Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2018),
(ACM, New York, NY, USA, 2018), pp. 173–182, https:// doi. org/ 10. 1145/ 31742 43. 31742 62

 115. G. Stitt, (2024) VHDL and SystemVerilog tutorials. https:// stitt- hub. com/ vhdl- and- syste mveri log-
tutor ials/

 116. E. Strubell, A. Ganesh, A. McCallum, Energy and policy considerations for modern deep learning
research, in ed. by F. Rossi, V. Conitzer, F. Sha, Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence, vol 34, (AAAI Press, Palo Alto, CA, USA, 2020), pp. 13693–13696, https:// doi.
org/ 10. 1609/ aaai. v34i09. 7123

 117. T. Tan, E. Nurvitadhi, D. Shih, et al., Evaluating the highly-pipelined Intel Stratix 10 FPGA archi-
tecture using open-source benchmarks, in ed. by K. Sano, Y. Yamaguchi, Y. Osana, 2018 Inter-
national Conference on Field-Programmable Technology (FPT 2018). IEEE, pp 206–213, (2018).
https:// doi. org/ 10. 1109/ FPT. 2018. 00038

 118. R. Tessier, K. Pocek, A. DeHon, Reconfigurable computing architectures. Proc. IEEE 103(3), 332–
354 (2015). https:// doi. org/ 10. 1109/ JPROC. 2014. 23868 83

 119. S. M. Trimberger, Field-programmable Gate Array Technology, 1st edn. (Springer, New York, NY,
USA, 2012) https:// doi. org/ 10. 1007/ 978-1- 4615- 2742-8

 120. L. Trujillo, J.M. Muñoz Contreras, D.E. Hernandez et al., GSGP-CUDA: a CUDA framework for
geometric semantic genetic programming. SoftwareX 18(101085), 1–7 (2022). https:// doi. org/ 10.
1016/j. softx. 2022. 101085

 121. K. Vipin, S.A. Fahmy, FPGA dynamic and partial reconfiguration: a survey of architectures, meth-
ods, and applications. ACM Comput. Surv. 51(4), 1–39 (2018). https:// doi. org/ 10. 1145/ 31938 27

 122. D.R. White, J. McDermott, M. Castelli et al., Better GP benchmarks: community survey
results and proposals. Genet. Program Evolv. Mach. 14, 3–29 (2012). https:// doi. org/ 10. 1007/
s10710- 012- 9177-2

 123. M. Wijtvliet, L. Waeijen, H. Corporaal, Coarse grained reconfigurable architectures in the past 25
years: Overview and classification, in ed. by W. Najjar, A. Gerstlauer, Proceedings of the 2016
International Conference on Embedded Computer Systems: Architectures, Modeling and Simula-
tion (SAMOS XVI). IEEE, pp 235–244, (2016). https:// doi. org/ 10. 1109/ samos. 2016. 78183 53

 124. D. Wilson, G. Stitt, The unified accumulator architecture: a configurable, portable, and extensible
floating-point accumulator. ACM Trans. Reconfig. Technol. Syst. 9(3), 1–23 (2016). https:// doi.
org/ 10. 1145/ 28094 32

 125. D. Wilson, G. Stitt, Seiba: an FPGA overlay-based approach to rapid application development, in
ed. by R. Cumplido, M. Platzner, D. Andrews, Proceedings of the 2019 International Conference
on Reconfigurable Computing and FPGAs (ReConFig 2019). IEEE, pp 214–221, (2019). https://
doi. org/ 10. 1109/ ReCon Fig48 160. 2019. 89946 93

https://doi.org/10.1145/63039.63043
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1145/1068009.1068292
https://doi.org/10.1145/3067695.3084216
https://doi.org/10.1145/3067695.3084216
https://doi.org/10.1109/MM.2011.99
https://doi.org/10.1109/LES.2011.2167713
https://doi.org/10.1145/3174243.3174262
https://stitt-hub.com/vhdl-and-systemverilog-tutorials/
https://stitt-hub.com/vhdl-and-systemverilog-tutorials/
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1109/FPT.2018.00038
https://doi.org/10.1109/JPROC.2014.2386883
https://doi.org/10.1007/978-1-4615-2742-8
https://doi.org/10.1016/j.softx.2022.101085
https://doi.org/10.1016/j.softx.2022.101085
https://doi.org/10.1145/3193827
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1007/s10710-012-9177-2
https://doi.org/10.1109/samos.2016.7818353
https://doi.org/10.1145/2809432
https://doi.org/10.1145/2809432
https://doi.org/10.1109/ReConFig48160.2019.8994693
https://doi.org/10.1109/ReConFig48160.2019.8994693

Genetic Programming and Evolvable Machines (2025) 26:8 Page 47 of 48 8

 126. G. Wilson, W. Banzhaf, Linear genetic programming GPGPU on Microsoft’s Xbox 360. In: Pro-
ceedings of the 2008 IEEE Congress on Evolutionary Computation (CEC 2008). IEEE, pp 378–
385, (2008). https:// doi. org/ 10. 1109/ CEC. 2008. 46308 25, can’t find editors

 127. W. Wolf, The future of multiprocessor systems-on-chips, in, ed. by S. Malik, L. Fix, A.B Kahng,
Proceedings of the 41st Annual Design Automation Conference (DAC 2004) (ACM, New York,
NY, USA, 2004) pp. 681–685, https:// doi. org/ 10. 1145/ 996566. 996753

 128. Y. L. Wu, D. Chang, On the NP-completeness of regular 2D FPGA routing architectures and a
novel solution, in ed. by P. Storms, Proceedings of the 1994 IEEE/ACM International Confer-
ence on Computer-Aided Design (CAD 1994). IEEE, pp 362–366, (1994) https:// doi. org/ 10. 1109/
ICCAD. 1994. 629819

 129. X. Yao, Following the path of evolvable hardware. Commun. ACM 42(4), 46–49 (1999). https://
doi. org/ 10. 1145/ 299157. 299169

 130. X. Yao, T. Higuchi, Promises and challenges of evolvable hardware. IEEE Trans. Syst., Man,
Cybernet., Part C (Appl. Rev.) 29(1), 87–97 (1999). https:// doi. org/ 10. 1109/ 5326. 740672

 131. R. Zhang, A. Lensen, Y. Sun, Speeding up genetic programming based symbolic regression using
GPUs, in ed. by S. Khanna, J. Cao, Q. Bai, et al., Proceedings of the 19th Pacific Rim International
Conference on Artificial Intelligence (PRICAI 2022) (Springer, Cham, 2022), pp. 519–533. https://
doi. org/ 10. 1007/ 978-3- 031- 20862-1_ 38

 132. Z. Zhou, Strategies to speedup Tangled Program Graphs (TPG) framework for genetic program-
ming. Bachelor of Computer Science Thesis, Dalhousie University (2020). https:// doi. org/ 10.
13140/ RG.2. 2. 17908. 37768

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Christopher Crary1 · Wesley Piard1 · Greg Stitt1 · Benjamin Hicks1 · Caleb Bean1 ·
Bogdan Burlacu2 · Wolfgang Banzhaf3

 * Christopher Crary
 ccrary@ufl.edu

 Wesley Piard
 wespiard@ufl.edu

 Greg Stitt
 gstitt@ufl.edu

 Benjamin Hicks
 benjamin.hicks@ufl.edu

 Caleb Bean
 caleb.bean@ufl.edu

https://doi.org/10.1109/CEC.2008.4630825
https://doi.org/10.1145/996566.996753
https://doi.org/10.1109/ICCAD.1994.629819
https://doi.org/10.1109/ICCAD.1994.629819
https://doi.org/10.1145/299157.299169
https://doi.org/10.1145/299157.299169
https://doi.org/10.1109/5326.740672
https://doi.org/10.1007/978-3-031-20862-1_38
https://doi.org/10.1007/978-3-031-20862-1_38
https://doi.org/10.13140/RG.2.2.17908.37768
https://doi.org/10.13140/RG.2.2.17908.37768

 Genetic Programming and Evolvable Machines (2025) 26:88 Page 48 of 48

 Bogdan Burlacu
 bogdan.burlacu@fh-ooe.at

 Wolfgang Banzhaf
 banzhafw@msu.edu

1 Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL,
USA

2 Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper
Austria, Hagenberg, Upper Austria, Austria

3 Department of Computer Science and Engineering, Michigan State University, East Lansing,
MI, USA

	Using FPGA devices to accelerate the evaluation phase of tree-based genetic programming: an extended analysis
	Abstract
	1 Introduction
	2 Background
	2.1 A high-level view of modern computing
	2.2 Domain-specific architectures
	2.3 Field-programmable gate arrays

	3 Related work
	3.1 Tree-based GP systems
	3.1.1 GPU solutions
	3.1.2 CPU solutions
	3.1.3 FPGA solutions

	3.2 Other GP systems

	4 Accelerator architecture
	4.1 Program memory
	4.2 Program compiler
	4.3 Program evaluator

	5 Experiments
	5.1 Comparison measures
	5.2 Primitive sets
	5.3 Program generation
	5.4 Fitness cases

	6 Results
	7 Current challenges and potential optimizations
	7.1 Current challenges
	7.2 Potential optimizations
	7.3 Final considerations

	8 Conclusion
	References

