
ORI GIN AL PA PER

Deployment of parallel linear genetic programming
using GPUs on PC and video game console platforms

Garnett Wilson • Wolfgang Banzhaf

Received: 29 April 2009 / Revised: 25 January 2010 / Published online: 18 February 2010

� Springer Science+Business Media, LLC 2010

Abstract We present a general method for deploying parallel linear genetic

programming (LGP) to the PC and Xbox 360 video game console by using a

publicly available common framework for the devices called XNA (for ‘‘XNA’s Not

Acronymed’’). By constructing the LGP within this framework, we effectively

produce an LGP ‘‘game’’ for PC and XBox 360 that displays results as they evolve.

We use the GPU of each device to parallelize fitness evaluation and the mutation

operator of the LGP algorithm, thus providing a general LGP implementation

suitable for parallel computation on heterogeneous devices. While parallel GP

implementations on PCs are now common, both the implementation of GP on a

video game console using GPU and the construction of a GP around a framework

for heterogeneous devices are novel contributions. The objective of this work is to

describe how to implement the parallel execution of LGP in order to use the

underlying hardware (especially GPU) on the different platforms while still main-

taining loyalty to the general methodology of the LGP algorithm built for the

common framework. We discuss the implementation of texture-based data struc-

tures and the sequential and parallel algorithms built for their use on both CPU and

GPU. Following the description of the general algorithm, the particular tailoring of

the implementations for each hardware platform is described. Sequential (CPU) and

parallel (GPU-based) algorithm performance is compared on both PC and video

game platforms using the metrics of GP operations per second, actual time elapsed,

This work is based on an earlier work: Deployment of CPU and GPU-based Genetic Programming on

Heterogeneous Devices, in Proceedings of the 2009 Genetic and Evolutionary Computation Conference,

� ACM, 2009. http://doi.acm.org/10.1145/1570256.1570356

G. Wilson (&) � W. Banzhaf

Department of Computer Science, Memorial University of Newfoundland,

St. John’s, NL A1B 3X5, Canada

e-mail: gwilson@cs.mun.ca

W. Banzhaf

e-mail: banzhaf@cs.mun.ca

123

Genet Program Evolvable Mach (2010) 11:147–184

DOI 10.1007/s10710-010-9102-5

http://doi.acm.org/10.1145/1570256.1570356

speedup of parallel over sequential implementation, and percentage of execution

time used by the GPU versus CPU.

Keywords Genetic programming � Parallel processing � SIMD �
Graphics processing unit (GPU) � GPGPU � Xbox 360 � Heterogeneous devices

1 Introduction

An increasingly popular means of conducting massively parallel computing is

general-purpose computing for graphics processing units (GPGPU). The adoption of

graphics processing units (GPUs) for parallel computing is due to both the low price

point of the GPU hardware compared to other options for parallel processing and the

rate at which the computing power of the GPU hardware brought to market

increases [1]. Evolutionary computation in general, including genetic programming

(GP), can usually be readily adapted to parallel computing techniques. Thus, a

growing number of GP practitioners have been using GPGPU to reduce the

computing time required by their applications. This work describes an algorithm for

implementation of linear genetic programming (LGP) using the GPU for fitness

evaluation and mutation sections of the algorithm. Moreover, the authors describe

how to implement LGP so that it can be deployed so that it uses the GPU on

heterogeneous devices.

The toolset and runtime environment package used in this work to access the

GPU, Microsoft’s XNA (recursive acronym ‘‘XNA’s Not Acronymed’’) frame-

work, is designed to allow execution on heterogeneous devices including PCs

(Windows XP or Vista), video game console (Xbox 360), and even a portable

digital media device (Zune).1 The XNA framework allows the creation of

computer games by consumer designers across these hardware platforms. The

XNA framework is used with Microsoft’s C# (for CPU programming) and High

Level Shader Language, or HLSL (for GPU shader-level programming). C# is a

high level object-oriented language that is part of Microsoft’s current Visual

Studio development environment, while HLSL is a lower level C-style language

specifically useful for programming GPU shader programs. While the authors

were able to produce a general algorithm that could be applied across devices,

particular elements of each algorithm were changed due to hardware consider-

ations and the XNA framework. Despite the changes that were unique to each

platform, we aimed to keep the high-level parallel methodology general across PC

and video game console devices. By designing the algorithm within the XNA

framework for all platforms, what is effectively developed is a Linear Genetic

Programming game for PC and XBox 360 that runs a sequential or parallel GP

and displays results numerically and within colored textures on screen as

evolution takes place.

1 CPU-based GP was implemented on this device by the authors, see [15] for further details.

148 Genet Program Evolvable Mach (2010) 11:147–184

123

This main objective of this paper is to describe both a general methodology, and

the platform-dependent requirements, to implement GP using GPGPU on PCs and

video game consoles. While the general methodology is the same across the two

platforms, two separate versions of the implementation were used: One goal of this

work was to attempt to best utilize the potential GPU shader programming on the

different platforms used for the LGP algorithm, rather than achieve identical

implementations (program instructions) across platforms at the unnecessary expense

of performance on a given platform. This goal was a continual trade-off with the

additional goal of maintaining uniformity of the general algorithm across the

heterogeneous platforms. A description of the details of the modifications that the

authors implemented to allow such deployment on the two heterogeneous platforms

is the main contribution of the work. In addition, some empirical examination of

performance of parallel (CPU and GPU-based) and sequential (only CPU-based)

implementations on the two platforms is provided. Due to the differences in both PC

and video game console hardware and underlying operating systems, these results

only provide a means of comparing the combined algorithm and hardware

implementations (where they are highly interrelated in this work). That is, no

conclusions can be drawn regarding the speed of the underlying hardware and

software used to deploy the algorithms. However, results can be gleaned in the

comparison of parallel and non-parallel implementations using the combination of

LGP algorithm and targeted hardware platform.

Section 2 discusses parallel implementations using general-purpose computation

on graphics hardware programming (GPGPU) and previous, related work involving

parallel programming of GP with GPUs. Section 3 provides a brief overview of

linear genetic programming (LGP) and general purpose computation on graphics

processing units (GPGPUs) and introduces the GPU-based data structures used for

the LGP individuals. Section 4 discusses some hardware-related considerations for

each platform, and describes the general methodology of programming LGP using

the data structures introduced in the previous section. Section 5 details platform-

dependant differences in the general algorithm for the PC and Xbox 360

deployments of the parallel and sequential fitness functions, with implementation

of the parallel and sequential mutation operator described in Sect. 6. Section 7

examines performance results for the GP regression sextic polynomial problem for

the parallel and sequential algorithms and hardware combinations. Discussion and

conclusions follow in Sects. 8 and 9, respectively.

2 GPGPU programming and related work

GPUs have the ability to perform restricted parallel processing, while being mass

produced and inexpensive; hence researchers are increasingly interested in their use

for applications requiring intensive parallel computations. The type of parallel

processing used by GPUs is referred to as single instruction multiple data (SIMD)

processing, where all the processors on the graphics unit simultaneously execute the

same set of program instructions on different data. To be specific, a GPU is

responsible for simultaneously rendering the pixels it is provided on an assembly of

Genet Program Evolvable Mach (2010) 11:147–184 149

123

these pixels called a ‘‘texture.’’2 The GPU processes the texture and outputs a vector

of four floating point numbers for each pixel processed, corresponding to rgba (red,

green, blue, and alpha, for transparency) components of a color or the four

components of a position (x, y, z and w for an algebraic factor). The two parts of

GPU architecture that a user can control are the set of vertex processors and the set

of pixel (or fragment) processors.

An effect file, which is a program to control the GPU, is divided into two parts

corresponding to the architecture: a pixel shader and a vertex shader. The vertex

shader program transforms input vertices based on camera position, and then each

set of three resulting vertices compute a triangle from which pixel (fragment) output

is generated and sent to the pixel shaders. The shader program instructs the pixel

shaders (processors) to produce the colors of each pixel in parallel and place the

final pixel in a memory buffer prior for final output. GPGPU applications tend to

take advantage of pixel shader programming rather than using the vertex shaders,

mainly because there are typically more pixel than vertex shaders on a GPU and the

output of the pixel shaders is fed directly to memory [2]. In contrast, vertex

processors must send output through both the rasterizer and the pixel shader sections

of the GPU. The general architecture of a GPU is shown in Fig. 1, showing a level

of architecture detail matching the discussion above.

APIs for accessing the functionality of the GPU differ in level of abstraction.

Lower level alternatives for GPU programming include DirectX and the Open

Graphics Library (OpenGL). The next level of abstraction includes C-style

languages including C for Graphics (Cg), Microsoft’s High Level Shader Language

(HLSL), and nVidia’s Compute Unified Device Architecture (CUDA). At the

highest level are libraries that are integrated with object-oriented languages such as

Sh (now RapidMind) that integrates with C?? and Microsoft Research’s

Accelerator [3] integrating with C#. This work uses the XNA framework, which

uses C# with GPU programming done in HLSL. Both implementations described

herein (PC and XBox 360) use only the classes and methods specified by the XNA

framework (using C# and HLSL). Thus, the algorithms can be constructed with

Visual Studio 2008 with XNA framework installed and video card with appropriate

GPU. The only additional requirement to execute these algorithms on an XBox 360

is a membership in the XNA Creators Club, which has a recurring subscription fee.

A number of evolutionary computation practitioners have demonstrated signif-

icant speed-ups in computation for some time now using a number of distributed

and parallel computing techniques, due to the fact that evolutionary computation-

based algorithms are easily parallelizable [1, 4]. The first GPU-centered applications

to use evolutionary algorithms in general naturally applied them to textures for use

in image processing. The idea of applying genetic programming to evolve shaders

was first suggested by Musgrave [5]. Loviscach and Meyer-Spradow [6] used

genetic programming to evolve pixel shaders in OpenGL and applied them to

textures with user feedback required for determination of a fitness based on

aesthetic; Ebner et al. [7] implemented a similar strategy with Cg. Lindblad et al. [8]

2 Pixels of a texture are often called ‘‘texels’’ when considered as a portion of a texture. However, we use

the terminology ‘‘pixels’’ throughout this paper.

150 Genet Program Evolvable Mach (2010) 11:147–184

123

applied linear GP (LGP) with DirectX to interpret 3D images, with fitness

determining the difference between target and rendered images.

Moving from GP using the GPU for more traditional image analysis, general

purpose computation on GPUs (GPGPU) techniques were later tried using

evolutionary algorithms. Yu et al. [9] use Cg to implement a GA on a GPU using

a fine-grained parallel model where each point of a 2D grid is an individual, which

itself becomes a parent with its best neighbor. The chromosome of each individual

is divided sequentially into several segments that are distributed across a number of

textures with the same position. Each chromosome segment consists of four genes in

each of a pixel’s components, with a separate texture storing the fitness values of the

pixel individuals. Their implementation incorporated fitness evaluation, selection,

crossover, and mutation operators in shader programs on the GPU. For large

populations, the GPU implementation was found to be faster than the one on the

CPU for the regression benchmark (with this result being typical in EC-based

GPGPU research). Given their hardware configuration (2005) of an AMD Athlon

2500? CPU with 512 M RAM and an Nvidia GeForce 6800GT, the authors

achieved speedups of 1.49 to 20.19 for genetic operators and 0.39 to 17.19 for

Fig. 1 Typical GPU
architecture. The CPU sends
information on textures and an
Effect file containing pixel
shader instructions to the GPU
for parallel processing. Pixel
shaders perform the GPGPU
programming (instructions in the
Effect file) with the texture as
input. The arrow indicates the
path of the texture/data from the
CPU: Vertex processors are
effectively bypassed (although
they can be programmed), as is
the rasterizer. Contents of the
textures are manipulated by the
pixel shaders, stored in a buffer,
and then passed back to the CPU

Genet Program Evolvable Mach (2010) 11:147–184 151

123

fitness evaluations for populations ranging from 1,024 to 262,144 for a regression

benchmark.3

Fok et al. [4, 10] implemented EP (evolutionary programming) on the GPU. The

individuals in a population are represented as textures on the GPU, as are fitness,

random number, and indexing requirements. They determine that it is most effective

to implement mutation, reproduction, and fitness evaluation with the GPU while the

CPU performs competition and selection (where GPU versions of those function-

alities were also tried). The authors achieved speedups of 1.25–5.02 for populations

of 800–6,400 using five regression problems with a 2.4 GHz Pentium 4 with

512 MB of RAM and a GeForce 6800 Ultra video card. The lowest population size

they tried, 400, did not improve in speed through the use of the GPU. GP

(particularly Cartesian GP) is implemented by Harding and Banzhaf [11] using C#

and Accelerator, with Accelerator handling the compilation of GP expressions into

shader programs, execution of the shader programs, and the return of textures as

array data. Fitness cases were evaluated in parallel on the GPU. Using sextic

polynomial regression, the authors achieve speedups ranging from 0.02 to 95.37

testing combinations of maximum expression length {10, 100, 1,000, 10,000} and

number of fitness cases {10, 100, 1,000, 2,000}. Chitty [12] implements a tree-based

GP system, using OpenGL to create data textures and converting tree GP individuals

to Cg shader programs for evaluation on the GPU. Langdon and Banzhaf [13]

created a GPU-based interpreter using RapidMind and C?? that operates on stack-

based GP trees. Their goal was to map a population of different individual programs

to the GPU and evaluate the population in parallel.

Wilson and Banzhaf presented the first instance of parallel linear GP (LGP) using

a graphics processing unit, deployed to PC and XBox 360, in [14]. In the previous

work, fitness evaluation on the CPU maintained a loop over all fitness cases. Within

that loop, the CPU iterated over n instructions, where n was the number of

instructions in each individual. For each iteration of the fitness case loop, the shader

on the GPU processed one instruction in all individuals in parallel, with the current

values in each GP individual’s registers passed in and out of the shader as single row

texture. This method of evaluating the fitness allowed for the possibility of tracking

the contents of registers, but was considerably more computationally expensive than

the implementation described in detail in this work. The fitness function has since

been optimized to include iteration over fitness cases and instructions in each

individual for PC and iteration over all instructions (but not fitness cases) for the

XBox 360. Furthermore, in [14] the authors did not implement fitness evaluation on

the GPU of the XBox 360, but this is now accomplished in the current work (the

previous work implemented only mutation using the XBox 360 GPU). Crossover is

not implemented, as the authors felt that mutation provided sufficient variation to

meet the goal of having implemented a working GP system on heterogeneous

platforms. The authors wished to keep the algorithm as simple as possible in terms

of computational time and memory overhead due to the programming of the unique

3 While speedups in each study are strongly based on the hardware configuration, the results of the

studies can provide a rough means of comparing the speedup of parallelization on the GPU over CPU

only. Naturally, the proportion of the algorithm that is actually parallelized on the GPU will also affect

these speedup measures.

152 Genet Program Evolvable Mach (2010) 11:147–184

123

hardware within the heterogeneous devices to which the implementation was to be

ported.4 This work describes the finalized algorithm, where the solution

incorporates a new fitness function that allows for faster execution on the GPU.

Once the fitness function was refined, differences in hardware prevented the

authors from trivially porting the PC version of their GPU fitness function to the

Xbox 360. To create a fitness function tailored to the Xbox 360 hardware, the

authors implemented a number of changes to the fitness function component of the

algorithm. Thus, both fitness and mutation can now be implemented on both the

PC and XBox 360 platforms. This work represents a much more substantial

explanation of the requirements for deployment on the PC and video game

platforms than [15].

3 Linear genetic programming and its GPU parallel programming
implementation

This first part of this section describes the general form of a linear GP (LGP)

program. In particular, the instructions comprising a typical LGP individual and the

genetic operator of mutation are discussed. The second part of this section provides

details of how LGP is implemented for parallel processing using GPUs.

3.1 Linear genetic programming: brief overview

In Linear Genetic Programming (LGP), each individual is a sequence of instructions

of an imperative programming language like C (or lower level languages like

machine code). Usually, the instructions under evolution have a particular structure

known to the evolutionary process: Each instruction consists of an operand, target,

and two sources (each with an associated indicator component, or ‘‘flag’’). A valid

linear GP instruction takes the general form

target ¼ src1 op src2 ð1Þ

where it performs the operation op on values from either source registers or constant

terminal inputs of the program represented by the sources (src1 and src2), and

places the result in the target register (see Fig. 1). Their respective flags determine

whether the two source registers src1 and src2 refer to the source registers

themselves or to the program inputs. Each instruction can therefore be represented

by four integer values, src1, src2, target, op. The use of linear (bit) sequences in GP

has been pioneered by N. Cramer with his JB language [16], and was later applied to

machine language by Nordin et al. [17]. In recent years, a large number of LGP

implementations have appeared [17–19]. Figure 2 shows a typical LGP program

where the function set consists of arithmetic operators.

4 In addition to the devices covered in this work, one of these devices was a portable media device

(second generation 4 GB Zune), which involved only a sequential implementation and is not covered in

this work since it was not a parallel implementation. See [15] for further details.

Genet Program Evolvable Mach (2010) 11:147–184 153

123

Figure 2 shows an instantiated instruction set with each instruction consisting of

a target, followed by an operation on two sources. In the first line of this instruction

set, r[0] is the target of Eq. 1, ‘‘?’’ is the operator (op), r[5] is a value from the sixth

internal register specified by src1, and 11 is a constant input value specified by src2.

The value 11 is drawn from the program input for src2 rather than drawing an input

from an internal register due to the value of its accompanying flag. Below, we shall

apply GP to a regression benchmark problem. In that example (a sextic polynomial),

the integer variable op, op = {0, 1, 2, 3}, indicates one of four operators ADD,

SUB, MUL, or DIV. Following Eq. 1, the integer variable target, target = {0, 1, 2,

3}, specifies one of four target registers. The integer variables src1 and src2 indicate

either data from a fitness case or a register, based on the value of the respective flag

variables f1 and f2 (not shown in generic instruction), which can have one of the

values {0, 1}. The regression problem in this paper does not require control flow

statements (conditionals and loops), and thus they are not encoded as possible

instructions. However, general linear GP does allow the use of control flow

statements simply through their inclusion in the set of operators (typically in

addition to arithmetic operators). The control flow operators may also create general

instruction forms in addition to Eq. 1.

The genetic operation applicable to LGP individuals in this work is mutation,

where an instruction (single line of the LGP individual) is chosen using a random

uniform distribution. The selected instruction then has each of its integer values

changed to a random value within its acceptable range of values. There is no change

in program size, as a single instruction is simply manipulated in place. Since all

integer values within an instruction are mutated so they are within an acceptable

range, no unfeasible instruction strings are generated.

3.2 GPGPU version of linear genetic programming

This work describes how to implement components of linear genetic programming

in parallel on a graphics processing unit (GPU). To do this, a technique known as

general purpose computation on GPUs (GPGPU) is used. GPUs typically consist of

a number of processors that operate in parallel to perform ‘‘single instruction

multiple data’’ (SIMD) processing where all processors on the GPU simultaneously

execute the same program on different data. In particular, the GPU simultaneously

{ ...
 r[0] = r[5] + 11;
 // r[7] = r[0] – 62;
 r[4] = r[2] * r[0];
 // r[2] = r[3] + r[4];
 r[6] = r[4] * 21;
 r[1] = r[3] / 3;
 r[7] = r[6] – 5;
 r[0] = r[7] + r[1];
}

Fig. 2 Example of a typical linear GP individual. Instructions make use of registers r[0] to r[7] as
sources and targets for operations. Operations here are arithmetic. Double slashes signal non-effective
instructions if the final result is held in r[0]

154 Genet Program Evolvable Mach (2010) 11:147–184

123

processes each pixel in the texture. Each pixel consists of four components (we use

xyzw as the components, but rgba is equally as effective in GPGPU programming),

see Sect. 2 for details on pixel components. The shader program on a GPU processes

all components on every pixel at one time and outputs a vector of four floating point

numbers for each pixel. Figure 3 summarizes the execution of a pixel shader

program on the GPU.

In Fig. 3, each channel (xyzw) of each pixel in the input (top) 8 9 1 pixel texture

are processed at the same time by the shader program on the GPU (darkened box,

midde of Fig. 3). Thus, every x channel in every pixel is multiplied by 5, every y
channel is increased by 3, and so on, at the end of the execution of the shader

program on the GPU. The resulting texture that is output by the GPU is shown on

the bottom of Fig. 3. In our LGP GPU-based implementation, the inputs to the GPU

are either the individuals themselves or associated problem data to be represented as

Fig. 3 Shader program for parallel execution using GPU. Each of the eight pixels of the input texture is
processed in parallel by the GPU shader program. In the shader program, each particular channel across
all pixels is adjusted using the same arithmetic evaluation. The results of the shader program on the input
texture are shown as placed on the output texture

Genet Program Evolvable Mach (2010) 11:147–184 155

123

textures. Numeric values corresponding to each segment of an instruction in an

individual are stored as arrays in an XNA data type so they can be processed by the

GPU as a texture. Our representation of an instruction uses four floats per pixel, one

float for each of the 4 color components (xyzw) of the pixel. The fitness cases are

stored on a separate (read only) texture object, and also use four floats per pixel.

These texture-based data structures are described in greater detail in Sects. 5 and 6.

An instruction is encoded as two corresponding pixels. Two additional pieces of

information are encoded on the pixels for convenience of reference when

developing the program, but neither are required for execution: an integer id used

to label the individual and an integer PC (program counter) to label the current

instruction. There is no extra computational or space cost for adding this

information—only 6 out of the 8 components across the 2 pixels used to represent

an individual instruction are required for the instruction itself. Pixels of the first

texture each contain the variables {operator, target, id, PC} corresponding to their

four components and pixels of the second texture contain {flag1, source1, flag2,
source2}.

The collection of pixel instructions make up an LGP individual, and the

collection of individuals is the population. Accordingly, two textures can

collectively represent the entire GP population: a particular column in both textures

represents an individual, and the two pixels in the same location in both textures

represent a unique instruction from the individual. The pixel-based width of these

textures is the number of individuals in the population, and the pixel-based height of

the textures is the number of instructions per individual. The length of all

individuals (also the height of the population textures) is fixed at 16 for these

experiments, where we found this length adequate to solve our chosen regression

problem and did not wish to consume additional GPU texture memory. The

representation of instruction, individual, and population is shown in Fig. 4.

Fig. 4 Representation of pixel components as chromosomes, pixel pairs as instructions, column pairs as
individuals, and two textures as the population

156 Genet Program Evolvable Mach (2010) 11:147–184

123

4 General linear genetic programming method for heterogeneous devices

The previous section described texture-based data structures suitable for use in

parallel processing on a GPU, while the current section describes the general

algorithm built to use these structures that is universal to the CPU and the GPU.

Independent of CPU and GPU-related algorithm design considerations, there are

practical hardware considerations when implementing the general GP algorithm on

both PC and Xbox 360 platforms. These issues are discussed in Sect. 4.1.

Section 4.2 then describes the general linear genetic programming algorithm that

we aim to implement on both architectures (thus the algorithm is designed for the

XNA framework) independent of CPU or GPU.

4.1 Architecture issues

The design decisions surrounding the way the GPU is used by the algorithm was

determined by the authors based on the nature of the underlying hardware. GPU-

based GP implementations can use the GPU in one of two ways: the GPU

instructions can represent the instructions within an individual of the population, or

the GPU instructions can represent an interpreter that executes the instruction set

from an individual that is passed to it over all fitness cases. The former approach

requires dynamic compilation of shaders; that is, shader program must be compiled

and re-loaded to the GPU whenever selection occurs. In the latter approach, the

GPU program is compiled and loaded only once; thus the GPU program is static

(fixed) throughout program execution. Practitioners choose either approach based

on problem implementation or preference. In the case of XBox 360 implementation,

however, the choice was obvious because the authors were only successful at

compiling the shader components during initial compilation of the entire program.

Thus, we use the interpreter approach for the GPU for both the PC and XBox 360.

As the design considerations are largely hardware dependent, the limitations

described in this section will likely change in the future with new devices. An issue

that prompted two separate implementations for the platforms was that for the Xbox

360, there was an added restriction enforced by the microcode compiler upon

compilation of the shader program: when a texture was used to hold the fitness

cases, referencing it from within the inner of two nested loops did not allow the

shader to compile. Thus, iteration over the instructions of an individual in a loop

nested within a loop iterating over fitness cases was not possible for our application

on the video game console, but was possible on the PC. To attempt to maximize the

respective parallelization capabilities of the platforms’ GPU hardware, the authors

allowed the general methodology to diverge in this respect. That is, to preserve the

optimized PC GPU shader technique, separate implementations were required

because the XBox 360 would not compile the authors’ PC shader technique that

used the nested loops. While it is possible to create platform specific programs using

the XNA framework to form a single class for both platforms, the inability to

compile the shader prevented that possibility for the authors’ implementation.

Despite the two slightly modified shader techniques and associated CPU fitness

Genet Program Evolvable Mach (2010) 11:147–184 157

123

evaluation initiating the shader techniques, the procedure for deployment is still

considerably general (see following Sect. 4.2 for details).

Hardware architecture considerations that we discovered also affected the

allowable parameters across implementations. To keep experiments more

consistent, the most restrictive setting determined by the authors between the

two platforms was used for both platforms, as determined by querying the

hardware devices. Parameterization related to population size is affected in our

implementation by the size of the video card backbuffer (memory area where the

textures are drawn instead of the screen so they can be retrieved) limiting the

texture size corresponding to the population. In particular, the width of the result

texture is the number of individuals in the population. The XBox 360 used

textures with pixel dimensions of up to 8,192 x 8,192. Our implementation’s

preliminary trials found that 400 individuals ran acceptably on the XBox 360, so

the maximum population tested is thus 400. In addition to population-related GP

parameters, the number of possible fitness cases is also impacted. The Xbox 360

features a maximum shader constant limitation of 256, so far the Xbox 360

implementation we restricted the number of fitness cases to 200 or under. Fitness

cases were loaded into memory as an array rather than as a texture as on PC

(due to microcode compilation issues associated with nested loops mentioned

earlier in this section). The number of fitness cases on the PC is limited by the

number of instructions that the shader is composed of following the unrolling of

the nested fitness case and individual instruction loops. Unrolling of the loops is

done by the shader program (HLSL) compiler and translates the instructions

within all nested loops into a completely sequential version of those instructions

to be used by the GPU. Even using shader options (such as preferring dynamic

control flow) and directives to dynamically compile the shader, the authors found

that the unrolling of the loops on the PC still occurred. Regardless, the

preliminary tests using the XBox 360 prompted a limit of 200 fitness cases for

our implementations.

4.2 General methodology

We implement linear GP on two different hardware platforms using a general

methodology while adhering to the architectural requirements of both platforms

mentioned in the preceding section. The framework used for programming both

platforms is Microsoft’s publicly available XNA Game Studio, where this work uses

version 3.0. The authors were unable to get Microsoft Research’s Accelerator, a tool

for general purpose programming of the GPU, to operate with the XNA framework.

The only other means of programming both platforms that the authors are aware of

is Microsoft’s XBox 360 Development Kits professional developer tools, which are

generally restricted to established video game development companies [20]. These

professional tools require special approval and licenses. Thus, we did not use these

tools. However, a recent publication described the use of these professional tools to

perform scientific computing using GPGPU programming on the XBox 360 in a

medical application [21].

158 Genet Program Evolvable Mach (2010) 11:147–184

123

Programming of shaders using the HLSL shader language is used to provide GPU

access using the XNA framework. CPU-side programming is with C# in Microsoft’s

Visual Studio 2008 development environment, where GPU shader programs are

invoked using C# commands from the XNA framework. The shader programs

themselves are programmed with Microsoft’s HLSL. Implementation of LGP

begins by creating a project using an XNA Framework Windows (or XBox 360)

Game template. Upon creating the project with either template, the user will see two

C# files containing a class: Game1.cs and Program.cs. Program.cs is a wrapper

class for our purposes, containing only a Main method that begins a program (a

game in the context of an XNA project). The Main method begins by creating an

instance of the game class and invoking the Run method. The second file is called

Game1.cs and contains the Game1 class by default, which contains the methods of

greatest interest to our implementation (and most other standard games). The class

contains the methods Initialize, LoadContent, UnloadContent, Update, and Draw.

The Initialize method is used to query services and handle non-graphics related

content. The LoadContent method is automatically called only once per run and is

used to initialize objects necessary to draw graphics, load effect files (files containing

HLSL shader programs to be run), and load textures that will be drawn to the screen.

UnloadContent is also automatically called once, and removes all loaded content.

The Update method is used to check if a particular state is true during game play,

including whether or not the user has pressed a certain key. The Draw method draws

the current state of the game to the screen. The linear GP algorithm is programmed

using the methods and functionality of the default Game class in a typical XNA

framework project. Thus, in actuality, we are creating a Genetic Programming game

that runs an example GP program and displays results on screen. The general GP

method that we wish to implement in this framework is described in Table 1.

The first line of Table 1 simply reflects that we need to generate an initial

population of LGP individuals. Lines 2–10 perform the entire GP algorithm for the

desired number of generations. During each generation (iteration of the loop), each

individual in the population has its fitness evaluated (loop of lines 3–9). For each

iteration of the loop, a nested loop (line 4) iterates over the fitness cases (sets of one

or more input values and one or more corresponding outputs) for the given problem.

For each fitness case, the instructions in each individual are processed (loop of lines

Table 1 General linear genetic programming (LGP) algorihtm

Genet Program Evolvable Mach (2010) 11:147–184 159

123

5–6) and a measure of raw fitness (cumulative error difference between actual and

provided answer for regression) and hits (number of acceptable errors) are tallied

(line 7). Individuals to be copied for the next generation are selected using fitness-

proportionate roulette wheel selection (line 8). Genetic operators (in this work,

mutation only) are applied to individuals in the new population based on a threshold

that is specified a priori (line 9).

To port the generic GP algorithm to XNA, each frame refresh by the automatic

call of the Draw method processes a GP generation. The general method to

accomplish this is the same for both platforms, and the generic method of GP

implementation will be described here with differences described in the next

section. Upon first executing the GP algorithm for either platform, the main method

in the Program class mentioned previously creates an instance of the Game class and

calls the internal method Run() for that class. The pseudocode C# commands for our

use of the Game class to perform LGP are shown in Table 2.

When the constructor is called from the Program class, the program begins with

the initialization of variables in the constructor (lines 3–4). In particular, any

variables required to record data over multiple trials are created: seeds for each trial,

and the arrays to record the best fitness, hits, and actual clock time elapsed for each

trial. The Initialize method provides an on-screen keyboard for the user to input

parameters. In the implementation discussed here, the user can specify: whether or

Table 2 C# pseudocode for the use of the XNA Game class to run LGP

Instructions in all capitals indicate sections of the algorithm that can be run sequentially or in parallel

using a GPU

160 Genet Program Evolvable Mach (2010) 11:147–184

123

not the sections of the algorithm that can be performed in parallel are to be

sequential or in parallel (Boolean), population size (integer), mutation threshold

(float) and number of generations in each trial (integer). The parameters accepted

from the user are not central to the implementation of the algorithm, and additional

flexibility could be implemented.5 The LoadContent (lines 7–8) method is used to

initialize declared variables, arrays for storing results of trials during execution, and

textures that store graphical information to potentially be passed to the GPU for

parallel processing (GPU processing chosen by user) or at least displayed to screen

(CPU only processing chosen by user). It is this method that instantiates textures and

associated XNA data structures that store the population (content of individuals),

fitness cases, and thresholds for mutation. Thus, line 1 of Table 1 is performed in

this method. UnloadContent (line 9) simply removes these variables from memory

following completion of all trials. The Update method (lines 10–12), which takes

the current game time as an argument, simply checks whether or not the user has

pressed a key to exit the program and takes the initial parameters from the user.

The Draw method performs the creation of new generations; that is, the do loop

(lines 2–10 of Table 1) begins iteration when the Draw method is implicitly called.

The fitness evaluation (Table 2, line 14) incorporates the three nested loops in lines

3–7 of the general GP algorithm (Table 1). The task in Table 2, line 14 can be

implemented sequentially on the CPU or in parallel on the GPU. In the CPU

implementation, three nested loops (Table 1, lines 3–7) accomplish the evaluation

of the fitness over the entire population. In the GPU implementation, the first loop

over all individuals (Table 1, line 3) is avoided by processing all individuals at once

as a texture using the GPU (detailed in Sect. 5). At Table 2, lines 15–16, if a

particular trial has not yet ended, then fitness-proportionate generational selection

proceeds using the CPU in the case of both sequential and parallel implementations.

On line 16, mutation is applied (with an associated threshold). The mutation

operator is described in detail in Sect. 6 and can be applied to each individual

sequentially (on CPU only) or to all individuals in parallel (on GPU). Line 18 of the

Draw method checks whether or not a particular trial has ended. If so, the current

trial number is incremented, the current generation variable is reset, and the best

fitness for the trial that has just ended is recorded in a growing list to be displayed on

screen (lines 19–21). If all trials are not yet done, the list of best fitnesses of all trials

elapsed so far, the number of the current trial, the current generation, and population

textures are displayed to the user (lines 22–23).

5 Implementation of fitness function

In the previous section, the general LGP algorithm was described independent of

deployment on the CPU or GPU. This section details the different CPU (sequential)

and GPU (parallel) versions of the fitness function component of the general

5 For instance, we always run 50 trials. Since the number of trials is controlled by the Draw method in the

Game class, however, this is a natural addition to the user parameters.

Genet Program Evolvable Mach (2010) 11:147–184 161

123

algorithm (Table 2, line 14). A description of the sequential CPU fitness function is

provided in Sect. 5.1. In particular, the structure and use of texture-type data

structures available using XNA are explained as they pertain to the sequential fitness

function. Moving the data in the relevant data structures of the CPU to textures, a

parallel version of the fitness function can be implemented on the GPU of the PC or

XBox 360. The parallel version of the fitness function for the PC is described in

Sect. 5.2, with the particular implementation differences for the XBox 360

described in Sect. 5.3.

5.1 Sequential CPU fitness function

This section describes the sequential implementation of the fitness function; that

is, the fitness function as it is implemented in a CPU-only execution of the

implementation. The sequential implementation of the fitness function is the same

for both the PC and XBox 360 platforms. The CPU version of the fitness function

is the standard generally implemented in LGP, and only differs from the GPU

implementation insofar as an array of fitness cases is used rather than referencing

pixels on a texture in GPU memory. Typically, instructions would simply be

binary strings if no GPU was used. For increased consistency across GPU and

CPU implementations, the data structures are kept as similar as possible. Thus,

the individual in the CPU-side implementation is still stored in two arrays of

XNA Vector4 types, which store appropriate float/integer values for each

chromosome in groups of four (as they would be stored in pixels of four

components). In addition, the fitness cases are stored in an array of the Vector4
data type. The arrays are still placed on textures for display on-screen; however,

they are simply not processed by the GPU during execution of the fitness

function. The instructions for the CPU version of the fitness function just

described are shown in Table 3, with arrays that could be placed on textures

underlined.

The LGP fitness function, when applied to the whole population, consists of three

nested loops: the outermost loop iterates over the individuals in the population, the

middle loop iterates over fitness cases, and an inner loop iterates over the sequence

of instructions comprising the individual. Line 1 of Table 3 is the loop over all

individuals in the population (Table 1, line 3). Before executing the two inner loops,

the hits and cumulative fitness variables are initialized (Table 3, lines 2–3). A loop

over all fitness cases is then conducted (line 4) wherein the four registers of an

individual that are used to store sub results are initialized (line 5). The inner most

loop (line 6) then executes the instructions within each individual for each fitness

case. For each instruction, the operator and target register for the instruction are

retrieved from an XNA data structure that holds what would be transferred to the

first of two textures representing the population in a parallel GPU implementation

(line 7). Similarly, the flags and source locations are retrieved from the data

structure that would be transferred to the second of two textures representing a

162 Genet Program Evolvable Mach (2010) 11:147–184

123

population in the parallel implementation (lines 8–9).6 If the value of a flag is 1, data

is taken from the fitness case referred to by the first source location, denoted source1
(line 10–11), else the value of the flag is 0 and data is taken from the individual’s

internal register denoted by source1 (line 12–13). A similar conditional performs the

same procedure for the second flag and source2 data location (lines 14–17). The

operator retrieved in line 7 can have the value of 1, 2, 3, or 4, which corresponds to

the operations of addition, subtraction, multiplication, and division, respectively.

The conditionals on lines 18–28 take the values in the two source locations, perform

the specified operation, and place the result in the register corresponding to the

Table 3 C# CPU fitness function instructions for PC and XBox 360

Fitness case and population arrays are underlined

6 Lines 7–9 indicate that a two-dimensional array is being accessed for clarity. In actuality, a one-

dimensional array is treated conceptually as a two-dimensional array and is accessed using offsets such

that indices (x, y) are the index (x ? (y * populationWidth)). A one-dimensional array must be used in

order to place data on an XNA Texture2D object to be passed to the GPU.

Genet Program Evolvable Mach (2010) 11:147–184 163

123

target location from line 7. The division operator is protected in the case of divide

by 0, where the function will place a value of 1 in the target register. Exiting the

loop after processing the individual’s instructions, the difference (error) between the

desired value for the particular fitness case and the current value in register 0 is

calculated (line 29). If the error is within an acceptable threshold (0.01), the number

of hits is incremented by one (lines 30–31). The current error is then added to the

cumulative error (line 32). Exiting the loop over all fitness cases, the hits and

cumulative raw fitness are recorded for each individual (line 33) within the loop

over all individuals (line 1).

5.2 Parallel GPU fitness function

This section describes the parallel implementation of the fitness function for the

GPU on the PC, where changes to the technique discussed here for the XBox 360

are provided in the next section. We use textures on the GPU to represent fitness

cases and the population, where each pixel (the name of a pixel when placed on a

texture) has four components. In the case of the fitness texture, we model a

regression problem (detailed in Sect. 7) and actually only require two components

of a four component pixel: In this work, a fitness case corresponds to a single input

(x variable) and a corresponding output (y variable) for the equation y = x6 -

2x4 ? x2 used as the regression problem. A texture of 200 fitness cases was used, so

a 2 9 200 array was required. Since two values can fit within two components of a

four component pixel, a texture of 1 9 200 pixels can be used. The two population

textures took the form shown in Fig. 4, where each texture had a width of the

population size and a height of the number of instructions per individual. In each

pixel of both population textures, all four components are used to store information

as detailed in Sect. 3: In the first texture each pixel contains target register, operator,

individual ID number, and program counter (only the former two components are

segments of an instruction). In the second texture, each pixel contains two flag and

source pairs, namely (flag1, source1) and (flag2, source2). To place the data on each

texture, the XNA HalfVector4 surface format was used. In the HalfVector4 format,

each of the four components was a 16 bit float (interpreted as an integer where

appropriate). This choice of surface format attempted to maximize the Xbox 360

GPU hardware capabilities while increasing the speed of execution through placing

more information on single textures.

The GPU version of the fitness function is written in High Level Shader

Language (HLSL). In order to execute the GPU fitness function, the 1 9 200 fitness

case texture and two population textures are loaded into GPU memory by the CPU-

side classes. Raw fitness and hits are returned by the GPU each time the shader

program fitness function is executed. In HLSL, pixel components are stored in

float4s, which store four floats as components of a single float4 variable, and are

here specified using xyzw. The only output is the cumulative fitness (cumulative raw

error) and associated hits (fitness cases with acceptable error) across all fitness

functions at the end of execution; no intermediate results for individual instructions

or even individual fitness cases are available to the calling program during its

execution. The final output of the shader program is a pixel (on-screen pixel) for

164 Genet Program Evolvable Mach (2010) 11:147–184

123

each individual, with a component taken for hits and another component for raw

cumulative fitness over all cases. Thus, a texture is produced by the shader with

dimensions populationSize 9 1 where each pixel is the result of program execution

over all fitness cases stored as {hits, raw fitness, n/a, n/a}. Pseudocode of the shader

fitness function is shown below in Table 4.

Table 4 HLSL GPU fitness function instructions for PC

Fitness case and population arrays are underlined and are loaded in GPU memory prior to execution

Genet Program Evolvable Mach (2010) 11:147–184 165

123

The HLSL shader for fitness evaluation in Table 4 begins with the assumption

that the fitness case and population textures are present in GPU memory after being

loaded from CPU-side execution. The underlined texture names of the fitness case

texture and two population textures in Table 4 correspond to the identically named

array structures in Table 3, and serve the same function for both implementations of

the fitness function. (The shader commands associated with loading and reading

data from particular sections of the textures, called ‘‘sampling,’’ has been removed

for brevity.) The fitnessShader program then involves the declaration of hits and

cumulative fitness variables. Rather than requiring a loop over all individuals in the

population, the parallel fitness function processes every individual (every column)

on the population textures at once. The outermost loop in the sequential fitness

function (Table 3, line 1) is thus not applicable. The first for loop of the parallel

fitness function (Table 4, line 4) iterates over the fitness cases, resetting the value of

the registers each time. The appropriate location for the current fitness case on the

fitness texture in memory is retrieved in the first step of the loop body (line 5, HLSL

texture sampling commands removed for brevity). For each fitness case, prior to

iteration over an individual’s instructions, registers are re-initialized (line 6). The

HLSL variable consisting of four components (float4 using components xyzw) is

used to store the four register values.

The inner loop, using the pointer variable, then executes the individual’s

instructions sequentially (line 7). The appropriate location of the pixels on both

population textures for the current instruction are read to retrieve four components

(xyzw in HLSL) per pixel. For each instruction, the first flag is checked (flagSource-
Data.x from the flagSourceData texture) prior to retrieving the data for the first source

(src1) of the general instruction form in Eq. 1 (target = src1 op src2). If the value of

the first flag (flagSourceData.x) is 1, then fitness information is fetched from the input

value for the current fitness case on the fitness texture (fitnessData.x) in lines 10–11,

else a subresult is fetched from one of the four registers (contained in the four xyzw
components of registers) indexed by the value in flagSourceData.y (lines 12–17).

Following that, the second source data (src2) is loaded in a similar manner by checking

the second flag from flagSourceData.z, and then loading data from the register index

indicated by flagSourceData.w or from fitness cases, based on the second flag

(flagSourceData.z) in lines 18–25. The operation specified by the component

opTargetData.x (op in target = src1 op src2) is mapped to the appropriate

mathematical operator (lines 27–32), with the result being placed in the target
register specified by the component opTargetData.x (lines 33–36). The inner loop is

then complete, and the raw (absolute) cumulative fitness over all fitness cases is

computed, as is the number of hits, prior to the end of the outer loop over all fitness

cases (lines 37–39). The hits and cumulative fitness results are transferred to the first

two components (floats) of the float4 variable registers (no longer used to store

subresults at this point), which is the variable returned by the shader program to the

CPU-side program as a texture with height of one and width of the population size.

The CPU-side C# pseudocode used to call the GPU fitness function is given in

Table 5 below. The first line creates an Effect object that is used as the intermediary

to set parameters in the GPU shader program prior to its execution (line 1). Line 2

changes the render target so that information will be written to the GPU memory

166 Genet Program Evolvable Mach (2010) 11:147–184

123

rather than the screen. The required textures (two population textures, an integer

reflecting population size, and the texture containing fitness cases) are passed to

the shader program as parameters (lines 3–5). An object called a spriteRenderer
(line 6) is used to draw the textures. In combination with the effect object that

allows access to the shader, the spriteRenderer is used to execute the shader

program by drawing the specified textures (lines 7–11). Once the shader program

has finished execution (effect.End(), line 11), the render target is resolved (by

switching the render target again, line 12). The data is retrieved from the texture

written to by the shader by first retrieving the texture from GPU memory and

storing it in a Texture object (line 13). The data stored in this texture is then

retrieved using the GetData function (line 14) and placed in a data structure. The

hits and cumulative raw fitness are then read from the appropriate components of

the retrieved texture.

5.3 Parallel GPU fitness function for XBox 360

For implementation on the Xbox 360, the authors encountered an added restriction

enforced by the microcode compiler upon compilation of the shader program: when

a texture is used to hold the fitness cases, referencing it from within the inner loop of

two nested loops did not allow the shader to compile (Table 4, lines 11 and 19). To

avoid this compiler issue, the fitness cases were passed to the shader program as an

array of float2s in GPU memory. Each float2 variable consists of x and y
components, which are naturally used for the input and output variables for each

fitness case. For other fitness case scenarios involving more variables, a number of

XNA float2 or float4 arrays could be passed to the shader. Upon implementing a

usable shader technique otherwise similar to the PC, the authors found that the Xbox

360 GPU did not persist texture and/or parameter contents in the same way as the

PC. The authors found that for their implementation of the fitness shader, the GPU

memory would flush texture content before it could be read back by the CPU.

A means of keeping the information written to the GPU memory so that it could

be read back by the CPU-side program led to the authors implementing a number of

changes to the shader file (where the suitable changes were found to be documented

Table 5 C# CPU fitness function instructions for PC to invoke GPU shader

Genet Program Evolvable Mach (2010) 11:147–184 167

123

in the MSDN online documentation [22]). One of the changes was to the variable

that handles drawing to the current location: it can be specified as a SPRITET-

EXCOORD to allow the drawing of point sprites through the DrawPrimitives
method rather than sampling a texture using the standard TEXCOORD semantic as

on the PC. The DrawPrimitives method was used to handle particular aspects of

writing to the GPU memory on the XBox 360, which was handled by the

SpriteBatch.Draw() method for the PC: The data, once written to the GPU memory

using the latter method on the PC, was resolved and read back by the CPU-side (C#)

program. On the Xbox 360 (unlike the PC), when an attempt was made to resolve

the texture produced, the intended data written was not retrieved. To expand on the

implementation of the fitness function for the XBox 360, the means of persisting the

data written to the Xbox 360 GPU memory that the authors chose was to use a

DrawUserPrimitives method called directly from the XNA object representing the

graphics device rather than using SpriteBatch.Draw(). The DrawUserPrimitives
method draws the data as scaled point sprites rather than a texture of pixels. That is,

the data in HalfVector4 format was drawn as a list of points. The version of the

DrawUserPrimitives method used accepts as arguments the array of HalfVector4s to

be drawn, a starting pixel on the backbuffer at which to draw (0), and the number of

data points to be drawn (length of the array) in the point sprite. When initializing the

drawing method, the PointSize (in pixels) is to be initialized to the size of the

population so there is a pixel drawn for each member of the population. In addition,

what is passed as x, y points to the shader get moved to points z, w and may become

negative [23]. To correct for this, the absolute values of the z, w coordinates on the

GPU are taken as the intended x, y coordinates. The resulting Xbox 360 HLSL

shader fitness function pseudocode is shown in Table 6.

The HLSL shader program for the PC (Table 4) differs from the shader for the

XBox 360 (Table 6) due to the hardware changes noted in this section. There are

only two textures declared to be sampled, with the fitness texture passed directly as

a variable parameter in the form of an array of 200 float2s (line 1). This array of

float2s for the fitness cases consists of one input and one output for the sextic

polynomial equation we chose. The fitness function declaration is similar to that of

the PC, only using SPRITETEXCOORRD as mentioned previously (line 2). The

first line of the fitness function corrects for the peculiar change in z, w components

and possible change in sign (line 3). Inside the outer loop over fitness cases (line 4),

the fitnessData information is now retrieved from the components of the elements of

Table 6 HLSL GPU fitness function instructions for XBox 360

168 Genet Program Evolvable Mach (2010) 11:147–184

123

the float2 array fitnessArray rather than from a texture (line 6). The CPU-side C#

instructions used to call the HLSL shader in Table 6 are shown in Table 7.

In contrast to Table 5 (PC shader program invocation), the XBox 360 version of

the C# instructions in Table 7 must populate an array of float2s with the fitness

cases prior to executing the shader. Other than that, the C# instructions differ from

the PC in that fitness cases are passed to the shader as the array parameter

fitnessArray (Table 7, line 5) rather than by passing a texture (Table 5, line 5).

Finally, the DrawUserPrimitives method must be used to draw the data itself (stored

in resultTextureData) directly to the GPU memory buffer rather than drawing a

texture (Table 7, lines 9–12) to the GPU memory using the Draw method of

SpriteRenderer as for the PC (Table 5, line 9). An important parameter to note for

the DrawUserPrimitives method (Table 7, line 10) is the last one, resultPopula-
tionTextureData.Length (Table 7, line 12), which allows the proper scaling of the

output to the size of the population so there is a four component pixel result drawn

for each individual in the population. If the scaling is not correct, the result values

were found to be either nonsense or blank (default color).

6 Implementation of the mutation operator

Following the execution of the fitness function on either the CPU or GPU, roulette

wheel fitness-proportionate selection is performed on the population using the CPU

(see Table 2, lines 15–16). The mutation operator is then implemented (Table 2,

line 17), which is described in this section. In particular, linear GP micro mutation

(mutation occurring within an instruction) is implemented where any of the

particular chromosomes of an instruction can be replaced with a new acceptable

value for that chromosome. In other words, mutation occurs at the level of

symbols rather than at the lower level of binary encoding. The GPU

Table 7 C# fitness function instructions for XBox 360 to invoke GPU shader

Differences from PC instructions to initiate GPU shader are italicized

Genet Program Evolvable Mach (2010) 11:147–184 169

123

implementation of mutation in LGP is much more straightforward than GPU-

based fitness evaluation: there are no nested loops to complicate compilation of

the shader, and particular areas of textures are not evaluated at different times.

All pixels on the three mutation textures are evaluated at the same time by the

GPU, and both CPU and GPU mutation implementations can be accomplished in

the same way for PC and XBox 360. Mutation involves three new textures

generated by the CPU, all of which have width corresponding to individuals in

the population and height corresponding to the number of instructions per

individual. These first two of the three textures contain acceptable potential

replacement values for each chromosome for the two textures that currently make

up the population (as described in Sect. 3). The first of the three textures contains

pixel information of {op, target, id, PC} and a second texture contains pixels of

{f1, src1, f2, src2} using values chosen from a normal random distribution. The

third texture used for mutation has the four components of each pixel initialized

to a set of four floats chosen with a random uniform distribution in the range

[0.0, 1.0]. This texture contains values that correspond to a single float mutation

threshold that is determined in each tournament round. If the mutation threshold

exceeds the value in a pixel’s component of this threshold texture, the

chromosome on both of the two original population textures in that component’s

position will be replaced. Five textures altogether are involved in mutation: the

two textures representing the original (pre-mutation) population of individuals, a

texture of values corresponding to a mutation threshold, and two textures

containing potential replacement chromosomes for the two original population

textures. For mutation using only the CPU, the data were held in an array rather

than a texture. The textures/arrays used for mutation and the general method are

shown in Fig. 5.

The GPU-side mutation shader operates by using the two textures representing

the current population (bottom two textures in Fig. 5). For each component (xyzw)

of each pixel on the current population textures, the shader program checks the

corresponding component from the same pixel location on the threshold texture

(containing a value in the range [0.0, 1.0]). If the threshold texture (middle black

texture, Fig. 5) component value does not exceed the mutation threshold, the value

in the corresponding pixel component in the potential replacement texture (middle

grey texture pair, Fig. 5) replaces the value in the component of the current

population, otherwise the current population component value is preserved. In other

words, the threshold texture serves as a mask, where values in the threshold texture

not exceeding the mutation threshold value allow new values for instruction

chromosomes, otherwise the current chromosome values are preserved. The

resulting mutated population is then the new GP generation (top textures, Fig. 5).

The mutation technique as implemented on CPU and GPU is described in Sects. 6.1

and 6.2, respectively.

6.1 CPU mutation for PC and XBox 360

The CPU version of the mutation operation, to keep the CPU and GPU versions as

similar as possible, uses the same data structures as GPU (current, replacement, and

170 Genet Program Evolvable Mach (2010) 11:147–184

123

threshold arrays prior to being placed on textures). However, the elements of the

arrays cannot obviously be processed in parallel as on a GPU. Therefore, a nested

loop is required to iterate over the arrays to accomplish mutation, using the CPU-

side C# instructions in Table 8.

The above instructions use the set of four components in each data array element

{x, y, z, w} to hold the values for the three textures required for mutation. Two-

dimensional arrays hold the components of each instruction in each array element:

{op, target, id, PC} in each element of populationTexture1Data (and its

Fig. 5 Representation and process of mutation

Table 8 C# CPU mutation instructions for PC and XBox 360

Genet Program Evolvable Mach (2010) 11:147–184 171

123

corresponding potential replacment texture replacementTexture1Data) and {f1, src1,

f2, src2} in each element of populationTexture2Data (and its corresponding

potential replacement texture replacementTexture2Data). The instructions above

iterate over all individuals (line 1), and all instructions in those individuals (line 2),

mutating each of the eight chromosomes of the instruction (four chromosomes on

each texture for every instruction) if the matching component in the replacement

array is not over the user-specified mutation threshold (lines 3–9).

6.2 Parallel GPU mutation for PC and XBox 360

The GPU implementation of the mutation operator allows the mutation of all chosen

chromosomes at once by processing all pixels in parallel. The shader program is

applied to every pixel of the current population texture at the same time, checking

the four component values on the corresponding threshold texture and replacing

each component of every pixel of the current population texture with the

corresponding replacement texture component value based on the threshold texture

values. The current population texture is passed to the shader for processing, so the

information in a component of the original population is preserved by default—if

the shader does not alter the component information, it is preserved. The HLSL

instructions for the mutation operator on the GPU are shown in Table 9, with

corresponding CPU-side C# instructions used to invoke the shader shown in

Table 10 for completeness.

Table 9, line 1 is the declaration of the shader program for the mutation operator.

The texture that is passed to the shader program is the current population texture,

where the parallel mutation operator in Table 9 is applied to both population

textures separately. The shader function is passed the current population texture

(line 9, Table 10), so all pixels in that texture are handled simultaneously by the

shader program. In particular, currentLocation individually refers to all pixels at

once (Table 9, line 1). The corresponding pixel at the identical location on both the

threshold texture and the replacement population texture are retrieved in Table 9,

lines 2–3. For the threshold pixel, all components are checked against the user-

defined mutation threshold (Table 9, lines 4, 6, 8, 10). If the threshold has not been

exceeded, the component is subject to mutation and the component being checked

on the pixel of the current population is replaced with that component on the pixel

Table 9 HLSL GPU mutation instructions for PC and XBox 360

172 Genet Program Evolvable Mach (2010) 11:147–184

123

of the replacement population (Table 9, lines 5, 7, 9, 11). The texture returned by

the GPU shader program thus retains all components on all pixels of the original

population where a threshold component did not fall within the user mutation

threshold, otherwise a mutated value replaces it from the corresponding component

of the replacement texture. The completely mutated texture is returned at the end of

the shader program (Table 9, line 12).

Table 10 shows the CPU-side instructions used to execute the shader. The

implementation is largely the same as described for the PC version of the C#

instructions for GPU fitness in Table 5. Initially, the render target is switched from

the screen to the backbuffer (line 2), and values are provided to the shader in terms

of float mutation threshold (line 3), the texture of threshold values (line 4), and

texture with potential replacement information (line 5). The texture containing the

original population texture to be mutated is passed as an argument to the shader on

Table 10, line 9. The remainder of the C# instructions is executed similarly to the

GPU fitness shader described in Table 5: An effect executes the shader program

when the Draw method from the SpriteRenderer is used (lines 6–11). Following

that, the texture is resolved (moved from GPU memory) and the data is retrieved

from the texture (lines 12–14).

7 Results

In preceding sections of this paper, we described how to implement a general LGP

algorithm for heterogeneous devices. In particular, we described implementations

that maintained a balance of attempting to use the underlying hardware while

maintaining a degree of generality of the algorithm. In this section we discuss the

resulting interface for the heterogenous devices when the implementation is

deployed (Sect. 7.1) on both PC and XBox 360. Empirical results comparing the

performance of the CPU and GPU-based LGP implementations targeted for the two

platforms are provided in Sect. 7.2.

Table 10 C# GPU mutation instructions for PC and XBox 360

Genet Program Evolvable Mach (2010) 11:147–184 173

123

7.1 Visual interpretation of results

The GP system screen output described in this section is the same for all platforms,

whether or not implementations are parallel: both PC and Xbox 360 deployments,

whether CPU only or GPU, display the same interface. The program begins by

asking the user to specify whether to run fitness and mutation on the CPU or GPU,

population size, mutation threshold, and number of generations. Once the user has

entered the parameters, the best results for each of 50 trials are displayed at the

bottom of the screen. As each trial is performed, the current state of the population

and mutation textures is displayed on the top portion of the screen. The current state

of the GP population at a particular generation and ongoing results of trials are

displayed to the user as shown in Fig. 6.

From top to bottom of the screenshot in Fig. 6, the first two textures collectively

represent instruction (texture row) over the population (each individual is a texture

column). Thus, as described in Sect. 3, both textures have a width of the number of

individuals in the population and a height corresponding to the number of

instructions in an individual. Furthermore, the four components in each pixel

correspond to the chromosomes of an instruction. These two textures will become

composed of horizontal bands as the population converges toward a solution. Also,

each pixel of the two populations consist of four of the chromosomes required to

make up an instruction as described in Sect. 3: In the first texture, the components of

a pixel specify a mathematical operator, the target register, and identification of

current individual and instruction (called ‘‘pointer’’ on display). The latter two

chromosomes were used internally and do not reflect evolution of the population. In

the second texture, a flag component (corresponding to source 1) indicates whether

information should be retrieved from internal registers or the current fitness case. A

source component (corresponding to source 1 of Eq. 1) then determines from which

of the internal registers/fitness cases the data should be retrieved. A flag and source

component are similarly provided for source 2. The next texture displayed contains

raw fitness (cumulative error over all fitness cases) and hits (number of fitness cases

with acceptable error level) for each individual following evaluation of all fitness

cases as described in Sect. 5. Since this information is contained in a single pixel,

the texture is one pixel high with a width of the population size.

The current mutation threshold texture is then displayed, containing a float value

from [0…1] in each component of each pixel. The threshold texture is a graphical

representation of the mask used with the potential population replacement values

located in the fifth and sixth textures as described in Sect. 6. That is, particular

components of the pixels in the fifth and sixth textures could replace the component

values of the pixels in the first and second textures representing the current

population to form the next generation of population textures. Results at the bottom

of the screen display numerically the best number of hits, best cumulative raw error

over all fitness cases, and system clock time elapsed in seconds for each trial. These

results were displayed and recorded from the screen, since the authors are not aware

of a mechanism in XNA to export saved data from the XBox 360.

174 Genet Program Evolvable Mach (2010) 11:147–184

123

7.2 Quantitative results

A popular GP regression problem was used to compare the performance of GPU and

CPU versions of the implementation on the PC and Xbox 360 using XNA Game

Studio 3.0. The CPU implementation adopted all shader functionality using C#

instructions as described in Sect. 6. The sextic polynomial x6 - 2x4 ? x2

introduced by Koza [24] was implemented using float inputs in the range [0, 1]

for 200 fitness cases. Individuals consisted of 16 instructions each. Four operators of

addition, subtraction, multiplication and division comprise the function set. Fitness

proportionate roulette wheel selection is used, with each trial consisting of 50

generations. Mutation occurs with a threshold of 0.1. A successful hit for a fitness

case is a result within 0.01 of the actual answer. All implementations were

successful at achieving a large proportion of hits over all fitness cases in all trials,

and it is well documented that most GP systems should be able to readily solve the

Fig. 6 GP implementation on the PC and Xbox 360. Textures at a given generation are displayed on the
screen using 50 fitness cases for demonstration purposes. Individuals can contain 16 instructions and a
population size of 200 is used. Textures displayed, from top to bottom, are: population textures (92),
resulting hits and raw fitness for each individual, mutation thresholds mask, and potential replacement
chromosomes for the population (92). In the lower portion of the screen, results indicate best hits, best
raw error, and time (s) for each of 50 trials

Genet Program Evolvable Mach (2010) 11:147–184 175

123

sextic polynomial equation. Since the focus of the experiments was to measure

performance of the sequential and parallel implementations combined with

underlying hardware, the quality of solutions to the sextic polynomial is not

discussed here. However, results indicate that all implementations were able to

generate solutions to the problem. Parameterization of the GP is summarized below

in Table 11.

Experiments were conducted using Windows XP SP2, using an AMD Athlon 64

Processor 3500? (2.21 GHz), 1024 MB of RAM, and an ASUS EN8800GTX video

card using an nVidia GeForce 8800 GTX GPU. The nVidia GPU features 128

parallel stream processors with unified shader architecture. The Xbox 360 features a

custom built IBM PowerPC-based CPU with three 3.2 GHz core processors. The

Xbox GPU by ATI houses 48 parallel shaders with unified architecture and 10 MB

of embedded DRAM (EDRAM) [25], with 512 MB of DRAM as main memory.

The CPU and GPU of the Xbox 360 are customized for graphics-intensive

computation, with the GPU able to read directly from the CPU L2 cache. A

comparison of the execution performance of PC using CPU only, PC using GPU,

Xbox 360 using CPU, and Xbox 360 using GPU is given in Fig. 7. Performance is

given by the number of genetic programming operations that occur per second in

Fig. 7, with actual mean execution times provided in Fig. 8 to provide practical

context. Figure 9 shows the speed up in computing time of parallel execution over

sequential execution for both PC and XBox 360 platforms. As the standard error

bars and precise means are difficult to discern in each figure, these measures are

provided in Tables 12, 13, 14 beneath each graph.

It should be noted that the Xbox 360 (released 2005) is not meant to be directly

compared to a PC with a different processor, twice as much RAM, and housing a

GPU with 128 processors for parallel processing (as opposed to its 48 processors).

The hardware platforms are only used to determine general trends in their respective

CPU and GPU implementations, which we now discuss. Examining the standard

error in Figs. 7 and 8, it is noteworthy that there is very little variation across

multiple trials. In Figs. 7 and 8 it is evident, as is common in genetic programming

GPU literature, that a significant performance acceleration is gained by using the

GPU for parallel processing over CPU for all populations on the PC. In Fig. 9 (and

Table 14), we see that this speed up increases with population from 3 times to over

Table 11 GP regression

parameters
Function set ADD, SUB, MUL, DIV (on floats)

Fitness Fitness-proportionate roulette wheel

Population 100, 200, or 400 individuals

Mutation Threshold = 0.1

Generations 50

Number of trials 10

Fitness cases/constants 200 cases: x = [0, 1], y = x6 - 2x4 ? x

Fitness metric Number of hits, where a hit is

Absolute(Reg[0] - y) B 0.01

176 Genet Program Evolvable Mach (2010) 11:147–184

123

11 times. Furthermore, with increasing population size on PC, the speed increases

across GPU implementations: that is, the PC is able to execute more GP operations

per second using the GPU as population increases (Fig. 7). This result follows from

the fact that PC GPU computation time remains mostly constant with increasing

population (Fig. 8) due to parallelizing the fitness and mutation operators of the

population (Fig. 8). Rate of processing GP Ops for the CPU is basically constant

across population sizes on the PC (Fig. 7) while computation time increases (Fig. 8)

due to sequential processing, as would be expected. Like the PC, the GPU speed for

every population on the Xbox 360 outperforms the CPU-only implementations in

Fig. 8. In contrast to the PC implementation, however, as the GP population

increases on the XBox 360, the performance (speed in GP Ops/s) decreases when

Fig. 7 Xbox 360 and PC performance in GP Ops/s (log10 scale) with standard error, based on 10 trials of
50 generations with populations of 100, 200, and 400 using sextic polynomial

Fig. 8 Xbox 360 and PC performance in actual time (seconds, log10 scale) with standard error, based on
10 trials of 50 generations with populations of 100, 200, and 400 using sextic polynomial

Genet Program Evolvable Mach (2010) 11:147–184 177

123

using the GPU (Fig. 7). Also in contrast to the PC, Fig. 7 shows that the XBox 360

CPU performance (GP Ops/s) is fairly constant across populations. Due to the trends

just discussed, the benefit in implementing the parallel LGP algorithm over the

sequential one actually diminishes with increasing population size for the XBox 360

(Fig. 9). The trends of the GPU (Fig. 9) for XBox 360 may be due to the effect of a

lower number of GPU processors than the PC combined with the overhead of

moving textures and data in and out of GPU memory on Xbox 360 for larger

population textures. These results may also have been a product of our particular

XBox 360 implementation, the unique architecture of its paired CPU and GPU, or a

combination of these factors.

However, it is important to note that the computation time of the sequential

implementation (CPU) never exceeds that of the parallel (GPU) for the XBox 360

(Fig. 8 and Table 13). Indeed, Fig. 9 (and Table 14) show that in all

Fig. 9 Speedup in compute time of parallel implementation over sequential implementation for PC and
XBox 360 with standard error, based on 10 trials of 50 generations with populations of 100, 200, and 400
using sextic polynomial

Table 12 Final mean performance in GP Ops/s (log10 scale) with standard deviation

Population size PC CPU PC GPU

Mean SD Mean SD

100 1604018.68 5188.09 4821347.03 28420.87

200 1617191.33 2635.21 9606744.20 86827.19

400 1694851.29 9797.00 19073976.15 329578.00

Population size XBox 360 CPU XBox 360 GPU

Mean SD Mean SD

100 157647.71 2455.71 533033.34 1814.87

200 157574.06 2464.67 330387.53 238.55

400 155682.09 781.07 175607.32 289.77

178 Genet Program Evolvable Mach (2010) 11:147–184

123

implementations the use of the GPU decreased execution time for a given

population size (since all speedups of parallel over sequential are greater than 1.0).

The PC GPU implementation, however, has much less of an increase in compute

time with rising population across populations (Fig. 8), so its acceleration with

larger population size is much more significant than any other implementation in

terms GP Ops/s (Fig. 7). In addition to speed of execution, it is also of interest to

determine how much of the execution time is taking place on the GPU as opposed to

the CPU. The percentage of execution occupied by the GPU for both PC and Xbox

360 for each population is shown in Fig. 10, with actual numeric values provided in

Table 15.

There is a considerable difference in the percentage of GPU use accounting for

total execution time between the PC and the Xbox 360. For the PC implementation,

GPU usage only accounts for approximately 30–36% of the execution time. For the

Xbox 360, the GPU usage accounts for approximately 80% of the time for the lower

population (100), and over 90% for the higher populations of 200 and 400

(Table 15). Comparing Figs. 7 and 10 for the XBox 360, it is evident that the

number of GP operations performed per second generally decreases as the

proportion of execution time corresponding to GPU usage increases with increasing

population (Fig. 9). This may be due to increased loading and unloading of GPU

memory registers for the larger populations, which takes GPU execution time but is

not directly useful in processing GP operations (in contrast to the actual shader

Table 13 Final mean performance in seconds with standard deviation

Population size PC CPU PC GPU

Mean SD Mean SD

100 2.49376 0.0081 0.82967 0.0050

200 4.94686 0.0081 0.83281 0.0076

400 9.44064 0.055 0.83907 0.015

Population size XBox 360 CPU XBox 360 GPU

Mean SD Mean SD

100 25.3786 0.40 7.5043 0.026

200 50.7812 0.81 24.214 0.018

400 102.7759 0.52 91.1126 0.15

Table 14 Final mean speedup in compute time of sequential implementation over parallel implemen-

tation with standard deviation

Population size PC XBox 360

Mean SD Mean SD

100 3.005807 0.018 3.381928 0.055

200 5.940395 0.054 2.09719 0.034

400 11.25415 0.19 1.128012 0.0060

Genet Program Evolvable Mach (2010) 11:147–184 179

123

program processing during the GPU time). Implementation changes to the fitness

function for the Xbox 360 described in Sect. 5.3 (namely, changing fitness case

representation to float2[] in memory rather than a texture on the PC) may have

further reduced the amount of available GPU memory and exacerbated the amount

of loading and unloading of textures.

8 Discussion

While quantitative analysis shows differences in performance comparing CPU to

GPU execution times, the main focus of this work is to demonstrate how to create a

general LGP algorithm for heterogeneous devices that can be parallelized using the

GPU of the respective devices. That is, the algorithm construction involved

accessing two platforms for parallel computation, while attempting to minimize the

overhead of platform-specific adjustments. The resulting general algorithm

variations with respect to CPU and GPU for each platform are summarized below

in Fig. 11.

To summarize the general algorithm in Fig. 11, the CPU-only (non-parallel)

implementations are the same for both PC and XBox 360 platforms in terms of

Fig. 10 Percentage of total execution time using GPU for PC and Xbox 360, with standard error, for
populations of 100, 200, and 400 using sextic polynomial

Table 15 Final mean percentage of total execution time using GPU with standard deviation

Population size PC XBox 360

Mean SD Mean SD

100 33.00 0.089 80.95 4.24

200 36.48 0.020 96.04 4.30

400 36.23 0.079 93.19 3.65

180 Genet Program Evolvable Mach (2010) 11:147–184

123

program instructions. The main data structures associated with CPU-side execution

of the fitness function are, in all cases, the two population arrays (populationTex-
ture1Data and populationTexture2Data) and the fitness array (fitnessCaseTexture-
Data) (Fig. 11 Fitness Function, left side). If the user specifies parallel

implementation of the algorithm, the GPU-side execution for the PC uses textures

with the array data placed on textures (Fig. 11 Fitness Function, middle). The

GPU-side execution for the XBox 360 uses only the population textures and

accesses the fitness cases as an array (Fig. 11 Fitness Function, right). The GPU

fitness function between PC and XBox 360 is the main divergence from a general

implementation.

Fig. 11 Relation of CPU and CPU algorithm components for PC and video game console platform
implementations of the general algorithm. Names of arrays and textures correspond to those previously
used in pseudocode; arrays are represented by one dimensional grids and textures as three dimensional
blocks

Genet Program Evolvable Mach (2010) 11:147–184 181

123

The data structures associated with CPU-side execution of the mutation operator

are, in all cases, the two population textures populationTexture1Data and

populationTexture2Data, a texture of randomly generated mutation probabilities

(thresholdTextureData) to be compared to the user-specified mutation threshold,

and two textures filled with randomly generated possible replacement chromosomes

replacementTexture1Data and replacementTexture2Data (Fig. 11 Mutation Oper-
ator, left side). In contrast to the fitness function, the GPU-side implementation of

mutation uses the same instructions for PC and XBox 360. In both cases, the texture

forms of all CPU-side data are processed in parallel to the greatest extent possible:

that is, every pixel on every texture is processed in parallel by the shader program

(Fig. 11 Mutation Operator, right side).

The quantitative results in the previous section should be considered with a

number of factors. The PC and XBox not only involve different hardware, but

different underlying operating systems on which algorithms with different

implementations are being run. The quantitative metrics are not meant to be a

benchmark of any hardware, operating system, framework, or any algorithm

because they are not consistent across experiments. The experimental results do,

however, provide a feel for the computational expense of the different implemen-

tations of the general LGP algorithm when run given combined decisions regarding

hardware (PC and XBox with their respective OSes) and parallelization (CPU-only

and CPU with GPU). In terms of overall trends across configurations, in all cases

(populations 100, 200, and 400) it was always of benefit to parallelize sections of the

algorithms when possible (Fig. 9; Table 14). That is, using CPU and GPU was a

better option than CPU alone in all cases. Because the implementation of GP for the

XBox 360 console used the XNA framework, the execution of GP had to occur in

the framework of a video game class. Other more straightforward PC implemen-

tations are naturally possible for parallel GPU processing, although they would

preclude implementation on the XBox 360 GPU. Such PC-only alternatives were

not used, since the main contribution of this work was intended to be the

explanation of a general and parallelizable algorithm targeted for specific hardware

on heterogeneous devices.

9 Conclusions

This work describes the steps to deploying a parallel version of linear GP (LGP) on

GPUs across heterogeneous devices. Hardware-related considerations and associ-

ated engineering choices for parallel GP implementation on GPU hardware for both

PC and video game console (XBox 360) were discussed. GPU parallelization was

used for both the fitness function and mutation operator of the GP algorithm. The

more sophisticated of the two parallel sections of the implementation, the fitness

function, resulted in different implementations for the PC and the XBox 360 GPU

hardware. The parallel GPU mutation implementation was more straightforward,

and could be implemented in the same way for both PC and XBox 360.

The sextic polynomial regression problem was used to provide a means of

examining the performance of the parallel (GPU-based) and sequential (CPU-based)

182 Genet Program Evolvable Mach (2010) 11:147–184

123

GP algorithm on the devices. GPU implementations outperformed CPU-only

implementations on both the PC and XBox 360 in terms of speed. On the PC, GPU

usage was responsible for only approximately 30–35% of the execution time. In

contrast, on the Xbox 360, the GPU usage accounted for approximately 80–95% of

the execution time.

This work established a definitive method for parallel GP execution using the

GPU of a video game system, and discussed all the design decisions required for

CPU and GPU implementations on the PC and XBox 360 platforms. The authors

attempted to utilize the underlying hardware while still maintaining a general LGP

algorithm implemented in the XNA framework common to the heterogeneous

devices. Future hardware will likely expand the flexibility of the parallel

implementation of GP algorithms across devices, but this work serves as a guide

to those wishing to begin deployment on the devices currently in use. The general

algorithm presented here, built around a framework targeted at heterogeneous

devices, is independent of the changing hardware landscape and could prove useful

for deployments in future devices.

Acknowledgements We would like to thank Simon Harding for his helpful feedback and suggestions.

WB acknowledges funding from NSERC under the Discovery Grant Program RGPIN 283304-07 and

from Canadian Foundation for Innovation under CFI 204503.

References

1. W. Banzhaf, S. Harding, W. Langdon, G. Wilson, Accelerating Genetic Programming Through
Graphics Processing Units. Genetic Programming Theory and Practice (GPTP) (Springer,

New York, 2008), pp. 229–248

2. M. Harris, Mapping Computational Concepts to GPUs. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation (Addison-Wesley Professional,

Boston, 2005)

3. D. Tarditi, S. Puri, J. Oglesby, in Accelerator: Using Data Parallelism to Program gpus for General-
Purpose Uses. Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ‘06) (ACM Press, San Jose, 2006),

pp. 325–335

4. M. Wong, T. Wong, K. Fok, in Parallel Evolutionary Algorithms on Graphics Processing Unit.
Proceedings of IEEE Congress on Evolutionary Computation 2005 (CEC 2005) (IEEE Press,

Edinburg, 2005), pp. 2286–2293

5. F. Musgrave, Genetic Textures. Texturing and Modeling: A Procedural Approach, 2nd edn.

(AP Professional, Cambridge, 1998), pp. 373–385

6. J. Loviscach, J. Meyer-Spradow, in Genetic Programming of Vertex Shaders. Proceedings of
EuroMedia 2003 (Eurosis, Plymouth, 2003), pp. 29–31

7. M. Ebner, M. Reinhardt, J. Albert, in Evolution of Vertex and Pixel Shaders. Proceedings of the 8th
European Conference on Genetic Programming (Springer, Lausanne 2005), pp. 261–270

8. F. Lindblad, P. Nordin, K. Wolff, in Evolving 3D Model Interpretation of Images Using Graphics
Hardware. Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002) (IEEE

Press, Honolulu, 2002), pp. 225–230

9. Q. Yu, C. Chen, Z. Pan, in Parallel Genetic Algorithms on Programmable Graphics Hardware.
Proceedings of the First International Conference on Natural Computation, ICNC 2005, vol. LNCS
3612 (2005), pp. 1051–1059

10. K. Fok, T. Wong, M. Wong, Evolutionary computing on consumer graphics hardware. IEEE Intell.

Syst. 22(2), 69–78 (2007)

Genet Program Evolvable Mach (2010) 11:147–184 183

123

11. S. Harding, W. Banzhaf, in Fast Genetic Programming on GPUs. Proceedings of the 10th European
Conference on Genetic Programming (Springer, Valencia, 2007), pp. 90–101

12. D. Chitty, in A Data Parallel Approach to Genetic Programming Using Programmable Graphics
Hardware. Proceedings of the 2007 Genetic and Evolutionary Computation Conference (GECCO
2007) (ACM Press, London, 2007), pp. 1566–1573

13. W. Langdon, W. Banzhaf, in A SIMD Interpreter for Genetic Programming on GPU Graphics Cards.
Proceedings of the 11th European Conference on Genetic Programming (Springer, Naples, 2008),

pp. 73–85

14. G. Wilson, W. Banzhaf, in Linear Genetic Programming GPGPU on Microsoft’s Xbox 360. Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC 2008) (IEEE Press, Hong Kong,

2008), pp. 378–385

15. G. Wilson, W. Banzhaf, in Deployment of CPU and GPU-Based Genetic Programming on Heter-
ogeneous Devices. Proceedings of the 2009 Genetic and Evolutionary Computation Conference
(GECCO 2009) (ACM Press, Montreal), pp. 2531–2538

16. N.L. Cramer, in A Representation for the Adaptive Generation of Simple Sequential Programs.
Proceedings of the First International Conference on Genetic Algorithms (1985), pp. 183–187

17. P. Nordin, W. Banzhaf, in Complexity Compression and Evolution. Proceedings of the Sixth Inter-
national Conference on Genetic Algorithms (1995), pp. 310–317

18. P. Nordin, Evolutionary program induction of binary machine code and its applications, Ph.D. Thesis,

University of Dortmund, Department of Computer Science, 1997

19. W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic Programming: An Introduction (Morgan

Kaufman, San Francisco, 1998)

20. Microsoft Corporation, Xbox 360 Tools and Middleware Program (2009), http://www.xbox.com/

en-US/dev/tools.htm

21. S. Scarle, Implications of the turing completeness of reaction-diffusion models, informed by GPGPU

simulations on an XBox 360: cardiac arrhythmias, re-entry and the Halting problem. Comput. Biol.

Chem. 33, 253–260

22. Microsoft Corporation, XBox 360 Programming considerations (2009), http://msdn.microsoft.

com/en-us/library/bb203938(XNAGameStudio.10).aspx

23. Shawn Hargreaves, Point sprites on XBox (2007), http://blogs.msdn.com/shawnhar/archive/2007/01/

03/point-sprites-on-xbox.aspx

24. J. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press,

Cambridge, 1998)

25. J. Andrews, N. Baker, XBox 360 system architecture. IEEE Micro 26, 25–37 (2006)

184 Genet Program Evolvable Mach (2010) 11:147–184

123

http://www.xbox.com/en-US/dev/tools.htm
http://www.xbox.com/en-US/dev/tools.htm
http://msdn.microsoft.com/en-us/library/bb203938(XNAGameStudio.10).aspx
http://msdn.microsoft.com/en-us/library/bb203938(XNAGameStudio.10).aspx
http://blogs.msdn.com/shawnhar/archive/2007/01/03/point-sprites-on-xbox.aspx
http://blogs.msdn.com/shawnhar/archive/2007/01/03/point-sprites-on-xbox.aspx

	Deployment of parallel linear genetic programming using GPUs on PC and video game console platforms
	Abstract
	Introduction
	GPGPU programming and related work
	Linear genetic programming and its GPU parallel programming implementation
	Linear genetic programming: brief overview
	GPGPU version of linear genetic programming

	General linear genetic programming method for heterogeneous devices
	Architecture issues
	General methodology

	Implementation of fitness function
	Sequential CPU fitness function
	Parallel GPU fitness function
	Parallel GPU fitness function for XBox 360

	Implementation of the mutation operator
	CPU mutation for PC and XBox 360
	Parallel GPU mutation for PC and XBox 360

	Results
	Visual interpretation of results
	Quantitative results

	Discussion
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

