
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2024) 25:5
https://doi.org/10.1007/s10710-023-09478-8

1 3

Bridging directed acyclic graphs to linear representations
in linear genetic programming: a case study of dynamic
scheduling

Zhixing Huang1 · Yi Mei1 · Fangfang Zhang1 · Mengjie Zhang1 ·
Wolfgang Banzhaf2

Received: 23 January 2023 / Revised: 13 November 2023 / Accepted: 14 December 2023 /
Published online: 25 January 2024
© The Author(s) 2024

Abstract
Linear genetic programming (LGP) is a genetic programming paradigm based on a
linear sequence of instructions being executed. An LGP individual can be decoded
into a directed acyclic graph. The graph intuitively reflects the primitives and their
connection. However, existing studies on LGP miss an important aspect when see-
ing LGP individuals as graphs, that is, the reverse transformation from graph to LGP
genotype. Such reverse transformation is an essential step if one wants to use other
graph-based techniques and applications with LGP. Transforming graphs into LGP
genotypes is nontrivial since graph information normally does not convey register
information, a crucial element in LGP individuals. Here we investigate the effec-
tiveness of four possible transformation methods based on different graph informa-
tion including frequency of graph primitives, adjacency matrices, adjacency lists,
and LGP instructions for sub-graphs. For each transformation method, we design
a corresponding graph-based genetic operator to explicitly transform LGP parent’s
instructions to graph information, then to the instructions of offspring resulting from
breeding on graphs. We hypothesize that the effectiveness of the graph-based opera-
tors in evolution reflects the effectiveness of different graph-to-LGP genotype trans-
formations. We conduct the investigation by a case study that applies LGP to design
heuristics for dynamic scheduling problems. The results show that highlighting
graph information improves LGP average performance for solving dynamic schedul-
ing problems. This shows that reversely transforming graphs into LGP instructions
based on adjacency lists is an effective way to maintain both primitive frequency
and topological structures of graphs.

Keywords Linear genetic programming · Directed acyclic graph · Genetic operator ·
Dynamic job shop scheduling

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09478-8&domain=pdf

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 2 of 33

1 Introduction

Linear genetic programming (LGP) is an important member of the family of
genetic programming and has shown a competent performance [1]. An LGP indi-
vidual is a sequence of instructions that manipulate a set of registers. The LGP
individual executes the instructions sequentially to represent a computer program
[2–4]. LGP has undergone considerable development and has been successfully
applied to classification [5–7], symbolic regression [8, 9], combinatorial optimi-
zation [10, 11], control tasks [12], and other real-world problems [13, 14].

One of the most salient features of LGP is its graph characteristics. By con-
necting primitives based on registers, an LGP individual can be decoded into a
directed acyclic graph (DAG). Primitives are the basic functions and terminals
that compose GP programs. Presenting LGP individuals (i.e., programs) by
DAGs has different advantages from a raw genotype (i.e., a sequence of register-
based instructions). Graphs represent programs in a more compact representa-
tion. On the other hand, a raw genotype enables neutral search in program spaces
and memorizes potential building blocks [15, 16]. Empirical studies verified that
graphs and LGP genotypes are competitive for different tasks [17, 18]. Therefore,
it is valuable to take advantage of both representations.

There are some studies about utilizing graph information in the course of LGP
evolution, but they did not fully investigate the LGP graph characteristics. More
specifically, the utilization of graphs in LGP is one-way (i.e., the existing LGP
studies mainly consider DAGs as a compact and intuitive way to depict the pro-
grams). Whether there is an effective way to bridge graphs (i.e., phenotype) and
LGP instructions (i.e., genotype) is unknown yet. The absence of an effective
transformation from DAGs to instructions precludes LGP from fully utilizing the
graph information and cooperating with other graph-related techniques such as
neural networks. To have a better understanding of LGP graph-based character-
istics, a two-way transformation between graphs and LGP programs is necessary.

To bridge graphs to LGP, the overall goal of this paper is to design a graph-to-
instruction transformation for LGP individuals to accept the graph information of
DAGs in evolution. The main challenge lies in the fact that DAGs do not contain reg-
ister information, but LGP individuals are register-based instruction sequences. This
paper proposes two strategies to address the register issue in a graph-to-instruction
transformation. In the first transformation strategy, LGP individuals accept graph
information without considering the topological information that is represented by
registers. We assume that if topological information is not that important, ignoring
the register identification is a simple and effective way to convey graph information.
In the second strategy, LGP individuals identify the registers (by guessing) for the
instructions to reconstruct topological information. However, it is hard to perfectly
reconstruct the topological structures by registers because of the absence of register
information in DAGs. To this end, we aim to answer the following research ques-
tions: (1) what necessary information is needed for DAGs in the graph-to-instruction
transformation, (2) how to identify the registers based on graphs, and (3) how effec-
tive are the aforementioned two transformation strategies.

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 3 of 33 5

To answer the above research questions, this paper first develops new genetic
operators based on graph node frequency, adjacency matrix, and adjacency list, to
fulfill the two transformation strategies. To keep the transformation from a graph
to a program intuitive, we treat the two parents in LGP crossover operators as two
graphs and exchange their search information via the graph information. We assume
that the two LGP programs are able to effectively share knowledge if these graph-
based genetic operators effectively convey graph information (e.g., building blocks).
Second, we conduct a case study on dynamic scheduling problems, specifically,
dynamic job shop scheduling (DJSS) problems, to verify the effectiveness of the
proposed genetic operators. The experimental results demonstrate that making better
use of graph information enhances LGP performance and that the adjacency list is
the recommended graph information to bridge DAG to instructions in LGP.

2 Literature review

2.1 Linear genetic programming genotype

Every LGP individual f is a sequence of register-based instructions
f = [f0, f1,… , fl−1], l ∈ [lmin, lmax] , where l is the number of instructions, and lmin
and lmax are the minimum and maximum number of instructions respectively. Every
instruction f has three parts: destination register Rf ,d , function funf (⋅) , and source
registers Rf ,s . All of the destination and source registers come from the same set
of registers R . Note that constants (e.g., input features) in LGP programs are seen
as a kind of read-only registers, which only serve as source registers. An instruc-
tion reads the values from source registers, performs the calculation indicated by the
function, and writes the calculation results to the destination registers. Re-writable
registers are known as calculation registers. In every program execution, the reg-
isters are first initialized by certain values such as “1.0”, and the instructions are
executed one by one, from f0 to fl−1 , to represent a complete computer program. The
final output of the computer program is stored in a pre-defined output register, which
is normally set to the first register by default.

However, not all instructions contribute to the final output. When an instruction is
not connected with the program body producing the final output, or the instruction
can be removed without affecting the program behavior, the instruction becomes
ineffective in calculating the final output. The ineffective instructions are also called
“introns”. Contrarily, the instructions that participate in the calculation of the final
output are defined as effective instructions, which are also called “exons”. Specifi-
cally, the term “intron” in this paper mainly denotes the structural intron whose des-
tination register is not used as source registers by the following instructions.1 Introns
and exons can be identified by an algorithm that reversely checks each instruction in
the program based on the output registers [4].

1 We do not consider semantic introns that is a kind of effective instructions but mainly perform mean-
ingless calculation such as x = x + 0 , which does not affect the final output.

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 4 of 33

Figure 1 shows an example of the genotype of an LGP program and its corre-
sponding phenotype in DAG. Specifically, there are eighteen instructions in the
program, but only eleven of the instructions are effective (i.e., exons). The introns
are highlighted in grey, following a double slash. The final output is returned by
the first register R[0] . All of the instructions manipulate a register set R with eight
registers. There are eight input features (i.e., constant registers), denoted Input[0] to
Input[7] . The eight registers are initialized by the eight input features respectively at
the beginning of every execution.

A number of studies have been carried out to extend the linear representation in
LGP. For example, Hu et al. [19–21] analyzed the relationship between LGP geno-
type and its evolvability. Heywood et al. [22] proposed a page-based LGP to group
instructions into different pages. Oliveira et al. [23] designed problem-specific chro-
mosome representation for LGP to solve software repair (i.e., genetic improvement).
These existing studies show the potential of linear representations and their distinct
behaviors compared to tree-based GP (TGP) programs. Having a better understand-
ing of LGP is beneficial to analyze GP methods from a different perspective.

2.2 Evolutionary framework of LGP

The evolutionary framework of LGP in this paper is the generational evolutionary
framework (i.e., selecting parents for breeding and accepting offspring without fur-
ther selection), which is the recommended framework for the case study on dynamic
scheduling problems [24]. Note that it is different from the recommended evolution-
ary framework of LGP (i.e., steady-state evolutionary framework—a portion of the

Fig. 1 An LGP program example and its corresponding DAG. “Input[⋅] ” are read-only registers, and
“R[⋅] ” are calculation registers

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 5 of 33 5

least fit individuals in the population are replaced with offspring at each iteration)
for solving classification and symbolic regression problems [4, 17, 25].

LGP breeds offspring by a series of genetic operators for every generation. There
are three basic genetic operators in basic LGP (i.e., crossover, macro mutation, and
micro mutation) as shown in Fig. 2. Specifically, crossover produces new programs
by swapping instruction segments between their instruction sequences [26]. Macro
mutation produces offspring by removing a random instruction from the program or
inserting a new instruction into a random position of the program [27]. Micro muta-
tion produces offspring by replacing primitives, including functions and registers,
but not changing the total number of instructions. These three genetic operators are
triggered based on pre-defined probabilities. The LGP genetic operators have under-
gone good development. For example, Downey et al. [28] proposed a class graph
crossover to evolve LGP programs for multi-class classification. The class graph
crossover produces offspring by swapping the instructions that contribute to the
same output register (i.e., the same sub-class in multi-class classification). Besides,
various problem-specific genetic operators are developed to address specific applica-
tions respectively [22, 23]. However, the existing genetic operators of LGP are all
designed based on LGP genotype (i.e., instruction sequence) and cannot truly accept
graphs as genetic materials.

2.3 Graphs in linear genetic programming

An LGP program can be represented as a DAG. The instruction sequence is
transformed into a DAG by connecting functions and constants of exons based
on the registers [4] (i.e., connecting “ + ” to “ × ” in DAG if “ + ” uses the register
overwritten by “ × ” as one of its inputs, see instruction 16 and instruction 13 in
Fig. 1). As shown in the right part of Fig. 1, the last instruction of the LGP pro-
gram that overwrites the output register (instruction 17 in this example) is seen
as the start node in the DAG. Since the source registers of instruction 17 store

Fig. 2 The schematic diagram of LGP genetic operators

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 6 of 33

the results of instructions 15 and 16 respectively, the start node has two outgo-
ing edges, directing to two graph nodes (“−” and “ + ”) respectively. The indices
along the edges indicate the first and second inputs for “ max(⋅)”.

Evolving LGP programs based on graphs has some benefits over evolving LGP
programs based on instruction sequences. First, graphs allow us to have more pre-
cise control over the variation step size of exons. Contrarily, the variation in raw
genotype might lead to an unexpectedly large variation step size since it might
deactivate and activate different sub-programs. Second, swapping LGP building
blocks based on graphs protects the useful building blocks from being destructed
[29]. For instance, when we swap the instruction sub-sequences of two LGP pro-
grams to produce offspring, the exons (and introns) in the sub-sequences are not
guaranteed to be effective (and ineffective) after swapping since they might be
deactivated (or activated) in the new LGP program context. The building blocks
in the sub-sequences might be distorted severely, which often leads to destructive
variations (i.e., the fitness of the offspring is worse than the fitness of the parents)
[30]. But swapping sub-graphs of LGP parents naturally maintains the connec-
tions of primitives within sub-graphs and protects effective building blocks from
being deactivated. Third, treating LGP programs as graphs can further evolve the
program by replacing the introns into effective building blocks, especially when
the instruction sequence reaches the maximum program size. Fully utilizing the
maximum program size implies a longer effective program length and a bet-
ter search performance [15, 31]. Last but not least, explicitly considering graph
information in LGP programs encourages LGP to have a more compact represen-
tation and reduce redundancy.

Nevertheless, explicitly employing graphs in LGP has not been well investi-
gated though it is an effective way to show the program. Brameier and Banzhaf
[4] claimed that using graph representations to evolve LGP program does not
always lead to better performance than conventional LGP in solving classifica-
tion and symbolic regression problems, but evolving graph representations needs
much more complicated genetic operators than imperative representation. How-
ever, the discussion in [4] does not show implementation details of the compared
methods. Sotto et al. [17, 25] compared a number of graph-based GP methods,
including LGP, in their experiment. However, the graph-based genetic operators
of the compared graph-based GP methods in [17, 25] mainly manipulate genotype
by graph-based mutations and miss graph-based crossover which produces new
graphs by swapping sub-graphs. The absence of graph-based crossover limits the
variation step of graph-based GP methods and precludes useful building blocks
from being shared among the population. Huang et al. [29] proposed two graph-
based genetic operators, including graph-based crossover and mutation, and
tested their effectiveness on combinatorial optimization problems. Their results
imply the potential of the graph-based crossover. But the crossover is designed
based on LGP genotype rather than graphs, and the graph-based mutation is not
effective.

In short, the explicit use of graphs in LGP has not been well investigated from the
following aspects: (1) the existing literature misses the graph-based crossover that

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 7 of 33 5

truly swaps sub-graphs to produce offspring; (2) the existing literature misses the
graph-to-instruction transformation.

2.4 Relationship among graphs, exons, and LGP instructions

First, fully utilizing graph characteristics of LGP is different from only evolving
exons. Graphs are the phenotype of LGP programs, and LGP instructions are the
genotype. Exons in LGP instructions are the instructions that are highly related
to the graphs since the graphs are decoded based on the exons. However, exons
cannot fully stand for the phenotype since graphs carry the essential information
of both imperative primitives and their connection, which is a higher-level rep-
resentation than the exons, while exons are highly dependent on the context of
an LGP program. Besides, a graph is an abstract representation that is free from
specific genotype design (e.g., register-based instructions in LGP or Cartesian
coordinates in Cartesian GP). Representing GP programs by graphs enables GP
methods to analyze building blocks effectively and to exchange genetic materials
with many other graph-based techniques.

Second, evolving LGP programs based on graphs cannot replace evolving
LGP based on instruction sequences. Some existing studies have proposed
to directly represent GP programs by graphs and to evolve GP programs by
manipulating the graphs [17, 18, 32]. However, their results show that differ-
ent GP representations are suitable to different tasks. For example, LGP and
Cartesian GP have certain advantages in solving the tested digital circuit design
problems because of the limited reuse on intermediate results while TGP is
good at solving the tested symbolic regression problems [17, 18]. Evolving
programs by genotype instead of graphs also enables LGP and Cartesian GP
individuals to perform neutral search (i.e., varying the genotype of an individ-
ual but not changing the fitness value) and retain potential building blocks in
the individuals [15, 16, 33, 34]. The neutral search and the potential building
blocks have been shown to be helpful for LGP and Cartesian GP programs to
jump out of local optima and improve the population diversity in a wide range
of problems. Further, existing literature on evolving GP programs by graphs
directly only considered node and edge mutation on graphs in producing off-
spring and missed graph-based crossover, which makes these methods ineffi-
cient to exchange useful building blocks.

In a nutshell, a graph is an abstract representation of effective LGP instruc-
tions, while a sequence of LGP instructions represents underlying codes that
include both effective and ineffective instructions. Graphs enable LGP pro-
grams to cooperate with other graph-based techniques and explicitly take the
topological structures into consideration, while instruction representations ena-
ble the neutral search and the memory of potential building blocks. Finding
an effective way to bridge these two representations would be useful for LGP
evolution. However, to the best of our knowledge, there is no existing literature
of graph-based genetic programming investigating suitable ways of utilizing the
general graph information (e.g., adjacency list) and effective transformations

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 8 of 33

from graph to LGP instructions. The graphs of LGP programs are not fully uti-
lized yet.

2.5 Other DAG‑based genetic programming

There are some other graph-based genetic programming methods besides LGP. For
example, Cartesian genetic programming [35] is one of the well-known graph-based
genetic programming methods. The genotype of Cartesian GP is a list of grid nodes.
Each node specifies a function, its connections with other nodes, and its Cartesian
coordinate in the grid. By executing these grid nodes based on the connection, the
individuals of Cartesian GP can be decoded into DAGs to represent computer pro-
grams or digital circuits (i.e., the phenotype). Cartesian GP has shown some supe-
rior performance in designing digital circuits [36, 37], performing image classifica-
tion [38], and neural architecture search [39]. Wilson et al. [40] compared Cartesian
GP with LGP and found that the way of restricting the interconnectivity of nodes
is the key difference between these two graph-based genetic programming meth-
ods. Based on the idea of Cartesian GP, Atkinson et al. [18] proposed the Graph
Programming method to evolve graphs (abbr. EGGP). Different from Cartesian GP
which strictly requires that the connections must go from the right columns to the
left columns (i.e., the levels-back constraint), EGGP allows a graph node A to con-
nect any other graph node B in the graph, as long as A and B do not form a cycle
in the graph. The EGGP individuals have higher flexibility in topological structures
than the LGP and Cartesian GP individuals. They further validated the effective-
ness of EGGP on the test problems by comparing it with TGP, Cartesian GP, and
LGP [17, 25]. The results show that all the three DAG-based GP methods (i.e., LGP,
Cartesian GP, and EGGP) have a great advantage over TGP in searching multiple-
output computer programs such as digital circuits. However, these studies have not
investigated the graph-based crossover operators that truly swap sub-graphs and the
graph-to-instruction transformations.

3 The proposed graph‑based genetic operators

The schematic diagram of conveying graph information to LGP instructions is shown
in Fig. 3. To investigate the effectiveness of different graph-to-instruction transfor-
mation methods, we explicitly transform LGP instruction segments into DAGs [4],
and graph-based genetic operators accept the DAGs as genetic materials to produce
offspring. The dashed arrow with a question mark is the to-be-investigated step in
this paper. We assume that graph-based genetic operators should effectively evolve
LGP programs if the graph representation is effective in conveying building block
information. To have a comprehensive investigation of the effective transformation
from graphs to LGP programs, this paper designs three crossover operators to con-
vey three different types of graph information (i.e., primitive frequency, adjacency
matrix, and adjacency list) from graph to LGP instructions. These three crossover
operators are frequency-based crossover (FX), adjacency matrix-based crossover

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 9 of 33 5

(AMX), and adjacency list-based crossover (ALX). Specifically, FX and AMX fol-
low the first graph-to-instruction transformation strategy that bypasses the register
identification, and ALX resolves the register identification by a newly proposed reg-
ister assignment method.

3.1 Frequency‑based crossover (FX)

The frequency of primitives is a simple high-level feature of a graph. The frequency
of primitives implies the importance of different primitives. Frequency has been
widely applied in GP to identify important features [41, 42]. In the FX operator, we
utilize the primitive frequency in LGP crossover by seeing the primitive frequency
as a kind of distribution.

FX accepts two parent individuals and produces one offspring. The offspring
is produced by varying one of the primitives in an instruction of the first parent.
When varying the primitive, the old primitive is replaced by a new one based on the
frequency of the primitives in the second parent. We hope that varying the primi-
tive based on the frequency of another individual stimulates more useful building
blocks. The pseudo-code of FX is shown in Algorithm 1.2 The frequency vector
is defined as F = [fun1, fun2,… , fung, in1, in2,… , inh] where g is the number of
functions and h is the number of input features. The function funf is sampled by a
roulette wheel selection on the function frequency (i.e., F[fun1, fun2,… , fung]). A
higher frequency implies a larger probability to be selected. If varying constant is
triggered (i.e., ����(0, 1) < 𝜃fun + 𝜃con in line 8 of Algorithm 1), one of the source
registers is replaced by an input feature which is sampled by a roulette wheel selec-
tion on the input feature frequency F[in1, in2,… , inh] . To ensure that every primitive
has a small probability of being selected, we add 1.0 on all the elements of F . The

Fig. 3 The schematic diagram of accepting graphs as LGP genetic materials. The program-to-DAG
transformation (i.e., grey solid arrows) is fulfilled by [4]. The DAG-to-program transformation (i.e.,
dashed arrow) with a question mark is the focus of this paper

2 ����(a, b) returns a random floating-point number in [a, b). �������(a, b) returns a random integer
number in [a, b]. | ⋅ | denotes the cardinality of a set or a list. (⋅) following a set or a list denotes getting an
element based on the index.

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 10 of 33

destination register Rf ′,d and the source registers Rf ′,s of the instruction f ′ are sam-
pled uniformly.

Algorithm 1 Frequency-based crossover

Figure 4 shows an example of producing offspring by FX. First, FX transforms
the second parent into a DAG and obtains the frequency of the primitives. Note that
the frequency of primitives in a DAG is different from the frequency of primitives
in raw effective instructions, as the effective instructions contain register primitives
but the DAG does not. Since the DAG merges all the duplicated constants (i.e.,
input feature xi(i=0,1,2)) into one graph node, FX treats the incoming degree as the
frequency of constant graph nodes. FX normalizes the frequency of primitives and
gets the distribution which further biases the variation on the first parent. We can
see that the R[2] in the third instruction of Parent 1 is changed to x0 based on the
distribution.

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 11 of 33 5

3.2 Adjacency matrix‑based crossover (AMX)

The adjacency matrix conveys more graph information than the primitive frequency
by highlighting the neighboring relationship of graph nodes. The elements in an
adjacency matrix are the frequency of a primitive connecting to another primitive
in a DAG. We treat the elements in an adjacency matrix as a kind of distribution by
normalizing the elements in each row. To this end, we utilize the adjacency matrix
in LGP crossover (i.e., AMX).

Similar to FX, AMX accepts two parents and produces one offspring by vary-
ing one primitive in one of the instructions. Different from FX, AMX varies func-
tions and constants by a roulette wheel selection based on the adjacency matrix of
the graph from the other parent. The pseudo-code of varying a function or constant

Algorithm 2 Varying a function or a constant based on the adjacency matrix

Fig. 4 An example of FX operator

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 12 of 33

based on an adjacency matrix is shown in Algorithm 23 where the adjacency matrix
is defined as

Since the constants (i.e., input features) have no outgoing edge in the graph,
the two blocks of “constant-out” are two zero matrices. M is further simplified as
[Mfun Min] where Mfun denotes the neighboring relationship from function primitives
pointing to function primitives, and Min denotes the neighboring relationship from
function primitives pointing to input features. When varying the function of the l∗th
instruction, AMX first finds the function out that points to the to-be-varied function.
From the perspective of LGP genotype, it is equivalent to checking the instructions
reversely from f(l∗ − 1) and finding the instruction whose destination register is
accepted as inputs of f(l∗) . Then AMX applies the Roulette-wheel selection on Mfun
and samples a new primitive based on out. To ensure that every primitive has a small
probability of being selected, we add 1.0 on all the elements of M = [Mfun Min] in
the Roulette-wheel selection. When varying the constant of an instruction, AMX
applies Roulette-wheel selection based on the function of the instruction and Min.

Figure 5 shows an example of producing offspring by AMX operator. AMX gets
a distribution based on the adjacency matrix from the second parent and performs
variation based on the distribution. In Fig. 5, the “ ÷ ” in the third instruction of the
first parent is varied into “ +”.

3.3 Adjacency list‑based crossover (ALX)

An adjacency list is a graph representation that conveys the connection among graph
nodes. To fully utilize the topological information carried by the adjacency list, we

3 (x, ∶) and (∶, x) following a matrix denote getting the xth row or the xth column of elements respec-
tively.

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 13 of 33 5

design an adjacency list-based crossover to vary instruction segments in the parent
individuals. The adjacency list in this paper is denoted as

where each item [funi,Bi] specifies the function funi and the list of its neighboring
graph nodes Bi . Based on the adjacency list, this section proposes ALX.

Algorithm 3 Transforming an adjacency list to an instruction sequence

L =
([

fun1,B1

] [
fun2,B2

]
⋯

[
fun|L|,B|L|

])

Fig. 5 An example of AMX operator

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 14 of 33

Algorithm 4 RegisterAssignment

ALX accepts two parent individuals (one as recipient and the other as donor) to
produce one offspring. Rather than swapping the instruction sequences like basic
linear crossover [26], the donor parent first selects a sub-graph from the DAG (by
selecting a sub-sequence of instructions) and obtains the corresponding adjacency
list L . The recipient accepts the adjacency list and constructs the new instruction
sequence based on the adjacency list. The newly constructed instruction sequence
is used to replace another sub-sequence of instructions in the recipient. The pseudo-
code of transforming an adjacency list into an instruction sequence is shown in
Algorithm 3. First, ALX selects a crossover point from the recipient parent and
removes a sub-sequence of instructions from the recipient. Based on the adjacency
list, ALX randomly generates a sequence of instructions. Specifically, the functions
in the newly generated instructions are coincident with the adjacency list. Since
the adjacency list does not convey the information of registers, we propose a reg-
ister assignment method for ALX to identify the registers in those newly generated
instructions, as shown in Algorithm 4.

In general, Algorithm 4 checks the instruction sequence reversely based on the
adjacency list to assign the registers in all the new instructions. There are two main
steps in Algorithm 4, assigning destination registers and assigning source registers.
From the perspective of topological structures, assigning destination registers is
equivalent to providing the results of the sub-graph to the upper part of the DAG,
while assigning the source registers is equivalent to taking the results from the lower
part of the DAG as the inputs of the sub-graph. When assigning destination registers,

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 15 of 33 5

Algorithm 4 ensures the effectiveness of all the newly generated instructions. On the
other hand, Algorithm 4 assigns source registers based on the neighboring graph
nodes (i.e., functions or constants) specified by the adjacency list. Specifically, if the
neighboring graph node is a function, Algorithm 4 collects the possible instructions
whose functions are coincident with the neighboring function in the adjacency list
and randomly assigns the destination register from one of the possible instructions
as the source register.

Figure 6 shows an example of producing an offspring by ALX. First, ALX selects
a sub-graph from the second parent, consisting of “ −,×,+ ”, and gets the corre-
sponding adjacency list. Then ALX generates a new instruction segment based on
the adjacency list and swaps it into the first parent (i.e., the 2nd to 4th instructions
in the new instruction sequence). To maintain the topological structures among
newly inserted instructions, ALX applies the register assignment method (i.e.,
Algorithm 4) to update the registers. Algorithm 4 replaces the destination register
of the 4th instruction to R[1] to ensure the three swapped-in instructions are effec-
tive. Then, based on the adjacency list, Algorithm 4 update the source registers in
the three swapped-in instructions so that “−” accepts the results from “ × ” and “ × ”
accepts the results from “ + ” and the constant x0 . We can see that “ −,×,+ ” are con-
nected together, and the 2nd and 4th instructions manipulate suggested constants by
the adjacency list in the offspring.

Fig. 6 An example of ALX operator. The selected graph nodes, the newly generated instructions, and the
newly updated primitives are highlighted in gray color

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 16 of 33

3.4 Summary

We summarize the pros and cons of different graph information representations,
as shown in Table 1. Transforming graphs into LGP instructions based on graph
node frequency and adjacency matrix is a good alternative solution to bypass the
puzzle of identifying registers for new instructions. However, frequency-based and
adjacency matrix-based information do not explicitly consider the topological infor-
mation, which might be susceptible to the number of registers (i.e., graph width).
Besides, adjacency matrices of LGP graphs might be often too sparse to effectively
guide the search. Adjacency list can convey graph node frequency and their topo-
logical structures simultaneously but is dependent on a register assignment method
to reconstruct the topological structures. The effectiveness of the register assignment
method might limit the effectiveness of adjacency list information. To verify the
effectiveness of different representations of graph information, we compare to an
existing graph information sharing method that swaps effective instructions. Swap-
ping effective instruction has shown its effectiveness in solving DJSS [29]. However,
it cannot fulfill the DAG-to-program transformation since it only manipulates LGP
programs.

4 A case study on dynamic job shop scheduling

To verify the effectiveness of different transformation methods from DAG to LGP
genotype, this paper applies LGP to solve dynamic job shop scheduling (DJSS)
problems [43–45]. Many GP variants such as TGP, basic LGP, and LGP with graph-
based crossover [29], have shown their performance in solving DJSS problems. It
is straightforward to verify the effectiveness of the proposed graph-based genetic
operators with other GP variants based on DJSS problems. Besides, DJSS is a chal-
lenging combinatorial optimization problem that can be seen in many real-world
production scenarios. Investigating the effectiveness of the proposed genetic opera-
tors on DJSS problems is beneficial for GP in practice.

Different from the static job shop scheduling problems whose information is
known beforehand, DJSS problems have different types of dynamic events which
will occur during the process of the job shop. The information of these dynamic
events cannot be known until they occur. There have been many studies successfully
using GP methods to learn scheduling heuristics for DJSS problems [46, 47]. In this
paper, we set up the simulator based on the model of DJSS problems and see the
simulation performance as the fitness of GP individuals.

4.1 Problem description

This paper focuses on DJSS with new job arrival. The job shop in our DJSS prob-
lems processes a set of jobs � = {J1,⋯ ,J|�|} . Each Jj consists of a sequence of

operations �j =

[

Oj1,⋯ ,Ojmj

]

 where mj is the total number of operations in Jj .

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 17 of 33 5

Ta
bl

e
1

 S
um

m
ar

y
on

 th
e

pr
os

 a
nd

 c
on

s o
f d

iff
er

en
t g

ra
ph

 in
fo

rm
at

io
n

re
pr

es
en

ta
tio

ns

G
ra

ph
 in

fo
rm

at
io

n
pr

os
co

ns

Fr
eq

ue
nc

y
Th

ey
 c

an
 b

yp
as

s t
he

 p
uz

zl
e

of
 id

en
tif

yi
ng

 re
gi

ste
rs

 fo
r i

ns
tru

ct
io

ns
.

Fr
eq

ue
nc

y
on

ly
 c

on
si

de
rs

 fu
nc

tio
ns

 a
nd

 c
on

st
an

ts
 a

nd
 d

oe
s n

ot
 c

on
si

de
r t

op
o-

lo
gi

ca
l i

nf
or

m
at

io
n

at
 a

ll,
 w

hi
ch

 is
 su

sc
ep

tib
le

 to
 th

e
nu

m
be

r o
f r

eg
ist

er
s

A
dj

ac
en

cy
 m

at
rix

A
dj

ac
en

cy
 m

at
ric

es
 o

f L
G

P
pr

og
ra

m
s a

re
 sp

ar
se

 in
 m

an
y

ca
se

s,
w

hi
ch

 c
an

no
t

pr
ov

id
e

en
ou

gh
 se

ar
ch

 b
ia

s f
or

 L
G

P
A

dj
ac

en
cy

 li
st

A
dj

ac
en

cy
 li

st
co

nv
ey

s b
ot

h
fr

eq
ue

nc
y

an
d

to
po

lo
gi

ca
l s

tru
ct

ur
es

si

m
ul

ta
ne

ou
sly

 a
nd

 is
 le

ss
 su

sc
ep

tib
le

 to
 g

ra
ph

 w
id

th
Th

e
eff

ec
tiv

en
es

s o
f a

dj
ac

en
cy

 li
st

in
fo

rm
at

io
n

m
ig

ht
 b

e
lim

ite
d

by
 th

e
eff

ec
-

tiv
en

es
s o

f r
ec

on
str

uc
tin

g
to

po
lo

gi
ca

l s
tru

ct
ur

es
 b

as
ed

 o
n

re
gi

ste
rs

Eff
ec

tiv
e

in
str

uc
tio

n
Eff

ec
tiv

e
in

str
uc

tio
ns

 c
on

ve
y

al
l n

ec
es

sa
ry

 in
fo

rm
at

io
n

of
 su

b-
gr

ap
hs

 a
nd

 is
 le

ss
 su

sc
ep

tib
le

 to
 g

ra
ph

 w
id

th
Eff

ec
tiv

e
in

str
uc

tio
ns

 c
an

no
t t

ra
ns

fo
rm

 a
 g

ra
ph

 in
to

 a
n

in
str

uc
tio

n
se

gm
en

t

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 18 of 33

Each job Jj arrives to the job shop at the time �(Jj) with a weight of �(Jj) , and the
information of Jj cannot be known until their arrival. The jobs are processed by a set
of machines � = {M1,⋯ ,M|�|} . Specifically, each operation Oji of Jj is pro-
cessed by a specific machine �(Oji) with a positive processing time p(Oji) . Each
machine has a queue to store the available operations and at most processes one
operation at any time. When an operation is finished, the machine selects an availa-
ble operation from the queue. The major task in the DJSS problems of this paper is
to prioritize the available operations in each machine queue so that the job shop can
effectively react on the new arrival jobs. We adopt three different optimization
objectives in this paper, as listed as follows, where Tmax denotes the maximum tardi-
ness among all the jobs, Tmean and WTmean denote the mean and weighted mean tardi-
ness over the job set � respectively, and c(Jj) and d(Jj) denote the completion time
and the due date of job Jj respectively.

4.2 Design of comparison

To investigate the effectiveness of different graph-to-instruction transformation
methods, we design seven compared methods. The first two methods are the basic
TGP [48] and LGP [4] which are seen as the baseline. The third to fifth methods
respectively verify the three newly designed graph-based genetic operators. We
replace the micro mutation of the basic LGP with FX and AMX in the third and
fourth compared methods respectively because the variation step sizes of FX and
AMX are similar to LGP micro mutation (i.e., only varying one or a few primi-
tives in the parent but not changing the total number of instructions). The third and
fourth methods are denoted as LGP + FX and LGP + AMX respectively. The fifth
compared method is denoted as LGP + ALX, in which the linear crossover in the
basic LGP is replaced by ALX. The other settings in LGP + FX, LGP + AMX, and
LGP + ALX are kept the same as the basic LGP. To comprehensively investigate
the effectiveness of transforming graph information into instruction sequences, we
further compare the LGP with an existing graph-based crossover [29] denoted as
LGP + GC, which has shown encouraging performance gain from LGP crossover in
solving DJSS problems. Finally, we investigate the effectiveness of the cooperation
of multiple graph-based genetic operators. Since our prior investigation shows that
LGP + FX has better average performance than LGP + AMX, we replace the micro

(1)Tmax =max
Jj∈�

(max(c(Jj) − d(Jj), 0))

(2)Tmean =

∑
Jj∈�

(max(c(Jj) − d(Jj), 0))

���

(3)WTmean =

∑
Jj∈�

(max(c(Jj) − d(Jj), 0) ⋅ �(Jj))

���

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 19 of 33 5

mutation and linear crossover in the basic LGP with FX and ALX simultaneously.
The LGP with FX and ALX is denoted as LGP + FA.

The parameters of all the compared methods are shown in Table 2. Since the
prior investigation [49] has shown that the basic TGP and LGP are effective under
different settings of population size and the number of generations, we set these two
parameters to the best values for the TGP and LGP-based methods respectively. The
parameters of the genetic operators are defined based on [29, 49]. All the compared
methods start the search from a small initial program size. All the LGP methods
manipulate a register set with 8 registers. The elitism rate and the tournament size
of all the compared methods are defined as top 1% and 7 respectively. All the com-
pared methods adopt the same function set {+,−,×,÷, max,min} and terminal set,
as shown in Table 3.

It is noted that to improve the generalization ability of GP methods, DJSS train-
ing instances in different generations have different simulation seeds [24]. For each
generation, we use elitism selection to retain the best-so-far individuals for the next
population (i.e., reproduction) and apply tournament selection to select parents for
breeding. The newly generated individuals and the best-so-far individuals form the
next population.

4.3 Simulation settings

The effectiveness of the compared methods is verified by the simulation of DJSS
problems. Specifically, the job shop has 10 machines. All the jobs come into the job
shop based on a Poisson distribution. The arrival rate of the jobs is defined by the
utilization level � , which is a parameter of the Poisson distribution [29]:

where � and � are the average number of operations of the jobs and the average pro-
cessing time of the operations respectively. The expected processing time of the jobs
decreases with the increment on � . Each job contains 2 to 10 operations, and each
operation is processed by a different machine with a processing time ranging from 1
to 99 time units. The due date of a job di is defined by multiplying a due date factor
of 1.5 with the total processing time of job i (i.e., summing up the processing time
of all the operations). The weights of jobs are set as 1, 2, and 4 for 20, 60, and 20%
of all the jobs, respectively.

Each GP individual is decoded into a dispatching rule that prioritizes the avail-
able operations in each machine queue. We see the performance of the overall
simulation as the performance of the GP individual. To evaluate GP individuals
in a steady-state job shop, the simulation is warmed up with the first 1000 jobs
and takes the following 5000 jobs into account to evaluate its performance.

P(t = next job arrival time) ∼ exp
(

−
t

�

)

� =
� ⋅ �

� ⋅ |�|

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 20 of 33

Ta
bl

e
2

 D
ef

au
lt

pa
ra

m
et

er
 se

tti
ng

s o
f a

ll
th

e
co

m
pa

re
d

m
et

ho
ds

Pa
ra

m
et

er
s

TG
P

LG
P-

ba
se

d
m

et
ho

ds

Po
pu

la
tio

n
si

ze
10

24
25

6
G

en
er

at
io

ns
50

20
0

G
en

et
ic

 o
pe

ra
to

r r
at

es
C

ro
ss

ov
er

 8
0%

,m
ut

at
io

n
15

%
,re

pr
od

uc
tio

n
5%

C
ro

ss
ov

er
 3

0%
, m

ac
ro

 m
ut

at
io

n
30

%
, m

ic
ro

 m
ut

at
io

n
30

%
, r

ep
ro

du
ct

io
n

10
%

C
ro

ss
ov

er
 p

ar
am

et
er

s
In

ne
r n

od
e

90
%

, l
ea

f n
od

e
10

%
Se

gm
en

t l
en

gt
h ≤

30
, s

eg
m

en
t l

en
gt

h
di

ffe
re

nc
e≤

 5,
 c

ro
ss

ov
er

 p
oi

nt
 d

ist
an

ce
≤

30
M

ut
at

io
n

pa
ra

m
et

er
s

In
ne

r n
od

e
90

%
, l

ea
f n

od
e

10
%

M
ac

ro
 (i

ns
er

tio
n

67
%

, d
el

et
io

n
33

%
),

m
ic

ro
 (�

fu
n
=

 5
0%

, �
c
o
n
=

 1
2.

5%
 �
d
e
s
=

25

%
, �

s
o
u
=

 1
2.

5%
,)

In
iti

al
 p

ro
gr

am
 si

ze
M

in
 d

ep
th

=
2,

 m
ax

 d
ep

th
=

6
M

in
 in

str
uc

tio
n=

1,
 m

ax
 in

str
uc

tio
n=

10
m

ax
im

um
 p

ro
gr

am
 si

ze
M

ax
 d

ep
th

=
8

M
ax

 in
str

uc
tio

n=
50

Re
gi

ste
r n

um
be

r
N

on
e

8

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 21 of 33 5

To investigate all the compared methods comprehensively, six DJSS scenarios
are set up based on the existing literature [29, 49, 50]. Specifically, two utilization
levels are defined (i.e., 0.85 and 0.95). A higher utilization level implies a busier
job shop in which bottlenecks are more likely to occur. The scenarios are denoted
by “ ⟨Objective, utilization level⟩ ” based on the three optimization objectives men-
tioned in Sect. 4.1 and the two utilization levels (i.e., ⟨Tmax, 0.85⟩ , ⟨Tmax, 0.95⟩ ,
⟨Tmean, 0.85⟩ , ⟨Tmean, 0.95⟩ , ⟨WTmean, 0.85⟩ , and ⟨WTmean, 0.95⟩). These six scenarios
cover a wide range of objectives (including the worst case (Tmax) and mean perfor-
mance) and utilization levels. Each scenario evaluates a GP method by 50 inde-
pendent runs. For each independent run, the GP method searches a dispatching rule
based on the training DJSS instances, one DJSS instance per generation, and tests
the performance of the dispatching rule on 50 unseen DJSS instances. Each DJSS
instance is a simulation with 6000 jobs. The performance of the 50 unseen DJSS
instances is aggregated as the test performance for a certain independent run.

5 Empirical results

5.1 Test performance

The mean test performance of all the compared methods in solving the six DJSS
scenarios is shown in Table 4. We conduct a Friedman test with a significant level
of 0.05 on the test performance of all the compared methods. The p value of the

Table 3 The terminal set

Notation Description

PT Processing time of an operation in a job
NPT Processing time of the next operation in a job
WINQ Total processing time of operations in the buffer of a machine which is the corresponding

machine of the next operation in a job
WKR Total remaining processing time of a job
rFDD Difference between the expected due date of an operation and the system time
OWT Waiting time of an operation
NOR Number of remaining operations of a job
NINQ Number of operations in the buffer of a machine which is the corresponding machine of the

next operation in a job
W Weight of a job
rDD Difference between the expected due date of a job and the system time
NWT Waiting time of the next to-be-ready machine
TIS Difference between system time and the arrival time of a job
SL Slack: difference between the expected due date and the sum of the system time and WKR
NIQ Number of operations in the buffer of a machine
WIQ Total processing time of operations in the buffer of a machine
MWT Waiting time of a machine

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 22 of 33

Ta
bl

e
4

 M
ea

n
te

st
pe

rfo
rm

an
ce

 (S
td

.)
of

 a
ll

th
e

co
m

pa
re

d
m

et
ho

ds

A
: ⟨
T
m
a
x
,
0
.8
5
⟩ ,

B
: ⟨
T
m
a
x
,
0
.9
5
⟩ ,

C
: ⟨
T
m
e
a
n
,
0
.8
5
⟩ ,

D
: ⟨
T
m
e
a
n
,
0
.9
5
⟩ ,

E:
 ⟨W

T
m
e
a
n
,
0
.8
5
⟩ ,

F:
 ⟨W

T
m
e
a
n
,
0
.9
5
⟩

Sc
e

TG
P

LG
P

LG
P

+
 F

X
LG

P
+

 A
M

X
LG

P
+

 A
LX

LG
P

+
 G

C
LG

P
+

 F
A

A
19

38
.1

 (5
2.

3)
 ≈

19
31

.9
 (6

1.
8)

19
41

.6
 (5

9.
4)

 ≈
19

53
.1

 (1
15

) ≈
19

23
 (5

4.
3)

 ≈
19

25
.9

 (5
5.

4)
 ≈

19
20

.1
 (4

6)
 ≈

B
40

77
.9

 (1
49

) −
39

81
.6

 (1
35

)
39

48
.7

 (7
2.

9)
 ≈

39
57

.2
 (8

1.
7)

 ≈
39

20
.7

 (8
6.

5)
 +

39
67

 (1
19

) ≈
39

01
 (8

8.
4)

 +
C

41
7.

6
(2

.5
) ≈

41
7.

2
(3

.1
)

41
7

(2
.6

) ≈
41

7.
6

(3
.7

) ≈
41

6.
6

(2
.4

) ≈
41

7.
4

(3
) ≈

41
8.

3
(4

.3
) ≈

D
11

16
.8

 (1
2)

 ≈
11

17
.6

 (1
6.

1)
11

12
.5

 (8
) ≈

11
14

.2
 (9

.6
) ≈

11
15

.5
 (1

2.
5)

 ≈
11

13
.6

 (9
) ≈

11
12

.2
 (8

.9
) +

E
72

8.
4

(7
.1

) −
72

4.
4

(6
.5

)
72

4
(5

.8
) ≈

72
4

(6
) ≈

72
4

(5
.7

) ≈
72

2
(6

.3
) +

72
3.

8
(6

.2
) ≈

F
17

44
.9

 (2
7.

8)
 −

17
21

.9
 (2

3.
8)

17
21

.4
 (3

1)
 ≈

17
22

.2
 (2

9.
8)

 ≈
17

30
.8

 (2
5.

7)
 ≈

17
18

 (2
1.

3)
 ≈

17
25

.6
 (2

4.
5)

 ≈
m

ea
n

ra
nk

6.
67

4.
67

3.
33

4.
67

3
2.

83
2.

83

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 23 of 33 5

Friedman test is 0.016 which implies there is a significant difference among the
compared methods. The notation “ + ”, “−”, and “ ≈ ” in Table 4 denote a method is
significantly better than, significantly worse than, or statistically similar to the basic
LGP based on Wilcoxon rank-sum test with a significant level of 0.05. The best
mean values are highlighted in bold.

As shown in Table 4, first, all the three newly proposed graph-based genetic
operators, together with LGP + GC, improve the overall performance of basic LGP
since the mean ranks of most LGP methods (except LGP + AMX) with graph-
based genetic operators are better than basic LGP (i.e., smaller is better). Second,
the performance of LGP is improved with the amount of graph information overall.
Specifically, LGP + FX and LGP + AMX (i.e., distribution and local topological
structures) have worse mean ranks than LGP + ALX (i.e., topological structures of
sub-graphs), and LGP + ALX has a worse mean rank than LGP + GC which con-
veys topological structures and register information in exchanging genetic materials.
LGP + FA which conveys more graph information by using multiple graph-based
genetic operators has the same mean rank as LGP + GC. Table 4 also shows that
the best mean test performance is mainly achieved by LGP + ALX, LGP + GC, and
LGP + FA, which verifies that conveying more graph information (e.g., primitive
frequency and topological structures) in the course of exchanging genetic materials
is effective in improving LGP performance. It is noted that although the adjacency
matrix is supposed to convey more graph information than graph node frequency,
the adjacency matrix does not help LGP + AMX perform better than LGP + FX

Fig. 7 The convergence of different graph-based genetic operators

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 24 of 33

since adjacency matrices of LGP graphs are often too sparse to provide search bias
(i.e., most elements in the adjacency matrix are zero which degenerates AMX to
uniform variation). In short, all the three newly proposed graph-based genetic opera-
tors have very competitive performance with basic LGP, which implies the proposed
graph-based genetic operators effectively convey the graph information from one
parent individual to the other. The improvement in mean ranks implies the potential
of utilizing graph information.

5.2 Training convergence

This section compares the training performance of different graph-based genetic
operators, as shown in Fig. 7. Specifically, we compare the test performance of
the best individuals from all the compared methods at every generation. Over-
all, all compared methods perform quite similarly in most problems. But in some
problems, we can see gaps among the curves. For example, LGP + FA converges
faster than the others in ⟨Tmax, 0.85⟩ and ⟨Tmax, 0.95⟩ , and LGP + GC converges
faster than the others in ⟨WTmean, 0.95⟩ in the first 20,000 simulations. Fur-
ther, if we look at the lowest convergence curves at different stages, we find that
LGP + ALX, LGP + GC, and LGP + FA alternatively take the leading posi-
tions in training. For example, in ⟨Tmean, 0.85⟩ , LGP + ALX is slightly lower
than the others in most simulations but is caught up by LGP + GC from 20,000
to 40,000 simulations. Based on the results, we confirm that conveying as much
graph information as possible (e.g., LGP + ALX, LGP + GC, and LGP + FA)
can improve LGP performance to some extent.

To conclude, the proposed graph-based genetic operators successfully carry the
information from LGP instructions to graph and back to instructions since the train-
ing and test performance of the proposed graph-based genetic operators are simi-
lar to or better than the performance of conventional genetic operators that directly
exchange instructions. We also see that the performance gain of graph-based genetic
operators increases with the amount of graph information overall. Furthermore, if
we look back at the pros and cons of the graph information (Table 1), we find that
(1) bypassing the issue of identifying registers (i.e., LGP + FX and LGP + AMX)
is a feasible way to transform graphs to instructions, but it is not as effective as
LGP + ALX because of the loss of graph information (2) LGP + ALX performs
as competitively as swapping effective instructions directly, which implies that the
register assignment method in LGP+ALX reconstructs the topological structures
quite well without much deterioration on effectiveness.

6 Further analyses

6.1 Effectiveness on different graph shapes

To comprehensively investigate the effectiveness of the proposed graph-based
genetic operators in different graphs, this section compares the graph-based genetic

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 25 of 33 5

operators on different graph shapes. The graph shape in LGP (i.e., depth and width
of a graph) is approximately defined by the maximum number of instructions
(i.e., depth) and the maximum number of registers (i.e., width). A graph shape is
denoted by “ ⟨#ins, #reg⟩ ” in this paper, specifying the maximum depth and width
of the graph. This section tests nine different graph shapes, from a shallow and
narrow graph to a deep and wide graph. The nine graph shapes are ⟨25ins, 4reg⟩ ,
⟨25ins, 8reg⟩ , ⟨25ins, 12reg⟩ , ⟨50ins, 4reg⟩ , ⟨50ins, 8reg⟩ , ⟨50ins, 12reg⟩ ,
⟨100ins, 4reg⟩ , ⟨100ins, 8reg⟩ , and ⟨100ins, 12reg⟩ . Figure 8 shows the mean rank
of the compared methods obtained by a Friedman test on all the six DJSS scenar-
ios in each graph shape. The compared methods include basic LGP, and LGP with
four graph-based genetic operators (i.e., LGP + FX, LGP + AMX, LGP + ALX,
and LGP + GC) to separately investigate the effectiveness. We apply the Bonfer-
roni–Dunn’s test as a post-hoc analysis on the mean rank of the compared methods
to detect the significant difference with the control algorithm (We take the algorithm
with the best mean rank as the control algorithm). The shadow in Fig. 8 denotes
the threshold of the critical difference of Bonferroni–Dunn’s test with a significance
level of 0.05. The critical difference of the Bonferroni–Dunn’s test is 2.28 [51]. The
threshold value equals to the critical difference plus the mean rank of the control
algorithm (e.g., the threshold is 2.28 + 2 = 4.28 in ⟨25ins, 4reg⟩). If the mean rank
of a compared algorithm is larger than the threshold value, the compared algorithm
is significantly worse than the control algorithm. Otherwise, the compared algo-
rithm performs statistically similarly to the control algorithm.

Fig. 8 The mean rank of the compared methods on all the six DJSS scenarios in different graph shapes.
The shadows denote the threshold of the critical difference of Bonferroni–Dunn’s test with a significance
level of 0.05

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 26 of 33

First, Fig. 8 shows that when the graph is shallow (i.e., 25 instructions),
LGP + ALX and LGP + GC have better (i.e., smaller) overall mean ranks than
(or have at least similar mean rank to) the other compared LGP methods in the
three graph widths. It implies that LGP + ALX and LGP + GC can fully utilize
the maximum program size to construct effective solutions. In contrast, basic
LGP, LGP + FX, and LGP + AMX have worse mean ranks than LGP + ALX and
LGP + GC because they cannot effectively turn introns into useful building blocks
and have insufficient space to contain effective solutions (i.e., under-representing
[52]). Note that when graphs have abundant space to contain effective solutions
(i.e., growing from 25 instructions to 100 instructions), the building blocks stored in
introns improve the diversity of genetic materials [53] and improve the performance
of the basic LGP and LGP + FX (i.e., smaller mean ranks).

Second, when the graph width grows from 4 to 12 registers, we see a sali-
ent improvement (i.e., become smaller) in the mean ranks of LGP + ALX and
LGP + GC. For example, the mean ranks of LGP + ALX and LGP + GC reduce
from about 3.4 in ⟨50ins, 4reg⟩ , to about 2.0 in ⟨50ins, 8reg⟩ and ⟨50ins, 12reg⟩ .
The other LGP methods (i.e., basic LGP, LGP + FX, and LGP + AMX) that
apply linear crossover to swap genetic materials have a slightly better mean rank
than LGP + ALX and LGP + GC on long and narrow graphs (i.e., ⟨50ins, 4reg⟩
and ⟨100ins, 4reg⟩) since swapping instruction segments directly is equivalent
to exchanging sub-graphs when there are few introns. However, the mean ranks
of basic LGP, LGP + FX, and LGP + AMX constantly increase with the graph
width in all the graph depths. Specifically, the overall performance of LGP + FX
and LGP + AMX is significantly worse than LGP + GC on ⟨25ins, 12reg⟩ , and
the overall performance of basic LGP is significantly worse than LGP + GC on
⟨50ins, 12reg⟩ . The results verify that LGP without explicitly maintaining the topo-
logical structure is susceptible to the number of registers and is not good at evolving
wide graphs.

Third, LGP + ALX has a quite similar performance to LGP + GC in all the nine
graph shapes. Given that LGP + ALX maintains the topological structures based
on the proposed register assignment method (i.e., Algorithm 4) while LGP + GC
directly swap effective instructions, the proposed register assignment method can
reconstruct the topological structures in offspring very well.

In short, the mean rank comparison verifies that LGP + ALX and LGP + GC
perform averagely better than the other algorithms and are less susceptible to graph
width. Besides, the newly proposed register assignment method can effectively recon-
struct the topological structures based on the adjacency list. Based on the results, we
confirm that ALX is an effective method to transform graphs into LGP instructions.

6.2 Component analyses on ALX

The results in Sect. 6.1 verify that ALX is an effective method for LGP to accept
graph information. To investigate the reasons of the superior performance, this sec-
tion conducts an ablation study on ALX. Given that an adjacency list can convey
two kinds of graph information, the frequency of graph nodes and their topological

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 27 of 33 5

connection, we verify the effectiveness of different graph information separately
by four ALX-based methods. We use basic LGP and LGP + ALX as the baseline
methods in this section. We develop “ALX/noRegAss” in which we remove the
������������������(⋅) from LGP + ALX. In this case, LGP + ALX generates
the instruction segment only based on each item of the adjacency list and does
not further connect these generated instructions by registers. The newly generated
instruction segment has a similar graph node frequency to the adjacency list but has
very different topological structures, and the effectiveness of the instruction segment
cannot be ensured (i.e., might contain a lot of introns after swapping into a parent).
Besides, we develop “ALX/randSrc” in which we do not assign source registers for
the newly generated instruction in ALX (i.e., removing lines 5–15 in Algorithm 4
but ensuring that each newly generated instructions are effective in the offspring).
By comparing with ALX/noRegAss, ALX/randSrc eliminates the performance bias
caused by the epistases of instructions (i.e., to-be-swapped graph nodes are likely
not connected with the parent graph in ALX/noRegAss). Nevertheless, ALX/rand-
Src does not maintain the topological structures based on the adjacency list either.
Note that since all of the parameters in the compared methods follow the settings
of the basic LGP which does not maintain the topological structures in its evolu-
tion, the compared methods with different components do not show significant per-
formance discrepancy in our prior investigation. Therefore, to highlight the perfor-
mance discrepancy, we also compare the four compared methods with 12 registers.
Other parameters in this section are set the same as Sect. 4.2.

Table 5 The mean test performance (std.) of LGP with different ALX components

The best mean values and significant p values are highlighted in bold

Reg Scenario LGP ALX/noRegAss ALX/randSrc LGP + ALX

8 registers ⟨Tmax, 0.85⟩ 1931.9 (61.8) ≈ 1925.2 (56.5) ≈ 1922.1 (48) ≈ 1923 (54.3)
⟨Tmax, 0.95⟩ 3981.6 (135.1)

−
3937.4 (127) ≈ 3967.1 (133.6)

≈

3920.7 (86.5)

⟨Tmean, 0.85⟩ 417.2 (3.1) ≈ 417.6 (3.2) ≈ 417.7 (3) − 416.6 (2.4)
⟨Tmean, 0.95⟩ 1117.6 (16.1) ≈ 1117.1 (14.6) ≈ 1115.2 (10.8) ≈ 1115.5 (12.5)
⟨WTmean, 0.85⟩ 724.4 (6.5) ≈ 724.1 (6.6) ≈ 724.9 (6.2) ≈ 724 (5.7)
⟨WTmean, 0.95⟩ 1721.9 (23.8) ≈ 1741 (34.8) ≈ 1726.8 (23) ≈ 1730.8 (25.7)

Mean rank 3 2.83 2.5 1.67
Pair-wise p value 0.442 0.705 1
12 registers ⟨Tmax, 0.85⟩ 1940.8 (49.9) ≈ 1939.3 (52.5) ≈ 1936.6 (56.9) ≈ 1932.1 (48.5)

⟨Tmax, 0.95⟩ 3999 (111.8) − 3989.6 (98.3) − 4006.4 (136.3)
−

3941.9 (73.8)

⟨Tmean, 0.85⟩ 417.8 (2.7) ≈ 418.1 (2.8) ≈ 418.3 (3.5) ≈ 417.5 (2.4)
⟨Tmean, 0.95⟩ 1118.3 (10.8) ≈ 1118.5 (10.2) ≈ 1117.9 (10.4) ≈ 1115.9(9.3)
⟨WTmean, 0.85⟩ 726.7 (6.9) ≈ 727.1 (7.9) ≈ 726.8 (9.1) ≈ 725.2 (5.8)
⟨WTmean, 0.95⟩ 1743.9 (32.5) ≈ 1739.8 (29.9) ≈ 1737.8 (30.9) ≈ 1737.7 (30.8)

Mean rank 3 3.17 2.83 1
Pair-wise p value 0.044 0.022 0.083

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 28 of 33

Table 5 shows the results of the compared methods. We apply Friedman test and
Wilcoxon test to analyze the test performance of the compared methods. The p val-
ues of the Friedman test are 0.284 and 0.012 for 8 and 12 registers respectively,
which means there is a significant difference in the test performance with 12 regis-
ters. In the comparison with 8 registers, the p values from a pair-wise Friedman test
show that all compared methods are similar. However, the mean ranks and the mean
test performance of ALX/noRegAss and ALX/randSrc show that only conveying
frequency information of graphs is averagely inferior to conveying both frequency
and topological information based on adjacency list. The results with 12 registers
also show a performance reduction when ALX does not maintain topological struc-
tures. The basic LGP and ALX/noRegAss have significantly worse performance
than LGP + ALX, and ALX/randSrc has a larger (worse) mean rank and worse
mean test performance than LGP + ALX in most scenarios.

Fig. 9 The mean program length, mean effective program length, and mean effective ratio of the LGP
methods. Y-axis is specified by the first column and X-axis denotes simulations

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 29 of 33 5

In summary, the results confirm that ALX effectively uses both frequency and
topological information to improve LGP performance. Specifically, first, graph node
frequency improves LGP performance since ALX/noRegAss and ALX/randSrc have
better test performance than basic LGP overall. Second, connecting every to-be-
swapped graph node with the parent graph (i.e., ALX/randSrc and LGP + ALX) and
connecting the newly generated instructions among themselves (i.e., LGP + ALX)
both enhance LGP performance.

6.3 Program size and effective ratio

To further understand the behaviors of different graph-based genetic operators, we
investigate the mean program length, mean effective program length, and the mean
effective ratio of LGP populations in the course of evolution. Specifically, we define
the number of (effective) instructions as the (effective) program length and define
the effective program length divided by the program length as the effective ratio for
a program. We select three scenarios with a utilization level of 0.95 as examples to
make analyses. The results are shown in Fig. 9.

First, the program length of LGP + ALX and LGP + FA grows more slowly than
the others, and all the compared methods finally maintain at a similar level of pro-
gram length. Given that LGP + ALX and LGP + FA replace conventional linear
crossover by ALX, the results imply that ALX has a smaller variation step size than
conventional linear crossover and is less suffered from the bloat effect caused by
introns. It is because ALX only swaps the effective instructions within an instruction
segment (by transforming the effective instructions into a DAG), and the number of
effective instructions is often smaller than the length of the instruction segment.

Second, LGP + ALX, LGP + FA, and LGP + GC have larger effective programs
than the other compared methods. For example, LGP + ALX and LGP + FA end
up with an effective program length of nearly 40 instructions in the three scenarios,
while LGP, LGP + FX, and LGP + AMX only maintain at the level of 25 effec-
tive instructions. Based on the smaller program length and larger effective program
length of LGP + ALX and LGP + FA, it is believed that ALX enables LGP to make
better use of program instructions. The higher effective ratios of LGP + ALX and
LGP + FA further confirm the conclusion. In terms of effective ratio, LGP + ALX
and LGP + FA roughly maintain at the level of 0.8 in the course of evolution, while
the other LGP methods without ALX or GC only maintain at the level of 0.55. The
full utilization of instructions helps LGP to contain more effective building blocks
within a given maximum program size.

7 Conclusions

The main goal of this paper is to find an effective way for LGP to accept graph informa-
tion during breeding. By investigating four graph-based genetic operators, this paper
confirms that the adjacency list is an effective graph representation to transform graphs
into LGP instructions in a case study of solving DJSS problems. To address the register

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 30 of 33

assignment issue in graph-to-instruction transformation, this paper proposes a register
assignment method. The experimental results show that the register assignment method
is effective in reconstructing the topological structures without significant loss of pro-
gram effectiveness. Note that although we mainly investigate different graph informa-
tion representations (by corresponding graph-based genetic operators) separately in this
paper, LGP can simultaneously utilize more than one kind of graph information during
the course of evolution in practice. The experimental results also confirm that fully uti-
lizing different kinds of graph information improves the performance of basic LGP and
significantly reduces the susceptibility to maximum graph shapes.

This paper can be seen as a bridge from DAGs to LGP instructions, to make up
the missing part of the graph-based theory in existing LGP literature. Further, the
proposed graph-based genetic operators in this paper facilitate future cooperation
between LGP and many other graph-based techniques and applications, such as neu-
ral networks and social network detection. We expect this paper to consolidate the
foundation of LGP theory and provide a prior investigation for future LGP studies.

The conclusion in DJSS problems may be generalized to other domains since the
proposed graph-to-instruction transformations did not consider the problem-specific
features in their design. To verify this point, we plan to extend our experiments to other
domains such as regression and classification in future work. Besides, we intend to fully
use the graph-based characteristics of LGP to design new techniques, which are rarely
taken into account in the existing literature. For example, the intrinsic multiple outputs
in LGP can be used in tasks with multiple decisions. The easy reuse of building blocks
in LGP can facilitate GP methods to evolve compact programs. We also intend to coop-
erate LGP with neural networks to perform neural architecture searches.

Acknowledgements Non applicable.

Author Contributions All authors discussed the idea of this paper many times. Specifically, ZH did
the experiments and results analyses, and this process repeats a number of times based on discussions.
Finally, ZH wrote the first draft, and then all authors discussed and revised this paper with substantial
improvements.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. This work
is supported by the Marsden Fund of New Zealand Government under Contract MFP-VUW1913 and
Contract VUW1614; in part by the Science for Technological Innovation Challenge Fund under Grant
2019-S7-CRS; and in part by the MBIE SSIF Fund under Contract VUW RTVU1914. The work of Zhix-
ing Huang was supported by the China Scholarship Council (CSC)/Victoria University Scholarship.

Availability of data and materials Non applicable.

Declarations

Ethical approval Non applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 31 of 33 5

directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. M. Oltean, C. Grosan, A comparison of several linear genetic programming techniques. Complex
Syst. 14, 285–313 (2004)

 2. P. Nordin, A compiling genetic programming system that directly manipulates the machine code.
Adv. Genet. Program. 1, 311–331 (1994)

 3. P. Nordin, in Evolutionary Program Induction of Binary Machine Code and Its Applications. Ph.D.
Thesis (1997)

 4. M. Brameier, W. Banzhaf, Linear Genetic Programming (Springer, New York, NY, 2007)
 5. M. Brameier, W. Banzhaf, A comparison of linear genetic programming and neural networks in

medical data mining. IEEE Trans. Evolut. Comput. 5, 17–26 (2001)
 6. C. Fogelberg, in Linear Genetic Programming for Multi-class Classification Problems. Ph.D. The-

sis, Victoria University of Wellington (2005)
 7. S. Provorovs, A. Borisov, Use of linear genetic programming and artificial neural network methods

to solve classification task. Comput. Sci. Sci. J. Riga Tech. Univ. 45, 133–139 (2012)
 8. L.F.D.P. Sotto, V.V. Melo, A probabilistic linear genetic programming with stochastic context-free

grammar for solving symbolic regression problems, in Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 1017–1024 (2017)

 9. Z. Huang, Y. Mei, J. Zhong, Semantic linear genetic programming for symbolic regression. IEEE
Trans. Cybern. 1–14 (2022). Early access

 10. L.F.D.P. Sotto, V.V. Melo, M.P. Basgalupp, �-lgp: an improved version of linear genetic program-
ming evaluated in the ant trail problem. Knowl. Inform. Syst. 52, 445–465 (2017)

 11. Z. Huang, , F. Zhang, Y. Mei, M. Zhang, An investigation of multitask linear genetic programming
for dynamic job shop scheduling. in Proceedings of European Conference on Genetic Program-
ming, Cham, pp. 162–178 (2022)

 12. R. Li, B.R. Noack, L. Cordier, J. Borée, F. Harambat, Drag reduction of a car model by linear
genetic programming control. Exp. Fluids 58(8), 1–20 (2017)

 13. M. Jamei, I. Ahmadianfar, Prediction of scour depth at piers with debris accumulation effects using
linear genetic programming. Mar. Georesour. Geotechnol. 38, 468–479 (2020)

 14. H.V. Arellano, M.M. Rivera, Forward kinematics for 2 DOF planar robot using linear genetic pro-
gramming. Res. Comput. Sci. 148, 123–133 (2019)

 15. L.F.D.P. Sotto, F. Rothlauf, V.V. Melo, M.P. Basgalupp, An analysis of the influence of noneffective
instructions in linear genetic programming. Evolut. Comput. 30, 51–74 (2022)

 16. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.
IEEE Trans. Evolut. Comput. 10, 167–174 (2006)

 17. L.F.D.P. Sotto, P. Kaufmann, T. Atkinson, R. Kalkreuth, M. Porto, M. Basgalupp, Graph representa-
tions in genetic programming. Genet. Program. Evol. Mach. 22(4), 607–636 (2021)

 18. T. Atkinson, D. Plump, S. Stepney, Evolving graphs by graph programming, in Proceedings of
European Conference on Genetic Programming, pp. 35–51 (2018)

 19. T. Hu, J.L. Payne, W. Banzhaf, J.H. Moore, Robustness, evolvability, and accessibility in linear genetic
programming, in Proceedings of European Conference on Genetic Programming, pp. 13–24 (2011)

 20. T. Hu, J.L. Payne, W. Banzhaf, J.H. Moore, Evolutionary dynamics on multiple scales: a quantita-
tive analysis of the interplay between genotype, phenotype, and fitness in linear genetic program-
ming. Genet. Program. Evol. Mach. 13(3), 305–337 (2012)

 21. T. Hu, W. Banzhaf, J.H. Moore, Robustness and evolvability of recombination in linear genetic pro-
gramming, in Proceedings of European Conference on Genetic Programming, pp. 97–108 (2013)

 22. M.I. Heywood, A.N. Zincir-Heywood, Dynamic page based crossover in linear genetic program-
ming. IEEE Trans. Syst. Man Cybern. Part B Cybern. 32, 380–388 (2002)

 23. V.P.L. Oliveira, E.F. Souza, C.L. Goues, C.G. Camilo-Junior, Improved representation and genetic
operators for linear genetic programming for automated program repair. Empir. Softw. Eng. 23,
2980–3006 (2018)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Genetic Programming and Evolvable Machines (2024) 25:5

1 3

5 Page 32 of 33

 24. T. Hildebrandt, J. Heger, B. Scholz-reiter, Towards improved dispatching rules for complex shop
floor scenarios - a genetic programming approach, in Proceedings of the Annual Conference on
Genetic and Evolutionary Computation, pp. 257–264 (2010)

 25. L.F.P. Sotto, P. Kaufmann, T. Atkinson, R. Kalkreuth, M.P. Basgalupp, A study on graph representa-
tions for genetic programming, in Proceedings of Genetic and Evolutionary Computation Confer-
ence, pp. 931–939 (2020)

 26. W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction on the
Automatic Evolution of Computer Programs and Its Applications (Morgan Kaufmann, San Fran-
cisco, California, 1998)

 27. W. Banzhaf, M. Brameier, M. Stautner, K. Weinert, Genetic programming and its application in
machining technology, in Advances in Computational Intelligence—Theory and Practice, (Springer,
Berlin 2003), pp. 194–242

 28. C. Downey, M. Zhang, W.N. Browne, New crossover operators in linear genetic programming for
multiclass object classification, in Proceedings of the Annual Genetic and Evolutionary Computa-
tion Conference, pp. 885–892 (2010)

 29. Z. Huang, Y. Mei, F. Zhang, M. Zhang, Graph-based linear genetic programming: a case study of
dynamic scheduling, in Proceedings of the Genetic and Evolutionary Computation Conference,
New York, NY, USA, pp. 955–963 (2022)

 30. P. Nordin, F. Francone, W. Banzhaf, Explicitly defined introns and destructive crossover in genetic
programming, in Advances in Genetic Programming, (MIT Press, Cambridge, 1996), pp. 111–134

 31. L.F.D.P. Sotto, F. Rothlauf, On the role of non-effective code in linear genetic programming, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, (ACM, New York, 2019), pp.
1075–1083

 32. E. Medvet, A. Bartoli, Evolutionary optimization of graphs with graphea, in Proceedings of Interna-
tional Conference of the Italian Association for Artificial Intelligence, pp. 83–98 (2020)

 33. A.J. Turner, J.F. Miller, Neutral genetic drift: an investigation using cartesian genetic programming.
Genet. Program. Evol. Mach. 16, 531–558 (2015)

 34. B.W. Goldman, W.F. Punch, Analysis of cartesian genetic programming’s evolutionary mechanisms.
IEEE Trans. Evolut. Comput. 19, 359–373 (2015)

 35. J.F. Miller, An empirical study of the efficiency of learning Boolean functions using a Cartesian
Genetic Programming approach, in Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 1135–1142 (1999)

 36. J.F. Miller, D. Job, V.K. Vassilev, Principles in the evolutionary design of digital circuits-part I.
Genet. Program. Evol. Mach. 1(1), 7–35 (2000)

 37. J.F. Miller, D. Job, V.K. Vassilev, Principles in the evolutionary design of digital circuits-part II.
Genet. Program. Evol. Mach. 1(3), 259–288 (2000)

 38. P.C.D. Paris, E.C. Pedrino, M.C. Nicoletti, Automatic learning of image filters using Cartesian
genetic programming. Integr. Comput. Aided Eng. 22(2), 135–151 (2015)

 39. J.F. Miller, D.G. Wilson, S. Cussat-Blanc, Evolving developmental programs that build neural net-
works for solving multiple problems, in Genetic Programming Theory and Practice XVI. Genetic
and Evolutionary Computation. (Springer, Cham, 2019), pp. 137–178

 40. G.Wilson, W. Banzhaf, A comparison of cartesian genetic programming and linear genetic pro-
gramming, in Proceedings of European Conference on Genetic Programming, pp. 182–193 (2008)

 41. F. Zhang, Y. Mei, S. Nguyen, M. Zhang, Genetic programming with adaptive search based on the
frequency of features for dynamic flexible job shop scheduling, in Proceedings of European Confer-
ence on Evolutionary Computation in Combinatorial Optimization, pp. 214–230 (2020)

 42. Z. Huang, J. Zhong, L. Feng, Y. Mei, W. Cai, A fast parallel genetic programming framework with
adaptively weighted primitives for symbolic regression. Soft Comput. 24, 7523–7539 (2020)

 43. E.K. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J.R. Woodward, in A Classification of
Hyper-Heuristic Approaches, (Springer, Cham, 2010), pp. 449–468

 44. J. Zhang, G. Ding, Y. Zou, S. Qin, J. Fu, Review of job shop scheduling research and its new per-
spectives under industry 4.0. J. Intell. Manuf. 30, 1809–1830 (2019)

 45. J. Mohan, K. Lanka, A.N. Rao, A review of dynamic job shop scheduling techniques. Proc. Manuf.
30, 34–39 (2019)

 46. S. Nguyen, Y. Mei, M. Zhang, Genetic programming for production scheduling: a survey with a uni-
fied framework. Complex Intell. Syst. 3, 41–66 (2017)

 47. F. Zhang, S. Nguyen, Y. Mei, M. Zhang, Genetic Programming for Production Scheduling
(Springer, Singapore, 2021)

1 3

Genetic Programming and Evolvable Machines (2024) 25:5 Page 33 of 33 5

 48. J.R. Koza, Genetic programming as a means for programming computers by natural selection. Stat.
Comput. 4(2), 87–112 (1994)

 49. Z. Huang, Y. Mei, M. Zhang, Investigation of linear genetic programming for dynamic job shop
scheduling, in Proceedings of IEEE Symposium Series on Computational Intelligence, (IEEE,
Orlando, FL, 2021), pp. 1–8

 50. Y. Mei, S. Nguyen, M. Zhang, Evolving time-invariant dispatching rules in job shop scheduling
with genetic programming, in Proceedings of European Conference on Genetic Programming, pp.
147–163 (2017)

 51. S. García, A. Fernández, J. Luengo, F. Herrera, A study of statistical techniques and performance
measures for genetics-based machine learning: Accuracy and interpretability. Soft Comput. 13,
959–977 (2009)

 52. F. Rothlauf, D.E. Goldberg, Redundant representations in evolutionary computation. Evolut. Com-
put. 11, 381–415 (2003)

 53. T. Hu, W. Banzhaf, Neutrality, robustness, and evolvability in genetic programming, in Genetic Pro-
gramming Theory and Practice XIV, (Springer, Cham, 2018), pp. 101–117

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Zhixing Huang1 · Yi Mei1 · Fangfang Zhang1 · Mengjie Zhang1 ·
Wolfgang Banzhaf2

 * Fangfang Zhang
 fangfang.zhang@ecs.vuw.ac.nz

 Zhixing Huang
 zhixing.huang@ecs.vuw.ac.nz

 Yi Mei
 yi.mei@ecs.vuw.ac.nz

 Mengjie Zhang
 mengjie.zhang@ecs.vuw.ac.nz

 Wolfgang Banzhaf
 banzhafw@msu.edu

1 Centre for Data Science and Artificial Intelligence & School of Engineering and Computer
Science, Victoria University of Wellington, PO BOX 600, Wellington 6140, New Zealand

2 Department of Computer Science and Engineering, BEACON Center for the Study of Evolution
in Action, and Ecology, Evolution and Behavior Program, Michigan State University,
East Lansing, Michigan MI 48864, USA

	Bridging directed acyclic graphs to linear representations in linear genetic programming: a case study of dynamic scheduling
	Abstract
	1 Introduction
	2 Literature review
	2.1 Linear genetic programming genotype
	2.2 Evolutionary framework of LGP
	2.3 Graphs in linear genetic programming
	2.4 Relationship among graphs, exons, and LGP instructions
	2.5 Other DAG-based genetic programming

	3 The proposed graph-based genetic operators
	3.1 Frequency-based crossover (FX)
	3.2 Adjacency matrix-based crossover (AMX)
	3.3 Adjacency list-based crossover (ALX)
	3.4 Summary

	4 A case study on dynamic job shop scheduling
	4.1 Problem description
	4.2 Design of comparison
	4.3 Simulation settings

	5 Empirical results
	5.1 Test performance
	5.2 Training convergence

	6 Further analyses
	6.1 Effectiveness on different graph shapes
	6.2 Component analyses on ALX
	6.3 Program size and effective ratio

	7 Conclusions
	Acknowledgements
	References

