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Abstract
Linear genetic programming (LGP) is a genetic programming paradigm based on a 
linear sequence of instructions being executed. An LGP individual can be decoded 
into a directed acyclic graph. The graph intuitively reflects the primitives and their 
connection. However, existing studies on LGP miss an important aspect when see-
ing LGP individuals as graphs, that is, the reverse transformation from graph to LGP 
genotype. Such reverse transformation is an essential step if one wants to use other 
graph-based techniques and applications with LGP. Transforming graphs into LGP 
genotypes is nontrivial since graph information normally does not convey register 
information, a crucial element in LGP individuals. Here we investigate the effec-
tiveness of four possible transformation methods based on different graph informa-
tion including frequency of graph primitives, adjacency matrices, adjacency lists, 
and LGP instructions for sub-graphs. For each transformation method, we design 
a corresponding graph-based genetic operator to explicitly transform LGP parent’s 
instructions to graph information, then to the instructions of offspring resulting from 
breeding on graphs. We hypothesize that the effectiveness of the graph-based opera-
tors in evolution reflects the effectiveness of different graph-to-LGP genotype trans-
formations. We conduct the investigation by a case study that applies LGP to design 
heuristics for dynamic scheduling problems. The results show that highlighting 
graph information improves LGP average performance for solving dynamic schedul-
ing problems. This shows that reversely transforming graphs into LGP instructions 
based on adjacency lists is an effective way to maintain both primitive frequency 
and topological structures of graphs.
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1 Introduction

Linear genetic programming (LGP) is an important member of the family of 
genetic programming and has shown a competent performance [1]. An LGP indi-
vidual is a sequence of instructions that manipulate a set of registers. The LGP 
individual executes the instructions sequentially to represent a computer program 
[2–4]. LGP has undergone considerable development and has been successfully 
applied to classification [5–7], symbolic regression [8, 9], combinatorial optimi-
zation [10, 11], control tasks [12], and other real-world problems [13, 14].

One of the most salient features of LGP is its graph characteristics. By con-
necting primitives based on registers, an LGP individual can be decoded into a 
directed acyclic graph (DAG). Primitives are the basic functions and terminals 
that compose GP programs. Presenting LGP individuals (i.e., programs) by 
DAGs has different advantages from a raw genotype (i.e., a sequence of register-
based instructions). Graphs represent programs in a more compact representa-
tion. On the other hand, a raw genotype enables neutral search in program spaces 
and memorizes potential building blocks [15, 16]. Empirical studies verified that 
graphs and LGP genotypes are competitive for different tasks [17, 18]. Therefore, 
it is valuable to take advantage of both representations.

There are some studies about utilizing graph information in the course of LGP 
evolution, but they did not fully investigate the LGP graph characteristics. More 
specifically, the utilization of graphs in LGP is one-way (i.e., the existing LGP 
studies mainly consider DAGs as a compact and intuitive way to depict the pro-
grams). Whether there is an effective way to bridge graphs (i.e., phenotype) and 
LGP instructions (i.e., genotype) is unknown yet. The absence of an effective 
transformation from DAGs to instructions precludes LGP from fully utilizing the 
graph information and cooperating with other graph-related techniques such as 
neural networks. To have a better understanding of LGP graph-based character-
istics, a two-way transformation between graphs and LGP programs is necessary.

To bridge graphs to LGP, the overall goal of this paper is to design a graph-to-
instruction transformation for LGP individuals to accept the graph information of 
DAGs in evolution. The main challenge lies in the fact that DAGs do not contain reg-
ister information, but LGP individuals are register-based instruction sequences. This 
paper proposes two strategies to address the register issue in a graph-to-instruction 
transformation. In the first transformation strategy, LGP individuals accept graph 
information without considering the topological information that is represented by 
registers. We assume that if topological information is not that important, ignoring 
the register identification is a simple and effective way to convey graph information. 
In the second strategy, LGP individuals identify the registers (by guessing) for the 
instructions to reconstruct topological information. However, it is hard to perfectly 
reconstruct the topological structures by registers because of the absence of register 
information in DAGs. To this end, we aim to answer the following research ques-
tions: (1) what necessary information is needed for DAGs in the graph-to-instruction 
transformation, (2) how to identify the registers based on graphs, and (3) how effec-
tive are the aforementioned two transformation strategies.
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To answer the above research questions, this paper first develops new genetic 
operators based on graph node frequency, adjacency matrix, and adjacency list, to 
fulfill the two transformation strategies. To keep the transformation from a graph 
to a program intuitive, we treat the two parents in LGP crossover operators as two 
graphs and exchange their search information via the graph information. We assume 
that the two LGP programs are able to effectively share knowledge if these graph-
based genetic operators effectively convey graph information (e.g., building blocks). 
Second, we conduct a case study on dynamic scheduling problems, specifically, 
dynamic job shop scheduling (DJSS) problems, to verify the effectiveness of the 
proposed genetic operators. The experimental results demonstrate that making better 
use of graph information enhances LGP performance and that the adjacency list is 
the recommended graph information to bridge DAG to instructions in LGP.

2  Literature review

2.1  Linear genetic programming genotype

Every LGP individual f is a sequence of register-based instructions 
f = [f0, f1,… , fl−1], l ∈ [lmin, lmax] , where l is the number of instructions, and lmin 
and lmax are the minimum and maximum number of instructions respectively. Every 
instruction f has three parts: destination register Rf ,d , function funf (⋅) , and source 
registers Rf ,s . All of the destination and source registers come from the same set 
of registers R . Note that constants (e.g., input features) in LGP programs are seen 
as a kind of read-only registers, which only serve as source registers. An instruc-
tion reads the values from source registers, performs the calculation indicated by the 
function, and writes the calculation results to the destination registers. Re-writable 
registers are known as calculation registers. In every program execution, the reg-
isters are first initialized by certain values such as “1.0”, and the instructions are 
executed one by one, from f0 to fl−1 , to represent a complete computer program. The 
final output of the computer program is stored in a pre-defined output register, which 
is normally set to the first register by default.

However, not all instructions contribute to the final output. When an instruction is 
not connected with the program body producing the final output, or the instruction 
can be removed without affecting the program behavior, the instruction becomes 
ineffective in calculating the final output. The ineffective instructions are also called 
“introns”. Contrarily, the instructions that participate in the calculation of the final 
output are defined as effective instructions, which are also called “exons”. Specifi-
cally, the term “intron” in this paper mainly denotes the structural intron whose des-
tination register is not used as source registers by the following instructions.1 Introns 
and exons can be identified by an algorithm that reversely checks each instruction in 
the program based on the output registers [4].

1 We do not consider semantic introns that is a kind of effective instructions but mainly perform mean-
ingless calculation such as x = x + 0 , which does not affect the final output.
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Figure 1 shows an example of the genotype of an LGP program and its corre-
sponding phenotype in DAG. Specifically, there are eighteen instructions in the 
program, but only eleven of the instructions are effective (i.e., exons). The introns 
are highlighted in grey, following a double slash. The final output is returned by 
the first register R[0] . All of the instructions manipulate a register set R with eight 
registers. There are eight input features (i.e., constant registers), denoted Input[0] to 
Input[7] . The eight registers are initialized by the eight input features respectively at 
the beginning of every execution.

A number of studies have been carried out to extend the linear representation in 
LGP. For example, Hu et al. [19–21] analyzed the relationship between LGP geno-
type and its evolvability. Heywood et al. [22] proposed a page-based LGP to group 
instructions into different pages. Oliveira et al. [23] designed problem-specific chro-
mosome representation for LGP to solve software repair (i.e., genetic improvement). 
These existing studies show the potential of linear representations and their distinct 
behaviors compared to tree-based GP (TGP) programs. Having a better understand-
ing of LGP is beneficial to analyze GP methods from a different perspective.

2.2  Evolutionary framework of LGP

The evolutionary framework of LGP in this paper is the generational evolutionary 
framework (i.e., selecting parents for breeding and accepting offspring without fur-
ther selection), which is the recommended framework for the case study on dynamic 
scheduling problems [24]. Note that it is different from the recommended evolution-
ary framework of LGP (i.e., steady-state evolutionary framework—a portion of the 

Fig. 1  An LGP program example and its corresponding DAG. “Input[⋅] ” are read-only registers, and 
“R[⋅] ” are calculation registers
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least fit individuals in the population are replaced with offspring at each iteration) 
for solving classification and symbolic regression problems [4, 17, 25].

LGP breeds offspring by a series of genetic operators for every generation. There 
are three basic genetic operators in basic LGP (i.e., crossover, macro mutation, and 
micro mutation) as shown in Fig. 2. Specifically, crossover produces new programs 
by swapping instruction segments between their instruction sequences [26]. Macro 
mutation produces offspring by removing a random instruction from the program or 
inserting a new instruction into a random position of the program [27]. Micro muta-
tion produces offspring by replacing primitives, including functions and registers, 
but not changing the total number of instructions. These three genetic operators are 
triggered based on pre-defined probabilities. The LGP genetic operators have under-
gone good development. For example, Downey et  al. [28] proposed a class graph 
crossover to evolve LGP programs for multi-class classification. The class graph 
crossover produces offspring by swapping the instructions that contribute to the 
same output register (i.e., the same sub-class in multi-class classification). Besides, 
various problem-specific genetic operators are developed to address specific applica-
tions respectively [22, 23]. However, the existing genetic operators of LGP are all 
designed based on LGP genotype (i.e., instruction sequence) and cannot truly accept 
graphs as genetic materials.

2.3  Graphs in linear genetic programming

An LGP program can be represented as a DAG. The instruction sequence is 
transformed into a DAG by connecting functions and constants of exons based 
on the registers [4] (i.e., connecting “ + ” to “ × ” in DAG if “ + ” uses the register 
overwritten by “ × ” as one of its inputs, see instruction 16 and instruction 13 in 
Fig. 1). As shown in the right part of Fig. 1, the last instruction of the LGP pro-
gram that overwrites the output register (instruction 17 in this example) is seen 
as the start node in the DAG. Since the source registers of instruction 17 store 

Fig. 2  The schematic diagram of LGP genetic operators
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the results of instructions 15 and 16 respectively, the start node has two outgo-
ing edges, directing to two graph nodes (“−” and “ + ”) respectively. The indices 
along the edges indicate the first and second inputs for “ max(⋅)”.

Evolving LGP programs based on graphs has some benefits over evolving LGP 
programs based on instruction sequences. First, graphs allow us to have more pre-
cise control over the variation step size of exons. Contrarily, the variation in raw 
genotype might lead to an unexpectedly large variation step size since it might 
deactivate and activate different sub-programs. Second, swapping LGP building 
blocks based on graphs protects the useful building blocks from being destructed 
[29]. For instance, when we swap the instruction sub-sequences of two LGP pro-
grams to produce offspring, the exons (and introns) in the sub-sequences are not 
guaranteed to be effective (and ineffective) after swapping since they might be 
deactivated (or activated) in the new LGP program context. The building blocks 
in the sub-sequences might be distorted severely, which often leads to destructive 
variations (i.e., the fitness of the offspring is worse than the fitness of the parents) 
[30]. But swapping sub-graphs of LGP parents naturally maintains the connec-
tions of primitives within sub-graphs and protects effective building blocks from 
being deactivated. Third, treating LGP programs as graphs can further evolve the 
program by replacing the introns into effective building blocks, especially when 
the instruction sequence reaches the maximum program size. Fully utilizing the 
maximum program size implies a longer effective program length and a bet-
ter search performance [15, 31]. Last but not least, explicitly considering graph 
information in LGP programs encourages LGP to have a more compact represen-
tation and reduce redundancy.

Nevertheless, explicitly employing graphs in LGP has not been well investi-
gated though it is an effective way to show the program. Brameier and Banzhaf 
[4] claimed that using graph representations to evolve LGP program does not 
always lead to better performance than conventional LGP in solving classifica-
tion and symbolic regression problems, but evolving graph representations needs 
much more complicated genetic operators than imperative representation. How-
ever, the discussion in [4] does not show implementation details of the compared 
methods. Sotto et  al. [17, 25] compared a number of graph-based GP methods, 
including LGP, in their experiment. However, the graph-based genetic operators 
of the compared graph-based GP methods in [17, 25] mainly manipulate genotype 
by graph-based mutations and miss graph-based crossover which produces new 
graphs by swapping sub-graphs. The absence of graph-based crossover limits the 
variation step of graph-based GP methods and precludes useful building blocks 
from being shared among the population. Huang et al. [29] proposed two graph-
based genetic operators, including graph-based crossover and mutation, and 
tested their effectiveness on combinatorial optimization problems. Their results 
imply the potential of the graph-based crossover. But the crossover is designed 
based on LGP genotype rather than graphs, and the graph-based mutation is not 
effective.

In short, the explicit use of graphs in LGP has not been well investigated from the 
following aspects: (1) the existing literature misses the graph-based crossover that 
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truly swaps sub-graphs to produce offspring; (2) the existing literature misses the 
graph-to-instruction transformation.

2.4  Relationship among graphs, exons, and LGP instructions

First, fully utilizing graph characteristics of LGP is different from only evolving 
exons. Graphs are the phenotype of LGP programs, and LGP instructions are the 
genotype. Exons in LGP instructions are the instructions that are highly related 
to the graphs since the graphs are decoded based on the exons. However, exons 
cannot fully stand for the phenotype since graphs carry the essential information 
of both imperative primitives and their connection, which is a higher-level rep-
resentation than the exons, while exons are highly dependent on the context of 
an LGP program. Besides, a graph is an abstract representation that is free from 
specific genotype design (e.g., register-based instructions in LGP or Cartesian 
coordinates in Cartesian GP). Representing GP programs by graphs enables GP 
methods to analyze building blocks effectively and to exchange genetic materials 
with many other graph-based techniques.

Second, evolving LGP programs based on graphs cannot replace evolving 
LGP based on instruction sequences. Some existing studies have proposed 
to directly represent GP programs by graphs and to evolve GP programs by 
manipulating the graphs [17, 18, 32]. However, their results show that differ-
ent GP representations are suitable to different tasks. For example, LGP and 
Cartesian GP have certain advantages in solving the tested digital circuit design 
problems because of the limited reuse on intermediate results while TGP is 
good at solving the tested symbolic regression problems [17, 18]. Evolving 
programs by genotype instead of graphs also enables LGP and Cartesian GP 
individuals to perform neutral search (i.e., varying the genotype of an individ-
ual but not changing the fitness value) and retain potential building blocks in 
the individuals [15, 16, 33, 34]. The neutral search and the potential building 
blocks have been shown to be helpful for LGP and Cartesian GP programs to 
jump out of local optima and improve the population diversity in a wide range 
of problems. Further, existing literature on evolving GP programs by graphs 
directly only considered node and edge mutation on graphs in producing off-
spring and missed graph-based crossover, which makes these methods ineffi-
cient to exchange useful building blocks.

In a nutshell, a graph is an abstract representation of effective LGP instruc-
tions, while a sequence of LGP instructions represents underlying codes that 
include both effective and ineffective instructions. Graphs enable LGP pro-
grams to cooperate with other graph-based techniques and explicitly take the 
topological structures into consideration, while instruction representations ena-
ble the neutral search and the memory of potential building blocks. Finding 
an effective way to bridge these two representations would be useful for LGP 
evolution. However, to the best of our knowledge, there is no existing literature 
of graph-based genetic programming investigating suitable ways of utilizing the 
general graph information (e.g., adjacency list) and effective transformations 
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from graph to LGP instructions. The graphs of LGP programs are not fully uti-
lized yet.

2.5  Other DAG‑based genetic programming

There are some other graph-based genetic programming methods besides LGP. For 
example, Cartesian genetic programming [35] is one of the well-known graph-based 
genetic programming methods. The genotype of Cartesian GP is a list of grid nodes. 
Each node specifies a function, its connections with other nodes, and its Cartesian 
coordinate in the grid. By executing these grid nodes based on the connection, the 
individuals of Cartesian GP can be decoded into DAGs to represent computer pro-
grams or digital circuits (i.e., the phenotype). Cartesian GP has shown some supe-
rior performance in designing digital circuits [36, 37], performing image classifica-
tion [38], and neural architecture search [39]. Wilson et al. [40] compared Cartesian 
GP with LGP and found that the way of restricting the interconnectivity of nodes 
is the key difference between these two graph-based genetic programming meth-
ods. Based on the idea of Cartesian GP, Atkinson et  al. [18] proposed the Graph 
Programming method to evolve graphs (abbr. EGGP). Different from Cartesian GP 
which strictly requires that the connections must go from the right columns to the 
left columns (i.e., the levels-back constraint), EGGP allows a graph node A to con-
nect any other graph node B in the graph, as long as A and B do not form a cycle 
in the graph. The EGGP individuals have higher flexibility in topological structures 
than the LGP and Cartesian GP individuals. They further validated the effective-
ness of EGGP on the test problems by comparing it with TGP, Cartesian GP, and 
LGP [17, 25]. The results show that all the three DAG-based GP methods (i.e., LGP, 
Cartesian GP, and EGGP) have a great advantage over TGP in searching multiple-
output computer programs such as digital circuits. However, these studies have not 
investigated the graph-based crossover operators that truly swap sub-graphs and the 
graph-to-instruction transformations.

3  The proposed graph‑based genetic operators

The schematic diagram of conveying graph information to LGP instructions is shown 
in Fig. 3. To investigate the effectiveness of different graph-to-instruction transfor-
mation methods, we explicitly transform LGP instruction segments into DAGs [4], 
and graph-based genetic operators accept the DAGs as genetic materials to produce 
offspring. The dashed arrow with a question mark is the to-be-investigated step in 
this paper. We assume that graph-based genetic operators should effectively evolve 
LGP programs if the graph representation is effective in conveying building block 
information. To have a comprehensive investigation of the effective transformation 
from graphs to LGP programs, this paper designs three crossover operators to con-
vey three different types of graph information (i.e., primitive frequency, adjacency 
matrix, and adjacency list) from graph to LGP instructions. These three crossover 
operators are frequency-based crossover (FX), adjacency matrix-based crossover 
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(AMX), and adjacency list-based crossover (ALX). Specifically, FX and AMX fol-
low the first graph-to-instruction transformation strategy that bypasses the register 
identification, and ALX resolves the register identification by a newly proposed reg-
ister assignment method.

3.1  Frequency‑based crossover (FX)

The frequency of primitives is a simple high-level feature of a graph. The frequency 
of primitives implies the importance of different primitives. Frequency has been 
widely applied in GP to identify important features [41, 42]. In the FX operator, we 
utilize the primitive frequency in LGP crossover by seeing the primitive frequency 
as a kind of distribution.

FX accepts two parent individuals and produces one offspring. The offspring 
is produced by varying one of the primitives in an instruction of the first parent. 
When varying the primitive, the old primitive is replaced by a new one based on the 
frequency of the primitives in the second parent. We hope that varying the primi-
tive based on the frequency of another individual stimulates more useful building 
blocks. The pseudo-code of FX is shown in Algorithm  1.2 The frequency vector 
is defined as F = [fun1, fun2,… , fung, in1, in2,… , inh] where g is the number of 
functions and h is the number of input features. The function funf  is sampled by a 
roulette wheel selection on the function frequency (i.e., F[fun1, fun2,… , fung] ). A 
higher frequency implies a larger probability to be selected. If varying constant is 
triggered (i.e., ����(0, 1) < 𝜃fun + 𝜃con in line 8 of Algorithm 1), one of the source 
registers is replaced by an input feature which is sampled by a roulette wheel selec-
tion on the input feature frequency F[in1, in2,… , inh] . To ensure that every primitive 
has a small probability of being selected, we add 1.0 on all the elements of F . The 

Fig. 3  The schematic diagram of accepting graphs as LGP genetic materials. The program-to-DAG 
transformation (i.e., grey solid arrows) is fulfilled by [4]. The DAG-to-program transformation (i.e., 
dashed arrow) with a question mark is the focus of this paper

2 ����(a, b) returns a random floating-point number in [a, b). �������(a, b) returns a random integer 
number in [a, b]. | ⋅ | denotes the cardinality of a set or a list. (⋅) following a set or a list denotes getting an 
element based on the index.
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destination register Rf ′,d and the source registers Rf ′,s of the instruction f ′ are sam-
pled uniformly.

Algorithm 1  Frequency-based crossover

Figure 4 shows an example of producing offspring by FX. First, FX transforms 
the second parent into a DAG and obtains the frequency of the primitives. Note that 
the frequency of primitives in a DAG is different from the frequency of primitives 
in raw effective instructions, as the effective instructions contain register primitives 
but the DAG does not. Since the DAG merges all the duplicated constants (i.e., 
input feature xi(i=0,1,2) ) into one graph node, FX treats the incoming degree as the 
frequency of constant graph nodes. FX normalizes the frequency of primitives and 
gets the distribution which further biases the variation on the first parent. We can 
see that the R[2] in the third instruction of Parent 1 is changed to x0 based on the 
distribution.
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3.2  Adjacency matrix‑based crossover (AMX)

The adjacency matrix conveys more graph information than the primitive frequency 
by highlighting the neighboring relationship of graph nodes. The elements in an 
adjacency matrix are the frequency of a primitive connecting to another primitive 
in a DAG. We treat the elements in an adjacency matrix as a kind of distribution by 
normalizing the elements in each row. To this end, we utilize the adjacency matrix 
in LGP crossover (i.e., AMX).

Similar to FX, AMX accepts two parents and produces one offspring by vary-
ing one primitive in one of the instructions. Different from FX, AMX varies func-
tions and constants by a roulette wheel selection based on the adjacency matrix of 
the graph from the other parent. The pseudo-code of varying a function or constant  

Algorithm 2  Varying a function or a constant based on the adjacency matrix

Fig. 4  An example of FX operator
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based on an adjacency matrix is shown in Algorithm 23 where the adjacency matrix 
is defined as

Since the constants (i.e., input features) have no outgoing edge in the graph, 
the two blocks of “constant-out” are two zero matrices. M is further simplified as 
[Mfun Min] where Mfun denotes the neighboring relationship from function primitives 
pointing to function primitives, and Min denotes the neighboring relationship from 
function primitives pointing to input features. When varying the function of the l∗th 
instruction, AMX first finds the function out that points to the to-be-varied function. 
From the perspective of LGP genotype, it is equivalent to checking the instructions 
reversely from f(l∗ − 1) and finding the instruction whose destination register is 
accepted as inputs of f(l∗) . Then AMX applies the Roulette-wheel selection on Mfun 
and samples a new primitive based on out. To ensure that every primitive has a small 
probability of being selected, we add 1.0 on all the elements of M = [Mfun Min] in 
the Roulette-wheel selection. When varying the constant of an instruction, AMX 
applies Roulette-wheel selection based on the function of the instruction and Min.

Figure 5 shows an example of producing offspring by AMX operator. AMX gets 
a distribution based on the adjacency matrix from the second parent and performs 
variation based on the distribution. In Fig. 5, the “ ÷ ” in the third instruction of the 
first parent is varied into “ +”.

3.3  Adjacency list‑based crossover (ALX)

An adjacency list is a graph representation that conveys the connection among graph 
nodes. To fully utilize the topological information carried by the adjacency list, we 

3 (x, ∶) and (∶, x) following a matrix denote getting the xth row or the xth column of elements respec-
tively.
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design an adjacency list-based crossover to vary instruction segments in the parent 
individuals. The adjacency list in this paper is denoted as

where each item [funi,Bi] specifies the function funi and the list of its neighboring 
graph nodes Bi . Based on the adjacency list, this section proposes ALX.

Algorithm 3  Transforming an adjacency list to an instruction sequence

L =
( [

fun1,B1

] [
fun2,B2

]
⋯

[
fun|L|,B|L|

] )

Fig. 5  An example of AMX operator
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Algorithm 4  RegisterAssignment

ALX accepts two parent individuals (one as recipient and the other as donor) to 
produce one offspring. Rather than swapping the instruction sequences like basic 
linear crossover [26], the donor parent first selects a sub-graph from the DAG (by 
selecting a sub-sequence of instructions) and obtains the corresponding adjacency 
list L . The recipient accepts the adjacency list and constructs the new instruction 
sequence based on the adjacency list. The newly constructed instruction sequence 
is used to replace another sub-sequence of instructions in the recipient. The pseudo-
code of transforming an adjacency list into an instruction sequence is shown in 
Algorithm  3. First, ALX selects a crossover point from the recipient parent and 
removes a sub-sequence of instructions from the recipient. Based on the adjacency 
list, ALX randomly generates a sequence of instructions. Specifically, the functions 
in the newly generated instructions are coincident with the adjacency list. Since 
the adjacency list does not convey the information of registers, we propose a reg-
ister assignment method for ALX to identify the registers in those newly generated 
instructions, as shown in Algorithm 4.

In general, Algorithm 4 checks the instruction sequence reversely based on the 
adjacency list to assign the registers in all the new instructions. There are two main 
steps in Algorithm 4, assigning destination registers and assigning source registers. 
From the perspective of topological structures, assigning destination registers is 
equivalent to providing the results of the sub-graph to the upper part of the DAG, 
while assigning the source registers is equivalent to taking the results from the lower 
part of the DAG as the inputs of the sub-graph. When assigning destination registers, 
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Algorithm 4 ensures the effectiveness of all the newly generated instructions. On the 
other hand, Algorithm  4 assigns source registers based on the neighboring graph 
nodes (i.e., functions or constants) specified by the adjacency list. Specifically, if the 
neighboring graph node is a function, Algorithm 4 collects the possible instructions 
whose functions are coincident with the neighboring function in the adjacency list 
and randomly assigns the destination register from one of the possible instructions 
as the source register.

Figure 6 shows an example of producing an offspring by ALX. First, ALX selects 
a sub-graph from the second parent, consisting of “ −,×,+ ”, and gets the corre-
sponding adjacency list. Then ALX generates a new instruction segment based on 
the adjacency list and swaps it into the first parent (i.e., the 2nd to 4th instructions 
in the new instruction sequence). To maintain the topological structures among 
newly inserted instructions, ALX applies the register assignment method (i.e., 
Algorithm 4) to update the registers. Algorithm 4 replaces the destination register 
of the 4th instruction to R[1] to ensure the three swapped-in instructions are effec-
tive. Then, based on the adjacency list, Algorithm 4 update the source registers in 
the three swapped-in instructions so that “−” accepts the results from “ × ” and “ × ” 
accepts the results from “ + ” and the constant x0 . We can see that “ −,×,+ ” are con-
nected together, and the 2nd and 4th instructions manipulate suggested constants by 
the adjacency list in the offspring.

Fig. 6  An example of ALX operator. The selected graph nodes, the newly generated instructions, and the 
newly updated primitives are highlighted in gray color
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3.4  Summary

We summarize the pros and cons of different graph information representations, 
as shown in Table  1. Transforming graphs into LGP instructions based on graph 
node frequency and adjacency matrix is a good alternative solution to bypass the 
puzzle of identifying registers for new instructions. However, frequency-based and 
adjacency matrix-based information do not explicitly consider the topological infor-
mation, which might be susceptible to the number of registers (i.e., graph width). 
Besides, adjacency matrices of LGP graphs might be often too sparse to effectively 
guide the search. Adjacency list can convey graph node frequency and their topo-
logical structures simultaneously but is dependent on a register assignment method 
to reconstruct the topological structures. The effectiveness of the register assignment 
method might limit the effectiveness of adjacency list information. To verify the 
effectiveness of different representations of graph information, we compare to an 
existing graph information sharing method that swaps effective instructions. Swap-
ping effective instruction has shown its effectiveness in solving DJSS [29]. However, 
it cannot fulfill the DAG-to-program transformation since it only manipulates LGP 
programs.

4  A case study on dynamic job shop scheduling

To verify the effectiveness of different transformation methods from DAG to LGP 
genotype, this paper applies LGP to solve dynamic job shop scheduling (DJSS) 
problems [43–45]. Many GP variants such as TGP, basic LGP, and LGP with graph-
based crossover [29], have shown their performance in solving DJSS problems. It 
is straightforward to verify the effectiveness of the proposed graph-based genetic 
operators with other GP variants based on DJSS problems. Besides, DJSS is a chal-
lenging combinatorial optimization problem that can be seen in many real-world 
production scenarios. Investigating the effectiveness of the proposed genetic opera-
tors on DJSS problems is beneficial for GP in practice.

Different from the static job shop scheduling problems whose information is 
known beforehand, DJSS problems have different types of dynamic events which 
will occur during the process of the job shop. The information of these dynamic 
events cannot be known until they occur. There have been many studies successfully 
using GP methods to learn scheduling heuristics for DJSS problems [46, 47]. In this 
paper, we set up the simulator based on the model of DJSS problems and see the 
simulation performance as the fitness of GP individuals.

4.1  Problem description

This paper focuses on DJSS with new job arrival. The job shop in our DJSS prob-
lems processes a set of jobs � = {J1,⋯ ,J|�|} . Each Jj consists of a sequence of 

operations �j =

[

Oj1,⋯ ,Ojmj

]

 where mj is the total number of operations in Jj . 
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Each job Jj arrives to the job shop at the time �(Jj) with a weight of �(Jj) , and the 
information of Jj cannot be known until their arrival. The jobs are processed by a set 
of machines � = {M1,⋯ ,M|�|} . Specifically, each operation Oji of Jj is pro-
cessed by a specific machine �(Oji) with a positive processing time p(Oji) . Each 
machine has a queue to store the available operations and at most processes one 
operation at any time. When an operation is finished, the machine selects an availa-
ble operation from the queue. The major task in the DJSS problems of this paper is 
to prioritize the available operations in each machine queue so that the job shop can 
effectively react on the new arrival jobs. We adopt three different optimization 
objectives in this paper, as listed as follows, where Tmax denotes the maximum tardi-
ness among all the jobs, Tmean and WTmean denote the mean and weighted mean tardi-
ness over the job set � respectively, and c(Jj) and d(Jj) denote the completion time 
and the due date of job Jj respectively.

4.2  Design of comparison

To investigate the effectiveness of different graph-to-instruction transformation 
methods, we design seven compared methods. The first two methods are the basic 
TGP [48] and LGP [4] which are seen as the baseline. The third to fifth methods 
respectively verify the three newly designed graph-based genetic operators. We 
replace the micro mutation of the basic LGP with FX and AMX in the third and 
fourth compared methods respectively because the variation step sizes of FX and 
AMX are similar to LGP micro mutation (i.e., only varying one or a few primi-
tives in the parent but not changing the total number of instructions). The third and 
fourth methods are denoted as LGP + FX and LGP + AMX respectively. The fifth 
compared method is denoted as LGP + ALX, in which the linear crossover in the 
basic LGP is replaced by ALX. The other settings in LGP + FX, LGP + AMX, and 
LGP + ALX are kept the same as the basic LGP. To comprehensively investigate 
the effectiveness of transforming graph information into instruction sequences, we 
further compare the LGP with an existing graph-based crossover [29] denoted as 
LGP + GC, which has shown encouraging performance gain from LGP crossover in 
solving DJSS problems. Finally, we investigate the effectiveness of the cooperation 
of multiple graph-based genetic operators. Since our prior investigation shows that 
LGP + FX has better average performance than LGP + AMX, we replace the micro 

(1)Tmax =max
Jj∈�

(max(c(Jj) − d(Jj), 0))

(2)Tmean =

∑
Jj∈�

(max(c(Jj) − d(Jj), 0))

���

(3)WTmean =

∑
Jj∈�

(max(c(Jj) − d(Jj), 0) ⋅ �(Jj))

���
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mutation and linear crossover in the basic LGP with FX and ALX simultaneously. 
The LGP with FX and ALX is denoted as LGP + FA.

The parameters of all the compared methods are shown in Table  2. Since the 
prior investigation [49] has shown that the basic TGP and LGP are effective under 
different settings of population size and the number of generations, we set these two 
parameters to the best values for the TGP and LGP-based methods respectively. The 
parameters of the genetic operators are defined based on [29, 49]. All the compared 
methods start the search from a small initial program size. All the LGP methods 
manipulate a register set with 8 registers. The elitism rate and the tournament size 
of all the compared methods are defined as top 1% and 7 respectively. All the com-
pared methods adopt the same function set {+,−,×,÷, max,min} and terminal set, 
as shown in Table 3.

It is noted that to improve the generalization ability of GP methods, DJSS train-
ing instances in different generations have different simulation seeds [24]. For each 
generation, we use elitism selection to retain the best-so-far individuals for the next 
population (i.e., reproduction) and apply tournament selection to select parents for 
breeding. The newly generated individuals and the best-so-far individuals form the 
next population.

4.3  Simulation settings

The effectiveness of the compared methods is verified by the simulation of DJSS 
problems. Specifically, the job shop has 10 machines. All the jobs come into the job 
shop based on a Poisson distribution. The arrival rate of the jobs is defined by the 
utilization level � , which is a parameter of the Poisson distribution [29]:

where � and � are the average number of operations of the jobs and the average pro-
cessing time of the operations respectively. The expected processing time of the jobs 
decreases with the increment on � . Each job contains 2 to 10 operations, and each 
operation is processed by a different machine with a processing time ranging from 1 
to 99 time units. The due date of a job di is defined by multiplying a due date factor 
of 1.5 with the total processing time of job i (i.e., summing up the processing time 
of all the operations). The weights of jobs are set as 1, 2, and 4 for 20, 60, and 20% 
of all the jobs, respectively.

Each GP individual is decoded into a dispatching rule that prioritizes the avail-
able operations in each machine queue. We see the performance of the overall 
simulation as the performance of the GP individual. To evaluate GP individuals 
in a steady-state job shop, the simulation is warmed up with the first 1000 jobs 
and takes the following 5000 jobs into account to evaluate its performance.

P(t = next job arrival time) ∼ exp
(

−
t

�

)

� =
� ⋅ �

� ⋅ |�|
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To investigate all the compared methods comprehensively, six DJSS scenarios 
are set up based on the existing literature [29, 49, 50]. Specifically, two utilization 
levels are defined (i.e., 0.85 and 0.95). A higher utilization level implies a busier 
job shop in which bottlenecks are more likely to occur. The scenarios are denoted 
by “ ⟨Objective, utilization level⟩ ” based on the three optimization objectives men-
tioned in Sect.  4.1 and the two utilization levels (i.e., ⟨Tmax, 0.85⟩ , ⟨Tmax, 0.95⟩ , 
⟨Tmean, 0.85⟩ , ⟨Tmean, 0.95⟩ , ⟨WTmean, 0.85⟩ , and ⟨WTmean, 0.95⟩ ). These six scenarios 
cover a wide range of objectives (including the worst case ( Tmax ) and mean perfor-
mance) and utilization levels. Each scenario evaluates a GP method by 50 inde-
pendent runs. For each independent run, the GP method searches a dispatching rule 
based on the training DJSS instances, one DJSS instance per generation, and tests 
the performance of the dispatching rule on 50 unseen DJSS instances. Each DJSS 
instance is a simulation with 6000 jobs. The performance of the 50 unseen DJSS 
instances is aggregated as the test performance for a certain independent run.

5  Empirical results

5.1  Test performance

The mean test performance of all the compared methods in solving the six DJSS 
scenarios is shown in Table 4. We conduct a Friedman test with a significant level 
of 0.05 on the test performance of all the compared methods. The p value of the 

Table 3  The terminal set

Notation Description

PT Processing time of an operation in a job
NPT Processing time of the next operation in a job
WINQ Total processing time of operations in the buffer of a machine which is the corresponding 

machine of the next operation in a job
WKR Total remaining processing time of a job
rFDD Difference between the expected due date of an operation and the system time
OWT Waiting time of an operation
NOR Number of remaining operations of a job
NINQ Number of operations in the buffer of a machine which is the corresponding machine of the 

next operation in a job
W Weight of a job
rDD Difference between the expected due date of a job and the system time
NWT Waiting time of the next to-be-ready machine
TIS Difference between system time and the arrival time of a job
SL Slack: difference between the expected due date and the sum of the system time and WKR
NIQ Number of operations in the buffer of a machine
WIQ Total processing time of operations in the buffer of a machine
MWT Waiting time of a machine
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Friedman test is 0.016 which implies there is a significant difference among the 
compared methods. The notation “ + ”, “−”, and “ ≈ ” in Table 4 denote a method is 
significantly better than, significantly worse than, or statistically similar to the basic 
LGP based on Wilcoxon rank-sum test with a significant level of 0.05. The best 
mean values are highlighted in bold.

As shown in Table  4, first, all the three newly proposed graph-based genetic 
operators, together with LGP + GC, improve the overall performance of basic LGP 
since the mean ranks of most LGP methods (except LGP  +  AMX) with graph-
based genetic operators are better than basic LGP (i.e., smaller is better). Second, 
the performance of LGP is improved with the amount of graph information overall. 
Specifically, LGP + FX and LGP + AMX (i.e., distribution and local topological 
structures) have worse mean ranks than LGP + ALX (i.e., topological structures of 
sub-graphs), and LGP + ALX has a worse mean rank than LGP + GC which con-
veys topological structures and register information in exchanging genetic materials. 
LGP + FA which conveys more graph information by using multiple graph-based 
genetic operators has the same mean rank as LGP + GC. Table 4 also shows that 
the best mean test performance is mainly achieved by LGP + ALX, LGP + GC, and 
LGP + FA, which verifies that conveying more graph information (e.g., primitive 
frequency and topological structures) in the course of exchanging genetic materials 
is effective in improving LGP performance. It is noted that although the adjacency 
matrix is supposed to convey more graph information than graph node frequency, 
the adjacency matrix does not help LGP + AMX perform better than LGP + FX 

Fig. 7  The convergence of different graph-based genetic operators
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since adjacency matrices of LGP graphs are often too sparse to provide search bias 
(i.e., most elements in the adjacency matrix are zero which degenerates AMX to 
uniform variation). In short, all the three newly proposed graph-based genetic opera-
tors have very competitive performance with basic LGP, which implies the proposed 
graph-based genetic operators effectively convey the graph information from one 
parent individual to the other. The improvement in mean ranks implies the potential 
of utilizing graph information.

5.2  Training convergence

This section compares the training performance of different graph-based genetic 
operators, as shown in Fig. 7. Specifically, we compare the test performance of 
the best individuals from all the compared methods at every generation. Over-
all, all compared methods perform quite similarly in most problems. But in some 
problems, we can see gaps among the curves. For example, LGP + FA converges 
faster than the others in ⟨Tmax, 0.85⟩ and ⟨Tmax, 0.95⟩ , and LGP + GC converges 
faster than the others in ⟨WTmean, 0.95⟩ in the first 20,000 simulations. Fur-
ther, if we look at the lowest convergence curves at different stages, we find that 
LGP  +  ALX, LGP  +  GC, and LGP  +  FA alternatively take the leading posi-
tions in training. For example, in ⟨Tmean, 0.85⟩ , LGP  +  ALX is slightly lower 
than the others in most simulations but is caught up by LGP + GC from 20,000 
to 40,000 simulations. Based on the results, we confirm that conveying as much 
graph information as possible (e.g., LGP + ALX, LGP + GC, and LGP + FA) 
can improve LGP performance to some extent.

To conclude, the proposed graph-based genetic operators successfully carry the 
information from LGP instructions to graph and back to instructions since the train-
ing and test performance of the proposed graph-based genetic operators are simi-
lar to or better than the performance of conventional genetic operators that directly 
exchange instructions. We also see that the performance gain of graph-based genetic 
operators increases with the amount of graph information overall. Furthermore, if 
we look back at the pros and cons of the graph information (Table 1), we find that 
(1) bypassing the issue of identifying registers (i.e., LGP + FX and LGP + AMX) 
is a feasible way to transform graphs to instructions, but it is not as effective as 
LGP + ALX because of the loss of graph information (2) LGP + ALX performs 
as competitively as swapping effective instructions directly, which implies that the 
register assignment method in LGP+ALX reconstructs the topological structures 
quite well without much deterioration on effectiveness.

6  Further analyses

6.1  Effectiveness on different graph shapes

To comprehensively investigate the effectiveness of the proposed graph-based 
genetic operators in different graphs, this section compares the graph-based genetic 
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operators on different graph shapes. The graph shape in LGP (i.e., depth and width 
of a graph) is approximately defined by the maximum number of instructions 
(i.e., depth) and the maximum number of registers (i.e., width). A graph shape is 
denoted by “ ⟨#ins, #reg⟩ ” in this paper, specifying the maximum depth and width 
of the graph. This section tests nine different graph shapes, from a shallow and 
narrow graph to a deep and wide graph. The nine graph shapes are ⟨25ins, 4reg⟩ , 
⟨25ins, 8reg⟩ , ⟨25ins, 12reg⟩ , ⟨50ins, 4reg⟩ , ⟨50ins, 8reg⟩ , ⟨50ins, 12reg⟩ , 
⟨100ins, 4reg⟩ , ⟨100ins, 8reg⟩ , and ⟨100ins, 12reg⟩ . Figure  8 shows the mean rank 
of the compared methods obtained by a Friedman test on all the six DJSS scenar-
ios in each graph shape. The compared methods include basic LGP, and LGP with 
four graph-based genetic operators (i.e., LGP + FX, LGP + AMX, LGP + ALX, 
and LGP  +  GC) to separately investigate the effectiveness. We apply the Bonfer-
roni–Dunn’s test as a post-hoc analysis on the mean rank of the compared methods 
to detect the significant difference with the control algorithm (We take the algorithm 
with the best mean rank as the control algorithm). The shadow in Fig.  8 denotes 
the threshold of the critical difference of Bonferroni–Dunn’s test with a significance 
level of 0.05. The critical difference of the Bonferroni–Dunn’s test is 2.28 [51]. The 
threshold value equals to the critical difference plus the mean rank of the control 
algorithm (e.g., the threshold is 2.28 + 2 = 4.28 in ⟨25ins, 4reg⟩ ). If the mean rank 
of a compared algorithm is larger than the threshold value, the compared algorithm 
is significantly worse than the control algorithm. Otherwise, the compared algo-
rithm performs statistically similarly to the control algorithm.

Fig. 8  The mean rank of the compared methods on all the six DJSS scenarios in different graph shapes. 
The shadows denote the threshold of the critical difference of Bonferroni–Dunn’s test with a significance 
level of 0.05
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First, Fig.  8 shows that when the graph is shallow (i.e., 25 instructions), 
LGP  +  ALX and LGP  +  GC have better (i.e., smaller) overall mean ranks than 
(or have at least similar mean rank to) the other compared LGP methods in the 
three graph widths. It implies that LGP  +  ALX and LGP  +  GC can fully utilize 
the maximum program size to construct effective solutions. In contrast, basic 
LGP, LGP + FX, and LGP + AMX have worse mean ranks than LGP + ALX and 
LGP + GC because they cannot effectively turn introns into useful building blocks 
and have insufficient space to contain effective solutions (i.e., under-representing 
[52]). Note that when graphs have abundant space to contain effective solutions 
(i.e., growing from 25 instructions to 100 instructions), the building blocks stored in 
introns improve the diversity of genetic materials [53] and improve the performance 
of the basic LGP and LGP + FX (i.e., smaller mean ranks).

Second, when the graph width grows from 4 to 12 registers, we see a sali-
ent improvement (i.e., become smaller) in the mean ranks of LGP  +  ALX and 
LGP + GC. For example, the mean ranks of LGP + ALX and LGP + GC reduce 
from about 3.4 in ⟨50ins, 4reg⟩ , to about 2.0 in ⟨50ins, 8reg⟩ and ⟨50ins, 12reg⟩ . 
The other LGP methods (i.e., basic LGP, LGP  +  FX, and LGP  +  AMX) that 
apply linear crossover to swap genetic materials have a slightly better mean rank 
than LGP  +  ALX and LGP  +  GC on long and narrow graphs (i.e., ⟨50ins, 4reg⟩ 
and ⟨100ins, 4reg⟩ ) since swapping instruction segments directly is equivalent 
to exchanging sub-graphs when there are few introns. However, the mean ranks 
of basic LGP, LGP  +  FX, and LGP  +  AMX constantly increase with the graph 
width in all the graph depths. Specifically, the overall performance of LGP + FX 
and LGP  +  AMX is significantly worse than LGP  +  GC on ⟨25ins, 12reg⟩ , and 
the overall performance of basic LGP is significantly worse than LGP  +  GC on 
⟨50ins, 12reg⟩ . The results verify that LGP without explicitly maintaining the topo-
logical structure is susceptible to the number of registers and is not good at evolving 
wide graphs.

Third, LGP + ALX has a quite similar performance to LGP + GC in all the nine 
graph shapes. Given that LGP  +  ALX maintains the topological structures based 
on the proposed register assignment method (i.e., Algorithm 4) while LGP + GC 
directly swap effective instructions, the proposed register assignment method can 
reconstruct the topological structures in offspring very well.

In short, the mean rank comparison verifies that LGP  +  ALX and LGP  +  GC 
perform averagely better than the other algorithms and are less susceptible to graph 
width. Besides, the newly proposed register assignment method can effectively recon-
struct the topological structures based on the adjacency list. Based on the results, we 
confirm that ALX is an effective method to transform graphs into LGP instructions.

6.2  Component analyses on ALX

The results in Sect. 6.1 verify that ALX is an effective method for LGP to accept 
graph information. To investigate the reasons of the superior performance, this sec-
tion conducts an ablation study on ALX. Given that an adjacency list can convey 
two kinds of graph information, the frequency of graph nodes and their topological 
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connection, we verify the effectiveness of different graph information separately 
by four ALX-based methods. We use basic LGP and LGP + ALX as the baseline 
methods in this section. We develop “ALX/noRegAss” in which we remove the 
������������������(⋅) from LGP + ALX. In this case, LGP + ALX generates 
the instruction segment only based on each item of the adjacency list and does 
not further connect these generated instructions by registers. The newly generated 
instruction segment has a similar graph node frequency to the adjacency list but has 
very different topological structures, and the effectiveness of the instruction segment 
cannot be ensured (i.e., might contain a lot of introns after swapping into a parent). 
Besides, we develop “ALX/randSrc” in which we do not assign source registers for 
the newly generated instruction in ALX (i.e., removing lines 5–15 in Algorithm 4 
but ensuring that each newly generated instructions are effective in the offspring). 
By comparing with ALX/noRegAss, ALX/randSrc eliminates the performance bias 
caused by the epistases of instructions (i.e., to-be-swapped graph nodes are likely 
not connected with the parent graph in ALX/noRegAss). Nevertheless, ALX/rand-
Src does not maintain the topological structures based on the adjacency list either. 
Note that since all of the parameters in the compared methods follow the settings 
of the basic LGP which does not maintain the topological structures in its evolu-
tion, the compared methods with different components do not show significant per-
formance discrepancy in our prior investigation. Therefore, to highlight the perfor-
mance discrepancy, we also compare the four compared methods with 12 registers. 
Other parameters in this section are set the same as Sect. 4.2.

Table 5  The mean test performance (std.) of LGP with different ALX components

The best mean values and significant p values are highlighted in bold

# Reg Scenario LGP ALX/noRegAss ALX/randSrc LGP + ALX

8 registers ⟨Tmax, 0.85⟩ 1931.9 (61.8) ≈ 1925.2 (56.5) ≈ 1922.1 (48) ≈ 1923 (54.3)
⟨Tmax, 0.95⟩ 3981.6 (135.1) 

−
3937.4 (127) ≈ 3967.1 (133.6) 

≈

3920.7 (86.5)

⟨Tmean, 0.85⟩ 417.2 (3.1) ≈ 417.6 (3.2) ≈ 417.7 (3) − 416.6 (2.4)
⟨Tmean, 0.95⟩ 1117.6 (16.1) ≈ 1117.1 (14.6) ≈ 1115.2 (10.8) ≈ 1115.5 (12.5)
⟨WTmean, 0.85⟩ 724.4 (6.5) ≈ 724.1 (6.6) ≈ 724.9 (6.2) ≈ 724 (5.7)
⟨WTmean, 0.95⟩ 1721.9 (23.8) ≈ 1741 (34.8) ≈ 1726.8 (23) ≈ 1730.8 (25.7)

Mean rank 3 2.83 2.5 1.67
Pair-wise p value 0.442 0.705 1
12 registers ⟨Tmax, 0.85⟩ 1940.8 (49.9) ≈ 1939.3 (52.5) ≈ 1936.6 (56.9) ≈ 1932.1 (48.5)

⟨Tmax, 0.95⟩ 3999 (111.8) − 3989.6 (98.3) − 4006.4 (136.3) 
−

3941.9 (73.8)

⟨Tmean, 0.85⟩ 417.8 (2.7) ≈ 418.1 (2.8) ≈ 418.3 (3.5) ≈ 417.5 (2.4)
⟨Tmean, 0.95⟩ 1118.3 (10.8) ≈ 1118.5 (10.2) ≈ 1117.9 (10.4) ≈ 1115.9(9.3)
⟨WTmean, 0.85⟩ 726.7 (6.9) ≈ 727.1 (7.9) ≈ 726.8 (9.1) ≈ 725.2 (5.8)
⟨WTmean, 0.95⟩ 1743.9 (32.5) ≈ 1739.8 (29.9) ≈ 1737.8 (30.9) ≈ 1737.7 (30.8)

Mean rank 3 3.17 2.83 1
Pair-wise p value 0.044 0.022 0.083
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Table 5 shows the results of the compared methods. We apply Friedman test and 
Wilcoxon test to analyze the test performance of the compared methods. The p val-
ues of the Friedman test are 0.284 and 0.012 for 8 and 12 registers respectively, 
which means there is a significant difference in the test performance with 12 regis-
ters. In the comparison with 8 registers, the p values from a pair-wise Friedman test 
show that all compared methods are similar. However, the mean ranks and the mean 
test performance of ALX/noRegAss and ALX/randSrc show that only conveying 
frequency information of graphs is averagely inferior to conveying both frequency 
and topological information based on adjacency list. The results with 12 registers 
also show a performance reduction when ALX does not maintain topological struc-
tures. The basic LGP and ALX/noRegAss have significantly worse performance 
than LGP  +  ALX, and ALX/randSrc has a larger (worse) mean rank and worse 
mean test performance than LGP + ALX in most scenarios.

Fig. 9  The mean program length, mean effective program length, and mean effective ratio of the LGP 
methods. Y-axis is specified by the first column and X-axis denotes simulations
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In summary, the results confirm that ALX effectively uses both frequency and 
topological information to improve LGP performance. Specifically, first, graph node 
frequency improves LGP performance since ALX/noRegAss and ALX/randSrc have 
better test performance than basic LGP overall. Second, connecting every to-be-
swapped graph node with the parent graph (i.e., ALX/randSrc and LGP + ALX) and 
connecting the newly generated instructions among themselves (i.e., LGP + ALX) 
both enhance LGP performance.

6.3  Program size and effective ratio

To further understand the behaviors of different graph-based genetic operators, we 
investigate the mean program length, mean effective program length, and the mean 
effective ratio of LGP populations in the course of evolution. Specifically, we define 
the number of (effective) instructions as the (effective) program length and define 
the effective program length divided by the program length as the effective ratio for 
a program. We select three scenarios with a utilization level of 0.95 as examples to 
make analyses. The results are shown in Fig. 9.

First, the program length of LGP + ALX and LGP + FA grows more slowly than 
the others, and all the compared methods finally maintain at a similar level of pro-
gram length. Given that LGP + ALX and LGP + FA replace conventional linear 
crossover by ALX, the results imply that ALX has a smaller variation step size than 
conventional linear crossover and is less suffered from the bloat effect caused by 
introns. It is because ALX only swaps the effective instructions within an instruction 
segment (by transforming the effective instructions into a DAG), and the number of 
effective instructions is often smaller than the length of the instruction segment.

Second, LGP + ALX, LGP + FA, and LGP + GC have larger effective programs 
than the other compared methods. For example, LGP + ALX and LGP + FA end 
up with an effective program length of nearly 40 instructions in the three scenarios, 
while LGP, LGP + FX, and LGP + AMX only maintain at the level of 25 effec-
tive instructions. Based on the smaller program length and larger effective program 
length of LGP + ALX and LGP + FA, it is believed that ALX enables LGP to make 
better use of program instructions. The higher effective ratios of LGP + ALX and 
LGP + FA further confirm the conclusion. In terms of effective ratio, LGP + ALX 
and LGP + FA roughly maintain at the level of 0.8 in the course of evolution, while 
the other LGP methods without ALX or GC only maintain at the level of 0.55. The 
full utilization of instructions helps LGP to contain more effective building blocks 
within a given maximum program size.

7  Conclusions

The main goal of this paper is to find an effective way for LGP to accept graph informa-
tion during breeding. By investigating four graph-based genetic operators, this paper 
confirms that the adjacency list is an effective graph representation to transform graphs 
into LGP instructions in a case study of solving DJSS problems. To address the register 
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assignment issue in graph-to-instruction transformation, this paper proposes a register 
assignment method. The experimental results show that the register assignment method 
is effective in reconstructing the topological structures without significant loss of pro-
gram effectiveness. Note that although we mainly investigate different graph informa-
tion representations (by corresponding graph-based genetic operators) separately in this 
paper, LGP can simultaneously utilize more than one kind of graph information during 
the course of evolution in practice. The experimental results also confirm that fully uti-
lizing different kinds of graph information improves the performance of basic LGP and 
significantly reduces the susceptibility to maximum graph shapes.

This paper can be seen as a bridge from DAGs to LGP instructions, to make up 
the missing part of the graph-based theory in existing LGP literature. Further, the 
proposed graph-based genetic operators in this paper facilitate future cooperation 
between LGP and many other graph-based techniques and applications, such as neu-
ral networks and social network detection. We expect this paper to consolidate the 
foundation of LGP theory and provide a prior investigation for future LGP studies.

The conclusion in DJSS problems may be generalized to other domains since the 
proposed graph-to-instruction transformations did not consider the problem-specific 
features in their design. To verify this point, we plan to extend our experiments to other 
domains such as regression and classification in future work. Besides, we intend to fully 
use the graph-based characteristics of LGP to design new techniques, which are rarely 
taken into account in the existing literature. For example, the intrinsic multiple outputs 
in LGP can be used in tasks with multiple decisions. The easy reuse of building blocks 
in LGP can facilitate GP methods to evolve compact programs. We also intend to coop-
erate LGP with neural networks to perform neural architecture searches.
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