
CONTRI BUTED ARTICLE

Developments in Cartesian Genetic Programming:
self-modifying CGP

Simon Harding • Julian F. Miller • Wolfgang Banzhaf

Received: 27 November 2009 / Revised: 26 April 2010 / Published online: 25 June 2010

� Springer Science+Business Media, LLC 2010

Abstract Self-modifying Cartesian Genetic Programming (SMCGP) is a general

purpose, graph-based, developmental form of Genetic Programming founded on

Cartesian Genetic Programming. In addition to the usual computational functions, it

includes functions that can modify the program encoded in the genotype. This

means that programs can be iterated to produce an infinite sequence of programs

(phenotypes) from a single evolved genotype. It also allows programs to acquire

more inputs and produce more outputs during this iteration. We discuss how

SMCGP can be used and the results obtained in several different problem domains,

including digital circuits, generation of patterns and sequences, and mathematical

problems. We find that SMCGP can efficiently solve all the problems studied. In

addition, we prove mathematically that evolved programs can provide general

solutions to a number of problems: n-input even-parity, n-input adder, and sequence

approximation to p.
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1 Introduction

In genetic programming (GP), representations of programs (genotypes) are evolved

that solve computational problems. However, in such approaches the programs are

almost always static and do not change over time, or in response to environmental

inputs. In this paper, we propose a form of genetic programming in which the

programs can, over time, change, acquire new inputs or produce new outputs. The

work has been influenced by ideas expressed in the field of generative and

developmental systems, where researchers evolve genotypes that can lead to

arbitrarily large phenotypes with time dependent behaviour. Many such approaches

utilize the concept of a cell in which a fixed genotype resides. The phenotypes arise

through cell replication. The multicellular structure is finally mapped to an

appropriate computation in the application domain. We wished to be able to evolve

genotypes that could be iterated to arbitrarily sized phenotypes but in such a way

that the phenotypes were always interpretable as a program.

In biology, the phenotypes arise from genotypes through a complex interaction in

which a genotype, along with the cellular machinery and the environment gives rise

to a stage of the phenotype, which itself influences the decoding of the phenotype

for subsequent stages [5]. Regulatory mechanisms have been found to play a key

role in this transformation. In the approach described in this paper abstractions of

‘‘regulatory’’ mechanisms determine whether and how self-modification operations

will be applied. In computer science, this ‘‘unrolling’’ of the phenotype is often

restricted and considered analogous to self-modification or re-writing. However, in

genetic programming this notion has received only a little attention (see Sect. 2).

In the method we describe, a genotype decodes to a potentially infinite sequence

of phenotypes (which themselves are programs). Such an approach has a number of

advantages, not least, that a genotype may represent a solution to an entire class of

problems. For instance, we show later that genotypes can be evolved which encode

programs that can build parity functions with an arbitrary number of inputs, and

others that can exactly compute p in the limit of large iterations.

To accomplish this we have introduced extra functions into a GP function set that

cause modifications to the executed code itself. The technique we discuss is based

on Cartesian Genetic Programming (CGP), so we refer to it as self-modifying CGP

(SMCGP). The representation used in SMCGP is very flexible. For instance, a

genotype that has no SM functions is essentially identical to standard CGP. On the

other hand it is possible for SM functions to arise that cause the entire duplication of

the genotype. This could be seen as a kind of multi-cellular development, albeit

without the notion of a Euclidean space in which cells have to position themselves

and occupy space.

We chose to base our approach on GP, as opposed to neural networks or other

representations, as it allows the technique to be used in many different applications

requiring algorithms, e.g., mathematical regression or circuit design. The approach

we have taken is very general and in principle could encompass many types of

developmental computational systems. We also desired to devise a representation

that can work in many different domains without greatly modifying the basic
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working principle. This way we are able to test our approach on a wide variety of

problems that appear in the literature.

Another of our motivations, particularly when contrasted with developmental

systems, is that we wanted to be able to understand the evolved program. This is

especially important when demonstrating the generality of a solution. For practical

reasons, the developmental process needs to be computationally cheap. We feel that

such goals largely rule out devising a developmental GP method that emulates too

many aspects of biological systems.

SMCGP allows us not only to solve problems that cannot be solved using GP or

CGP but it allows us to find general solutions to some classes of problems. In

particular, we are able to find general solutions to problems that previously had only

been solved through a combination of CGP and human inspection. For instance, in

the first edition of the Genetic Programming and Evolvable Machines Journal,

Miller et al. [40] investigated the ‘‘digital adder problem’’ and showed a series of

evolved designs for adders that could by human inspection be generalized to

produce a design capable of adding n-bit binary numbers. In Sect. 5.4 we show how

SMCGP can obtain a general solution automatically.

The plan of the paper is as follows: We review the origins of self-modification in

computer science in Sect. 2. In Sect. 3, we review re-writing or developmental

methods, particularly those that have compared the evolution of developmental

genotypes with direct representations. We explain how SMCGP works in Sect. 4,

showing in detail how we define and use SM functions both in a self-modifying and

computational sense. We also describe how inputs and outputs are handled. The

evolutionary algorithm used and its operators and parameters are also discussed in

that section. We have devised and used a variety of different fitness function types

and primitives sets in the many experiments we have undertaken. In Sect. 4.9 we

show which function sets have been used for the various problems studied. The

experiments and results are described in Sects. 5, 6 and 7.

2 Review of self-modification

In this section we briefly review the existing body of work in the area of self-

modification. The first distinction we are going to make for our purposes is the

distinction between self-modified code of computers and all other kinds of self-

modification, like self-modification of organismic behaviour through learning [50]

or self-modification of brains through changes to their wiring pattern [11], or even

machines [2]. In fact, ACM/IEEE Computer Society list, under their keywords for

classification in the class Theory of Computation under point 6.1.1. ‘‘Self-modifying

machines’’ [23]. Thus, the term has a prominent place in computing, which has to do

with its history.

Early on in the design of electronic computers, it was recognized that the

distinction between data and programs really was an artificial one for the purpose of

information storage. This led von Neumann and others to the conclusion that one

should store programs and data in the same type of devices. Preceding this

development was the recognition of Turing, embodied in the famous Turing
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machine that a machine could not only modify data stored on a tape, but, if that tape

contained its program, start to modify its own program. Before Turing, Gödel had

realized with his numbering system a similar idea that would ultimately lead him to

the recognition of the incompleteness problem.

With von Neumann’s computer architecture came the possibility of manipulating

program code in the same way as one would manipulate data, and it was quickly

realized that one could write code that modified itself. In these early days of

computing, this was not only a possibility, but an important feature due to limited

resources available for storage. Self-modification allowed more compact code, if

less understandable one, but with some precautions, it was possible to use the

technique to optimize space requirements in memory.

One of the main uses of self-modifying code until today has been the runtime

generation of code and of code compression [4, 27]. Both of these applications

allow better use of computing resources, and therefore allow run-time or memory

usage improvements over their non-modified counterparts. In the compression

domain, other aspects like security from reverse engineering also play a role.

Another line of reasoning for the usefulness of self-modification starts with

adaptation. In the context of Virtual Machines used heavily today, this has taken

hold [3]. Here, the question is again how to make intelligent use of resources.

It is only a small step from here to the idea of evolution of self-modifying models

of computation, as it was proposed repeatedly in the last decades for automata [49],

for hardware (FPGAs) [12] or computer code [44]. The latter development took

place within the field of Genetic Programming [31] which demonstrated the

evolvability of computer algorithms and paved the way for an entire new field of

algorithm development. Spector and Stoffel explicitly used self-modification in a

GP approach called ‘‘ontogenetic programming’’ [54]. Spector’s later developed the

GP language ‘‘Push’’ so that ‘‘autoconstructive evolution’’ could take place [53].

This is where evolved genotypes are responsible for the production of their own

offspring, rather than it being coded into an evolutionary algorithm explicitly. Push

allows evolved code to manipulate itself. So that programs could, in principle have

‘‘morphological’’ phases during which they develop into ‘‘mature’’ code which is

then executed to solve a problem. Alternatively, such programs might continue to

develop as they run, exhibiting ‘‘ontogeny’’ more in the manner of living organisms.

Self-modification was also implicit in the graph re-writing system proposed by

Gruau [14], which will be described in the next section. Miller [43] also considered

a form of self-modification in his developmental method of evolving graphs and

circuits. McPhee [38] used an N-gram based GP system to produce programs that

could solve regression problems, where development was linked to an incremental

fitness function.

In a series of contributions and works, Kampis [24, 25, 26] pointed out that self-

modification is extremely important for living organisms, and indeed might

constitute their defining properties. Already prior to Kampis’ work, Maturana and

Varela [36] had proposed the concept of autopoiesis as a key feature of living

systems. Self-modification has also been considered in artificial organisms as they

were examined in the field of Artificial Life. Major contributions were made by the

introduction of Coreworld [46] and the TIERRA [47] and its variants [1]. In this line
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of work, the emphasis is, however, more on the observation of emergent effects in

self-modifying systems than on their use in computation.1

Since we are interested here in moving toward more life-like behaviour of

algorithms, that exhibit adaptivity and efficiency, self-modification is taken to be

one of the key properties we want to include in our system.

3 Developmental genotypes versus direct mappings

Recently there has been an increasing interest in generative and developmental

systems (GDS) [34] and their potential benefits for evolutionary computation. Many

argue that GDS will be necessary in order to make evolutionary techniques scale up

to larger problems (see, e.g., [6]).

Kitano used a developmental method to define the architecture of an artificial

neural network (ANN). The technique used a matrix re-writing system that

manipulated adjacency matrices [29]. He claimed that he could evolve better ANNs

more quickly using the developmental approach than by direct methods, i.e., a fixed

architecture, directly encoded and evolved. However, a later paper by Siddiqi and

Lucas [52] made a more detailed study and concluded that the two approaches were

of equal quality.

Gruau also investigated an evolutionary developmental approach for ANNs. He

devised a graph re-writing method called cellular encoding [14] for local graph

transformations that control the division of cells growing into an artificial neural

network. Connection strengths (weights), threshold values and the grammar tree that

defines the graph re-writing rules were evolved using an evolutionary algorithm.

This method was shown to be effective at optimizing both the architecture and

weights at the same time, and scaled better than a direct encoding [15].

Bentley and Kumar [8] looked at a number of genotype to phenotype mappings

on a problem of creating a tessellating tile pattern. They found that what they

termed ‘‘implicit’’ developmental mapping could evolve tiling patterns much

quicker than a variety of other representations (including direct) and further, that

they could be subsequently grown (iterated) to much larger sized patterns.

Hornby and Pollack [20] evolved context-free L-systems to define three

dimensional objects (table designs). They found that their generative system could

produce fitter designs faster than direct methods. The generative approach produced

more structures with more regularity and symmetry than direct methods.

Eggenberger investigated evolving developmental and non-developmental

genetic representations on the difficult problem of optical lens design [21]. He

found that the direct method scaled very badly when compared with the

developmental approach.

Roggen and Federici [48] compared evolving direct and developmental mappings

for the task of producing specific two dimensional patterns of various sizes (the

Norwegian Flag and a pattern produced by Wolfram 1D CA rule 90). They showed

1 With the exception of recent work in AVIDA, which takes a more utilitarian approach [37].

Genet Program Evolvable Mach (2010) 11:397–439 401

123



in both cases that as the pixel dimensions of the patterns increased the

developmental methods out performed the direct.

Gordon [13] showed that evolved developmental representations were more

scalable than direct representations for digital adders and parity functions.

Sekanina and Bidlo [51] showed how a developmental approach could be

evolved to design arbitrarily large sorting networks. Kicinger [28] investigated the

problem of design in steel structures for tall buildings and found that CA-based

generative models produced better results quicker than direct representations and

that the solutions were more compact.

Clune et al. [10] investigated the use of an indirect mapping to encode weights in

an ANN and compared with a direct ANN mapping for leg control in simulated

quadruped robots. They found the indirect mapping evolved faster to produce better

robot locomotion and it also produced much more regular gaits. The indirect

mapping used to encode ANN weights is called compositional pattern producing

networks (CPPNs). It generates neural weights between neurons in planar arrays by

evolving a mapping from the Cartesian coordinates of the two neurons to a weight

[55]. Stanley refers to such a mapping as a ‘‘novel abstraction of natural

development’’. However, unlike biological development the technique does not

involve time or iteration.

Clearly, the evidence is growing that GDS representations may be more scalable

than more direct genotype representations. Despite this, in general it is still not clear

how and whether developmental representations have advantages in a more general

computational sense. This is because, firstly, investigations have concentrated on

particular systems such as neural networks, structural design, digital circuits or

sorting networks. Secondly, in some cases the demonstrations of greater scalability

of GDS are questionable, since authors, sometimes by their own admission, have

chosen rather naive direct representations in comparison with developmental

representations.

Arguably, there has been little focus on actual computation in GDS. Instead,

much work has concentrated on pattern formation. This requires a mapping stage

where the abstract pattern is mapped to a program, design or circuit. Since the

SMCGP approach is computational from the outset, a mapping from a phenotype to

a computation is already provided. The unified representation of SMCGP includes

both developmental and non-developmental functions. As a result, comparisons of

the computational efficiencies of explicitly non-developmental (CGP) and devel-

opmental mappings (SMCGP) are more meaningful in such a setting.

4 Self-modifying CGP

4.1 Overview

SMCGP has three distinct aspects: the underlying genotype representation, the

evolutionary algorithm and the developmental process.

Algorithm 1 gives a high-level overview of the process of mapping a genotype to

a phenotype through a process of development. The first stage of the mapping is the
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modification of the genotype. This happens through the use of evolutionary

operators acting on the genotype. The developmental steps in the mapping are

outlined in lines 3–8 if the algorithm. The first step is to make an exact copy of the

genotype and call it the phenotype at iteration 0. After this the self-modification

operators are applied to produce the phenotype at the next iteration. Development

stops when either a predefined iteration limit is achieved or it turns out that the

phenotype has no self-modifications operations that are active. It is important to

note that there are various ways in which there may be no active self-modification

operations. Firstly, no self-modification operations may exist in the phenotype.

Secondly, self-modification operations are present but they are non-coding. Thirdly

the self-modification operations may not be ‘‘triggered’’ when the instructions

encoded in the phenotype are executed. These various conditions will be discussed

in the detailed description in the following sections.

Algorithm 1 Overview of genotype, phenotype and development

1: Generate genotype

2: Copy genotype to phenotype. Iteration, i = 0

3: repeat

4: Apply self-modification operations to phenotype i

5: increment i

6: Calculate fitness increment, fi

7: until (i equals number of iterations required) OR (No self-modification functions to do)

8: Evaluate phenotype fitness F from fitness increments, fi

The representation of the genotype is described in detail in Sect. 4.3. It is based

on Cartesian Genetic Programming but includes a number of new features that

support the self-modification operators. The evolutionary algorithm that operates on

this representation is simple evolutionary strategy, and is described in Sect. 4.4.

4.2 Cartesian Genetic Programming (CGP)

The term ‘‘Cartesian Genetic Programming’’ (CGP) first arose in a paper 11 years

ago on the evolution of digital circuits published in the first conference on ‘‘Genetic

and Evolutionary Computation’’ [39]. The following year, in the first edition of

Genetic Programming and Evolvable Machines, Miller et al. [40] examined how

CGP could be used to find novel digital circuits and how general digital design

principles could be deduced. Also in 2000 the method was proposed as a new and

complete method of genetic programming [42].

CGP represents programs as directed graphs. One of the benefits of this type of

representation is the implicit re-use of nodes that is characteristic of graphs. In CGP,

the genotype is a fixed-length representation where each node in the directed graph

represents a particular function and is encoded by a number of genes. One gene
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encodes the function that the node represents, and the remaining genes encode

where in the graph the node obtains its inputs from. The nodes take their inputs in a

feed-forward manner from either the output of nodes in a previous column or from a

program input (terminal). Also, the number of inputs that a node has, is dictated by

the arity of the function it represents. The program data inputs are given the absolute
data addresses 0 to n - 1 where n is the number of program inputs. The data outputs

of nodes in the genotype are given sequential addresses, column by column, starting

from n to n ? m - 1 where m is the user-determined upper bound of the number of

nodes (equal to the number of rows multiplied by the number of columns). If the

problem requires k program outputs, then k integers are added to the end of the

genotype, each one being the absolute address of the output of a node where the

program output is taken from. The two dimensional general form of a Cartesian

Genetic Program is shown in Fig. 1.

CGP uses a genotype-phenotype mapping that does not require all of the nodes to

be connected to each other. So the phenotypes can have a length from zero to the

maximum number of nodes encoded in the genotype. Thus, areas of the genotype

can be inactive and have no influence on the phenotype. This means that many

genotypes decode to exactly the same phenotype and consequently their fitnesses

are identical. This genetic redundancy (often referred to as neutrality) has been

shown to highly beneficial to the evolutionary search of CGP genotypes [41, 42, 56,

64].

Fig. 1 General form of two-dimensional CGP. It is a grid of nodes whose functions are chosen from a set
of primitive functions. Two parameters c, and r, respectively, define the number of columns and rows in
the grid. Each node is assumed to take as many inputs as the maximum function arity a. Every data input
and node output are labeled consecutively (starting at 0) which gives it a unique data address which
specifies where the input data or node output value can be accessed (shown in the figure on outputs of
inputs and nodes). Nodes in the same column cannot be connected to each other. The graph is directed so
that a node may only have its inputs connected to either input data or the output of a node in a previous
column. In general there may be a number of output genes (Oi) which specify where the program outputs
are taken from. The structure of the genotype is seen below the schematic. All node function genes Fi are
integer addresses in a look-up table of functions. All connection genes Cij are absolute data addresses and
are integers taking values between 0 and the address of the node at the bottom of the previous column of
nodes
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The original form of CGP did not include Automatically Defined Functions [32].

However, later Walker and Miller [57, 58], utilizing ideas from a technique known

as module acquisition, showed how sub-functions could be evolved and re-used in

CGP. Finally, it was shown that CGP is, under certain conditions, equivalent to a

particular form of linear GP [59].

4.3 The SMCGP representation

SMCGP’s representation, though similar to CGP, has some important differences.

SMCGP genotypes represent a linear string of nodes. That is to say, only one row of

nodes are used (in contrast to CGP which can have a rectangular grid of nodes).

Another important difference is how SMCGP represents connection genes. In CGP,

connection genes are absolute addresses, indicating where the data supplied to a

node is to be obtained, whereas SMCGP uses relative addressing. Each node obtains

its data via its connection genes by counting back from its position in the graph. As

in CGP, to prevent cycles, nodes can only connect to previous nodes (on their left).

The relative addressing allows sections of the graph to be easily moved, duplicated,

or deleted without breaking constraints of the directed graphical structure. Self-

modification also require extra genes that are used to identify parts or characteristics

of the graph that will be changed.

Another change from CGP, and previously published work on SMCGP is the way

SMCGP handles inputs and outputs. Terminals are acquired through special

functions (called INP, INPP, SKIPINP) and program outputs can be taken from a

special function called OUTPUT. This is an important change as it enables SMCGP

programs to obtain and deliver as many inputs or outputs as required by the problem

domain, during program execution. This allows the possibility of evolving general

solutions to problems.

To summarize, each node in the SMCGP graph contains a number of evolvable

elements:

– The function. Represented in the genotype as an integer.

– A list of (relative) connections addresses, again represented as integers.

– A set of three floating point number arguments used by self-modification

functions.

There are also primitive functions that acquire or deliver inputs and outputs.

An example genotype is given in Fig. 2. The figure also shows purely

schematically some phenotypes arising at different iterations.

The actual number of inputs of a node is dictated by the arity of its function, and

in this paper there is a maximum of two inputs. If the connection gene specifies a

distance of 1 it will connect to the previous node in the list, if the gene has value 2

then the node connects 2 nodes back and so on. All the relative distances are

generated so that they are greater than zero, to avoid nodes referring directly or

indirectly to themselves.

If a gene specifies a connection pointing outside the graph, i.e., with a larger

relative address than there are nodes to connect to, then this is treated as connecting

to a null input. Terminals and outputs themselves are obtained by using special
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functions. This is described in detail in Sect. 4. This encoding is shown visually in

Sect. 4.7.

The relative addressing used allows, sub-graphs to be placed or duplicated in the

graph whilst retaining their semantic validity. This means that sub-graphs could

represent the same sub-function, but acting on different inputs. This can be done

without recalculating any node addresses thus maintaining validity of the whole

graph. So sub-graphs can be used as functions in the sense of ADFs in standard GP

(or modules in CGP [58]).

The three floating point arguments are used as arguments for the self-

modification functions, or for functions that return constant values. It is important

to note that depending on the function using them, the value may be truncated to an

integer. Section 4.8 details the available functions and their associated arguments.

Functions that are not explicitly computational (i.e., SM functions and output

functions) pass on the computations presented to them. This is discussed in

Sect. 4.5.

4.4 Evolutionary algorithm

In CGP, a (1 ? 4) evolutionary strategy is often used. We do the same in this paper.

However, we begin the process by testing a population of 50 random individuals.

This helps to boot-strap the evolutionary algorithm and increases the chance of

obtaining a viable individual from which to build from. We then select the best

individual and generate four offspring by mutation. We test these new individuals,

and use the best of these to generate the next population (and if there are two or

more equally best, we pick the newer).

In the experiments in this paper, we have used a relatively high (for CGP)

mutation rate of 0.1. This means that each gene has a probability of 0.1 of being

mutated. SMCGP, like normal CGP, allows for different mutation rates to affect

different parts of the genotype (for example functions and connections could have

different mutation rates). In these experiments, for simplicity, we chose to make all

the rates the same. Mutations for the function type and relative addresses themselves

Fig. 2 The genotype maps
directly to the initial graph of the
phenotype. The genes control the
number, type and connectivity of
each of the nodes. The phenotype
graph is then iterated to perform
computation and produce
subsequent graphs. The nodes in
the phenotype that are acting as
outputs are outlined
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are unbiased; a gene can be mutated to any other valid value. Similarly, when

functions are mutated (or during the initial generation of individuals), all functions

in the set of functions chosen for a particular experiment, have the same probability

of being selected. We have yet to investigate the effect of biasing factors such as the

ratio of self-modifying to normal functions.

For the arguments, the mutation operator can choose to randomize the value

(with probability 0.1), or with probability 0.9 add noise (normally distributed, with a

standard deviation of 20).

The argument values have not been optimized and are based on our experiences

with CGP. We would expect performance increases if more suitable values were

used.

4.5 Evaluation of the SMCGP graph

The phenotype is executed in the same manner as standard CGP, so that the

computational output of the graph is obtained by recursion, starting from the output

nodes down through the functions, to the input nodes. In this way, nodes that are

unconnected are not processed and do not effect the behavior of the graph at that

stage.

For function nodes, such as ? , - and *, the output value is the result of the

mathematical operation on input values.

For graph manipulation functions (self-modifying), the graph is parsed from left

to right. The input values to nodes are found and the behavior of the node is based

on these input values. If the first input is greater or equal to the second, then the

graph manipulation function is added to a ‘‘To Do’’ list of pending modifications

and the node returns the first input. If a graph manipulation function is not added to

the ‘‘To Do’’ list it returns the value of its second input. This means that the

programs self-modifying behaviour is dependent on the particular data passing

through the graph. For Boolean functions, we add the operation to the ‘‘To Do’’

regardless of the inputs.

The length of the list is usually limited as manipulations are relatively

computationally expensive to perform. In this paper we have limited the length to

just two instructions, unless stated to the contrary.

All graph manipulation functions require a number of arguments (evolved), that

determine how they operate on the graph. These are described in Sect. 4.8.

4.6 Inputs and outputs

In the classical implementation of CGP, inputs are defined as absolute addresses

that nodes can connect to. It was ensured that all node connection genes were

always a valid address. In the early versions of SMCGP [16], with the addition of

relative addressing, measures needed to be taken to deal with situations where node

connection addresses did not refer to any nodes on the graph (i.e., when addresses

went negative). To ensure that this could not happen the addresses were taken

modulo the number of inputs. This ensured that such connections always obtained a

valid program input. In this way, as the graphs grew, the addresses could reach more
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and more inputs without having to have the connections explicitly encoded (as

would be the case in CGP).

We found, however, that inputs still did not scale particularly well with problem

size, so in subsequent papers [17, 18, 19] we examined another strategy: Three

special input functions are now added to the function set: INP, INPP and SKIPINP.

When decoding the phenotype graph, a pointer is maintained that refers to an input.

If the first occurrence of an active input function is INP it returns the first program

input. If the first occurrence is INPP, the last program input is returned. After INP is

called it increments the input pointer. INPP decrements the input pointer. SKIPINP

allows the pointer to jump more than one input, and returns the current input before

moving the pointer by an amount given by the first argument of SKIPINP, P0. This

is truncated to an integer and decides whether to increment or decrement the input

pointer according to the sign of the argument. When the pointer is asked to move

beyond the last (or first) input, it simply wraps around to the other side of the input

list. This ensures that there is always an input available to be read.2

Also in earlier work we included an extra binary gene with every node which

flagged whether the node could provide a program output [17, 18, 19]. However, in

the work for this paper we have removed output genes and instead introduced a

primitive function called OUTPUT that provides a program output. This was partly

done because we thought, like the introduction of input functions, it would improve

the ability of the approach to scale to larger problems with different numbers of

outputs and also to make the input-output mechanisms more consistent.

A number of measures need to be taken when the number of OUTPUT nodes

does not match the number of program outputs.

– If there are no OUTPUT nodes in the graph, then the last n nodes in the graph

are used.

– If there are more OUTPUT nodes than are required, then the right-most

OUTPUT nodes are used until the required number of outputs is reached.

– If the graph has fewer OUTPUT nodes than are required graph, then nodes are

chosen as outputs by moving forwards from the right-most node flagged as an

output.

– If there is a condition where not enough nodes can be used as outputs (as there

are not enough nodes in the graph), the individual is labeled as corrupt and is

given a bad fitness score to prevent selection.

4.7 Examples

The figures used throughout this paper are generated automatically by the SMCGP

program. When reading the graphs there are several important things to note:

– Each function has a different colour (or shade of grey), however, the same

colour may be used differently in different function sets.

2 In this model, if a node wishes to connect to a negative address, a default value is returned. For binary

problems this value is FALSE, for numeric problems the default value is 0. INP, INPP and SKIPINP are

all terminal functions with no inputs. So connection genes are ignored

408 Genet Program Evolvable Mach (2010) 11:397–439

123



– The pictured graphs cannot be converted back into phenotypes. For clarity many

details have been omitted (such as the values for parameters).

– Unconnected nodes are drawn with a smaller square and without their function

type as a label.

– In figures with more than one phenotype, each graph represents one iteration.

Figure 3 shows a phenotype with one output node and two INP (input) nodes.

The output of the program will be the Binary XOR (BXOR) of the two input nodes.

INP returns the next available input. If the program only had one input, both of the

INP nodes would return the same value. If there are two inputs, the INP node on the

left will return the first input, the next INP node will return the second input. If there

were more than two inputs, the additional inputs would be ignored.

Figure 4 introduces the INPP node. Suppose that the program has two inputs x0

and x1. The leftmost INP function returns x0, the next INP function returns x1. The

INPP returns x1 also, this is because the second INP function would have left the

input pointer pointing to x0 (due to the list of inputs being a circular list). Thus the

first BXOR function returns x0� x1 and the second BXOR function returns x1 �
x0 � x1: Since the OUTPUT function is directly connected to this it returns the

same.

Figure 5 shows a simple phenotype with two outputs. The first output value is

equal to the first input. The second output is the exclusive-OR of the first two input

values.

Figure 6 also shows a phenotype with two outputs (the nodes used as outputs are

drawn with a box around them). However, here there is only one OUTPUT node in

the phenotype. The SMCGP interpreter attempts to find other nodes to use as

outputs. Here the next node has been selected to be used as an output.

Figure 7 demonstrates the use of the DUP (duplicate) operator. The duplication

operator here duplicates a section of the graph made of three nodes BXOR, INP, and

BXOR. It inserts them next to the DUP node. The source of these three nodes is the

BXOR node used in the first iteration and it’s neighbouring two nodes to the right.

This demonstrates two things. The first is how the duplication operator can make

Fig. 3 Example showing the a simple phenotype with 1 output and 2 input nodes

Fig. 4 Example showing the a simple phenotype with 1 output and 3 input nodes
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programs grow by inserting copies of other parts of the phenotype into the next

iteration. The other observation is that SMCGP can move nodes that were

previously unconnected and connect them to form part of the program.

Phenotypes in SMCGP can also shrink. Figure 8 shows an example of the DEL

(deletion) operator in use. In the first iteration, the program uses three inputs. In the

next iteration, the DEL node has removed the first node. The left most BXOR no

longer connects to an input, but instead receives copies of the ‘‘default’’ value. The

INP (input nodes) in the first iteration use inputs 0, 1 and 2. In the next iteration the

nodes would use inputs 0 and 1. In a further iteration, the first node (BXOR) is

removed. Each time the DEL occurs the program’s functionality is also changed.

4.8 Self-modification functions

The way self-modifying functions act is defined by four variables. Three of them are

the argument genes that are double precision numbers. We denote them P0, P1, and

P2. The other variable is the integer position in the phenotype of the self-modifying

node (i.e., the leftmost node is position 0). We denote this x. In the definitions of the

SM functions we often need to refer to the values taken by node connection genes

(which are all relative addresses). We denote the jth connection gene on node at

position i, by cij.

There are several rules that decide how addresses and arguments are treated:

– When Pi are added to the x, the result is treated as an integer.

Fig. 5 Example showing multiple outputs

Fig. 6 Example showing a phenotype with multiple outputs, but only one OUTPUT node

Fig. 7 Example showing the use of DUP (duplicate operator)
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– Address indexes are corrected if they are not within bounds. Addresses below 0

are treated as 0. Addresses that reach beyond the end of the graph are truncated

to the graph length.

– Start and end indexes are sorted into ascending order (if appropriate).

– Operations that are redundant (e.g., copying 0 nodes) are ignored, however, they

are taken into account in the ‘‘To Do’’ list length.

The exact rules obeyed by various graph manipulation functions are shown in

Table 1.

The list of self-modification functions in Table 1 is large and some are quite

complex, however, it is at this stage unclear what the minimal useful set of self-

modifications should be. To some extent this question may only be answerable

through extensive experimentation using evolution.

4.9 Function sets for experiments

There are a number of different function sets used in these experiments, so they

have been grouped into sets as in Table 5. Table 6 contains the set of functions in

each of these groups. The choice of function sets is determined by the problem type,

and by any previous work that we wish to compare with. Tables 2, 3 and 4 detail the

various individual functions.

5 Experiments: digital circuits

5.1 Fitness function for parity and adder

In this section we describe how to use SMCGP to evolve programs that generate

adder and parity circuits having an arbitrary number of inputs. The aim is to evolve

Fig. 8 Example showing the use of DEL (deletion operator)
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a program that on each iteration, produces the next larger circuit by taking more

inputs and performing the appropriate function (even-parity or bitwise addition).

Even parity circuits consist of n inputs, and a single output that is true when there

are an even number of True bits in the input. For the adder, the circuits take two

n-bit, binary encoded integers and return one n ? 1-bit number that is the numerical

sum of the two inputs.

Digital circuits have often been studied in genetic programming [30, 32], and

some systems have been used to produce ‘‘general’’ solutions [22, 60, 61, 63]. A

general solution is a program that can output a digital circuit for an arbitrary number

of inputs, for example it may generate a parity circuit of any size.

Table 1 Definition of the self-modification functions

Basic

Delete (DEL) Delete the nodes between (P0 ? x) and (P0 ? x ? P1)

Add (ADD) Add P1 new random nodes after (P0 ? x)

Move (MOV) Move the nodes between (P0 ? x) and (P0 ? x ? P1) and insert after

(P0 ? x ? P2)

Duplication

Overwrite (OVR) Copy the nodes between (P0 ? x) and (P0 ? x ? P1) to position

(P0 ? x ? P2), replacing existing nodes in the target position

Duplication (DUP) Copy the nodes between (P0 ? x) and (P0 ? x ? P1) and insert after

(P0 ? x ? P2)

Duplicate preserving

connections (DU2)

Copy the nodes between (P0) and (P0 ? P1) and insert after (P0 ? P2)

Duplicate preserving

connections (DU3)

Copy the nodes between (P0 ? x) and (P0 ? x ? P1) and insert after

(P0 ? x ? P2). When copying, this function modifies the cij of the copied

nodes so that they continue to point to the original nodes

Duplicate and scale

addresses (DU4)

Starting from position (P0 ? x) copy (P1) nodes and insert after the node at

position (P0 ? x ? P1). During the copy, cij of copied nodes are

multiplied by P2

Copy to stop

(COPYTOSTOP)

Copy from x to the next ‘‘COPYTOSTOP’’ or ‘‘STOP’’ function node, or

the end of the graph. Nodes are inserted at the position the operator

stops at

Stop marker (STOP) Marks the end of a COPYTOSTOP section

Connection modification

Shift connections

(SHIFTCONNECTION)

Starting at node index (P0 ? x), add P2 to the values of the cij of next P1

nodes

Shift connections 2

(MULTCONNECTION)

Starting at node index (P0 ? x), multiply the cij of the next P1 nodes by P2

Change connection (CHC) Change the (P1 mod 3)th connection of node P0 to P2

Function modification

Change function (CHF) Change the function of node P0 to the function associated with P1

Change parameter (CHP) Change the (P1 mod 3)th parameter of node P0 to P2

Miscellaneous

Flush (FLR) Clears the contents of the ‘‘To Do’’ list

Pi are the evolved arguments of the self-modification functions. x represents the absolute position of the node

in the graph, where the leftmost node has position 0. cij is the jth connection gene on node at position i
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In the case of parity, to begin with, we evolve for two input bits. When a

successful solution is found, the fitness function requires that the program produces

a two bit circuit, followed by a three bit circuit. Then when a genotype has been

found that solves the two bit problem and on iteration solves the three bit problem,

the fitness function changes so that now in addition to the previous behaviour the

genotype, when iterated twice, produces a phenotype that solves the four-bit

problem. The process continues in this way until we obtain a phenotype that

correctly implements the required function with 20 inputs. We refer to the

application of each parity or adder as a test case.

Fitness is computed as the number of correctly predicted bits over all test cases. If

the candidate solution fails to find a totally correct solution for a given input size, it

is not tested on other input sizes. We evolve for 19 test cases (2 inputs to 20 inputs).

The fitness function is designed to force the SMCGP to find a solution that grows

through each test case to the next. In this way, the chance of a general solution is

maximised. The fitness function pseudo code is shown in Algorithm 2.

Table 2 Binary functions

Function Operation

BAND a AND b

BOR a OR b

BNAND NOT (a AND b)

BXOR a XOR B

BNOR NOT (a OR b)

BNOT NOT a

BIAND (NOT a) AND b

BF0 FALSE

BF1 (a AND b)

BF2 a AND (NOT b)

BF3 (a AND (NOT b)) or (a AND b)

BF4 (NOT a) AND b

BF5 ((NOT a) AND b) OR (a AND b)

BF6 ((NOT a) AND b) OR (a AND (NOT b))

BF7 ((NOT a) AND b) OR (a AND NOT(b)) OR (a AND b)

BF8 ((NOT a) AND (NOT b))

BF9 ((NOT a) AND (NOT b)) OR (a AND b)

BF10 ((NOT a) AND (NOT b)) OR (a AND NOT (b))

BF11 ((NOT a) AND (NOT b) OR a AND (NOT b) OR a AND b)

BF12 ((NOT a) AND (NOT b) OR (NOT a) AND b)

BF13 ((NOT a) AND (NOT b) OR (NOT a) AND b OR a AND b)

BF14 ((NOT a) AND (NOT b) OR (NOT a) AND b OR a AND (NOT b))

BF15 ((NOT a) AND (NOT b) OR (NOT a) AND b OR a AND (NOT b) OR a AND b)
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Table 3 Mathematical

functions
Function Operation

NOP No operation

DADD a ? b

DSUB a - b

DMULT a * b

DDIV a / b

CONST a constant, defined by P0

AVG (a ? b) / 2

DSQRT Square root of a

DRCP 1 / square root of a

DABS Absolute value of a

TANH tanh(a)

TANHNN tanh(a ? b)

FACT Factorial

POW ab

COS cosine(a)

SIN sine(a)

MIN min(a, b)

MAX max(a, b)

IFLTE If (a \ 0) return b, else 0

INDX Current node index

INCOUNT Number of inputs

Table 4 Input and output functions

Function Operation

INP Return input pointed to by current_input, increment current_input

INPP Return input pointed to by current_input, decrement current_input

SKIPINP Return input pointed to by current_input, current_input = current_input ? P0

OUTPUT Return data provided

P0 is the first argument gene

Table 5 The function set used

in each experiment

See Table 6 for the definition of

each group

Experiment Function set

Adder A

Parity (full) B

Parity (reduced) C

Fibonacci D

Pi (patterns) E

Approximating Pi F

Power regression F

Classification F

Squares D

Sum of numbers D
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Algorithm 2 Fitness function

1: Fitness, F = 0

2: Copy genotype to phenotype. Iteration, i = 0

3: repeat

4: BREAK = FALSE

5: Apply self-modification operations to phenotype i

6: increment i

7: Calculate fitness on test case, fi, by counting number of incorrect bits

8: if fi = 0 then

9: BREAK = TRUE

10: end if

11: F = F ? fi

12: until i = LIMIT OR BREAK

For the parity case LIMIT = 19, so the largest parity function tested has 20 inputs.

However, we test the solutions for generality by testing to 24 bits. We chose 24 bits

for two reasons. First, the largest evolved parity circuit we found in the literature

was 22 bits [45]. It should be noted that Poli and Page used all 16 two input Boolean

functions in their function set, whereas we just use AND, NAND, OR and NOR.

Secondly, this is the largest circuit we can test within reasonable time and

reasonable memory requirements.

Essentially, the fitness function used for evolving both types of circuit is the

same, except that for the adder fitness function, the number of inputs and outputs

grow each time. So the genotype should add two binary inputs, the phenotype at the

first iteration, should add two two-bit binary numbers, and so on. The LIMIT = 6,

but we tested evolved solutions further in order to check for generalization. Due to

the demand on computational resources, we stop exhaustively evaluating the

circuits at 10 bits (i.e., the addition of two ten bit numbers). For larger sizes, we

sample the input space by testing with 10,000 random numbers having up to 1,000

inputs.

For the adder, function set A (shown in Table 6) is used. For the parity

problem, two different function sets were compared. One contains all two-input

Boolean functions, set B in Table 6 and the other which contains a reduced set of

Boolean functions, set C. Both sets of functions have been used in work by other

authors.

5.2 Parity results

Table 7 shows the average number of evaluations required to evolve for a given

number of inputs. The success rate was 100%. Results are based on 50 trials per

function set. Although, Poli and Page evolved solutions to even-parity up to 22
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inputs, they only gave numbers of evaluations for a single evolutionary run when

the number of inputs was 13, 15, 17, 20 and 22 [45].

In Table 8, the results are compared to previous CGP representations and

Koza’s figures for GP with ADFs [32]. The SMCGP results are clearly highly

competitive. We have included Koza’s figures for reference. Koza calculated the

computational effort for a 99% success rate and so represent the number of

evaluations assuming the most favourable number of runs and numbers of

generations. More detailed comparisons between CGP and other methods have

been previously published in [58]. There it was seen that Embedded Cartesian

Genetic Programming (ECGP) was highly competitive with other GP methods. It

Table 6 Function sets per experiment

Function

name

A B C D E F

OUTPUT X X X X X X

INP X X X X X X

INPP X X X X X

SM X X X X X X

NOP X X

DADD X X X

DSUB X X

DMULT X X

DDIV X X

CONST X X

DSQRT X X

POW X X

COS X X

SIN X X

MIN X X

MAX X X

AVG X X

DRCP X X

DABS X X

TANH X X

LOG X X

LN X X

INCOUNT X

BAND X X

BNAND X X

BXOR X

BNOR X X

NOR X X

BIAND X

BF0 to BF15 X X
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should be noted that SMCGP is solving a different problem than CGP and ECGP.

SMCGP were evolved to solve not just one instance of the parity problem, but a

sequence of parity problems.

After evolution, solutions were tested for inputs of up to 24 bits. It was found that

all solutions generalized to problems of this size. This is an improvement over our

previous work, where it was found that 96% of solutions generalised to all tested

problems.

For both sets of functions, most solutions apparently had generalized when even-

5 parity is reached. Since, when the genotype can solve 3, 4 and 5 input problems it

Table 7 Average evaluations

required to find a program that

will solve parity up to a given

number of bits (50 runs)

Results are for both function sets

used

Input bits Reduced Full

3 247,753 37,276

4 275,663 41,697

5 278,635 43,016

6 298,104 43,593

7 318,376 150,719

8 322,843 150,721

9 322,843 150,722

10 322,843 150,722

11 322,851 150,722

12 322,851 150,722

13 322,866 150,722

14 322,866 150,722

15 322,866 150,722

16 322,866 150,722

17 322,870 150,722

18 322,870 150,722

19 322,874 150,722

20 322,874 150,722

Table 8 Comparison with previous work on evolving parity

Input bits Reduced Full SMCGP 2007 CGP ECGP GP

4 275,663 41,697 28,811 81,728 65,296 176,000

5 278,635 43,016 58,194 293,572 181,920 464,000

6 298,104 43,593 199,256 972,420 287,764 1,344,000

7 318,376 150,719 410,128 3,499,532 311,940 1,440,000

8 322,843 150,721 1,080,656 10,949,256 540,224 –

GP is Koza’s tree GP (with ADFs), ECGP is embedded CGP and CGP is conventional CGP. With the

exception of the figures of Koza, the figures show average evaluations required to find a given sized parity

circuit. Results for higher numbers of inputs are not available for CGP or ECGP. The figures for Koza

represent computational effort so they represent a minimum number of evaluations required to achieve

99% success. The minimum is selected from the ‘‘ideal’’ number of runs and number of generations. The

blank symbol indicates that figures are unavailable
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very often was able to solve all other tested parity sizes. This is reflected in the

results in Table 7, where the number of evaluations required to solve a problem

stops increasing, because once a solution is found to generalize, no further evolution

is required.

Spector also examined the even-parity problem, however, he used a different

function set [53]. He found better scaling behaviour than Koza on even-parity

functions up to six inputs.

Other approaches have looked at finding general solutions. Huelsbergen [22]

evolved machine language level programs that could iterate over the bits in a string

and from this parity could be easily determined. The solutions would be suitable for

any length bit string. Recursion has also been successfully used to solve the parity

problem [61, 62, 63]. These approaches produced programs rather than circuits to

solve the problem. They also used high level programming constructs rather than

purely boolean logical primitives.

5.3 A general solution to parity

The genotype in Fig. 9 was evolved with a ‘‘To Do’’ list length of 1. The 20 node

genotype only has 7 active nodes. The inactive nodes are shown as unconnected

smaller squares. Nodes INPP at positions 0 and 2, obtain inputs x1 and x0,

respectively. Three Boolean functions BNOR, BAND and BOR appear at positions

4, 5, and 6. The OUTPUT function obtains the single output from the BOR node.

The only active SM node is DUP at position 1. It carries arguments which cause it to

copy eight nodes beginning at the node on its left (INPP) and insert them

immediately after itself. The action of the DUP node is shown using the curved line

with an arrow emanating from the box. Since the genotype has no connections that

are left of the first node, when DUP copies it disconnects the first two nodes in the

generated phenotype. These appear at the beginning (left) of the new phenotype

(iteration 1) at positions 0 and 1. It is important to note that in this phenotype a

previously inactive node (BNAND) at position 9 becomes active.

We can see that the genotype computes even-2 parity as follows. Denote the

outputs of node, i by zi. Note � denotes the exclusive-OR operation. When two or

more Boolean arguments are side by side (as if being multiplied), it is assumed that

the Boolean AND (BAND) operation is applied to the arguments (e.g., xy is

equivalent to BAND (x, y)). Overbar represents inversion.

z0 ¼ x1

z1 ¼ x1

z2 ¼ x0

z4 ¼ BNORðz2; z1Þ ¼ x0 þ x1 ¼ x0x1 ¼ ð1� x0Þð1� x1Þ
z5 ¼ BANDðz1; z2Þ ¼ x1x0

z6 ¼ BORðz5; z4Þ ¼ z5 þ z4 ¼ z5 � z4 � z4z5

ð1Þ

Substituting for z5 and z4, expanding and then canceling terms we obtain
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z6 ¼ x1x0 � ð1� x0Þð1� x1Þ � x1x0ð1� x0Þð1� x1Þ
z6 ¼ x1x0 � 1� x1 � x0 � x1x0 � x1x0ð1� x1 � x0 � x1x0Þ
z6 ¼ x1 � x0 � 1

ð2Þ

Thus z16 = z6 is the even-3 parity function. When the eight duplicated nodes are

inserted into the genotype just before position 2 they cause the activation of the

BNAND node at position 9 in the new phenotype. This inverts the function

computed by the eight duplicated nodes in the genotype. So the output of this block

of nodes (denoted A), is x2 � x1 since the INPP functions return the inputs in

descending order.

Now we turn out attention to the second iteration. When DUP inserts nodes 2 to 9

after itself, the nodes 4 to 9 are shifted right (becoming nodes 12–17) in the second

iteration phenotype (enclosed in a box labeled B in the Fig. 9). We now prove that

this set of nodes carries out the exclusive OR of its input (emanating from the

NAND node, which we call y) with the input variable (in this case x1) (Fig. 10).

z12 ¼ x1

z14 ¼ BNORðx12; yÞ ¼ BNORðx1; yÞ ¼ ð1� x1Þð1� yÞ
z15 ¼ BANDðy; z12Þ ¼ BANDðy; x1Þ ¼ x1y

z16 ¼ BORðz15; z14Þ ¼ z15 þ z14 ¼ z15 � z14 � z14z15

z17 ¼ BNANDðz16; z16Þ ¼ z16 � 1

ð3Þ

Substituting for z14 and z15 in z16 and then noting that in the last term when x1 y
multiplies ð1� x1Þ we obtain ðx1y� x1yÞ which is zero, thus we can simplify

z16 ¼ x1y� ð1� x1Þð1� yÞ � x1yð1� x1Þð1� yÞ
z16 ¼ x1y� ð1� x1Þð1� yÞ ¼ x1y� 1� x1 � y� x1y

z16 ¼ 1� x1 � y

z17 ¼ x1 � y

ð4Þ

Since we have seen that the nodes in section C compute the odd parity of the

supplied input y and the acquired input (by INPP) we find that at iteration two the

phenotype computes y1 � x0 � 1 ¼ y� x1 � x0 � 1 ¼ x3 � x2 � x1 � x0 � 1: This

is the even-4 parity function. To construct a proof by induction we will assume that

for n inputs the phenotype computes even-n parity.

Table 9 Evaluations required

to evolve to each size

An n input adder adds two n-bit

numbers

No. of bits in each pair Average Evals % Success

1 2,415 100.0

2 952,965 94.0

3 1,043,732 88.0

4 1,083,890 86.0

5 1,237,723 86.0

6 1,439,856 86.0

Genet Program Evolvable Mach (2010) 11:397–439 421

123



The upper diagram shows the even-n parity function En. This is the inductive

hypothesis. We have already seen that the function enclosed in box A produces at

the next iteration the two disconnected nodes and the function in A, y ¼ xn � xn�1

followed immediately by the function in box B, yn�2 ¼ y� xn�2; thus the new

phenotype, En?1 generates the function,

Enþ1 ¼ yn�2 � En � xn�1 � xn�2

Enþ1 ¼ y� xn�2 � En � xn�1 � xn�2

Enþ1 ¼ xn � xn�1 � xn�2 � En � xn�1 � xn�2

Enþ1 ¼ xn � En

ð5Þ

Thus the inductive hypothesis also applies for the n ? 1th iteration. We have

already seen that at iteration two, the form of the phenotype obeys the inductive

hypothesis. Hence the general case is proved.

5.4 Adder results

Table 9 shows the average number of evaluations required to evolve a program that

could grow to an adder of a given size (via intermediate sizes). We analysed when

the adder solutions began to generalise (i.e., could solve up to 6 bits addition, even

though they were evolved to solve a smaller problem).

After evolving to a 6 ? 6 bit adder, the successful solutions were tested on larger

problems. Adders were tested up to 1,000 ? 1,000 bits, and remarkably, all were

found to successfully generalise. Again, we had to sample the input space for larger

problem sizes. We took 1,000 different input patterns for every input size from 10 to

1000 bits.

5.5 A general solution to n-bit binary addition

We prove formally that an evolved genotype produces a general adder. The

genotype was evolved with a ‘‘To Do’’ list of length equal to 1. It is 20 nodes long

but only 7 nodes are active. This can be seen in the first row of Fig. 11. There are

two input obtaining nodes INP at positions 0 and 1. There are three Boolean

functions used BF6 (Exclusive-OR), BF11 and BF1 appearing at positions 3, 4, and

6. The OUTPUT function receives the output from the BXOR node at position 3.

The only active SM node is DUP at position 2. Its arguments cause it to copy 14

nodes beginning at the node on its left (BF6) and insert them (at the next iteration)

immediately before the node at 17. The action of the DUP node is shown using an

arrow emanating from the box containing the 14 nodes that will be re-inserted. After

insertion in the phenotype after node 16 the formerly inactive nodes, 7, 10, 11, 14,

15, 16 (see box B) are activated by nodes on the right (in box A). After the copying

operation the nodes in box A in the genotype, beginning with node 3, become the

nodes in the new phenotype beginning at node 17 (box A). As a result, new inputs

(inside box B) are obtained through the action of INP nodes at positions 10 and 11

and two more SM functions DU2 and DUP, located at positions 7 and 14,

respectively, become active. However, because the length of the ‘‘To Do’’ list is 1
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these instructions have no self-modifying role. Instead they have the passive

computational role of passing their second input. When the phenotype at the first

iteration is executed the DUP function (at position 2) cause fourteen more nodes to

be copied after node 16. This is shown in box B in the second iteration (Table 10).

To establish that these operations when repeated will construct an adder of an

arbitrary size we need to consider the way the phenotypes can be divided into

recognizable modules (i.e., a series of simple adders). In Fig. 12 we show how the

phenotypes can be decomposed into a series of one-bit adder modules. Initially the

genotype implements a one bit adder without carry, ADD(x0, y0). A one bit adder

with carry-in, Cin, and carry-out, Cout is defined by the truth table shown in

Table 11.

The equations for the sum and carry bits, S and Cout are given below.

S ¼ x� y� Cin

Cout ¼ xy� Cinðx� yÞ
ð6Þ

Let us examine the nodes in the box labeled ADD(x0,y) in Fig. 12. First note that it

uses functions BF6, BF11 and BF1 (see 2). BF6 is the exclusive-OR function, BF1 is

the AND function and BF11ða; bÞ ¼ 1� b� ab: The equations below show the

outputs zi of all the active nodes with labels i.

z0 ¼ x0

z1 ¼ y0

z2 ¼ y0

z3 ¼ x0 � y0

z4 ¼ 1� x0 � y0 � x0ðx0 � y0Þ ¼ 1� y0 � x0y0

z5 ¼ x0 � y0

z6 ¼ y0ð1� y0 � x0y0Þ ¼ x0y0

ð7Þ

When Cin = 0 in Eq. 6 and the resulting equations compared with Eq. 7 one easily

sees that z5 and z6 are identical with S and Cout, respectively. Thus the active nodes

in the genotype implement a one-bit adder with no carry-in. The next thing we need

to show is that the nodes in Fig. 12 in the box labeled ADD(x1, y1, c0) do indeed

implement a one bit adder with carry-in and carry-out (Eq. 6). Let us examine the

Table 10 Percentage of

solutions that generalise to

various, un-evolved input

lengths

No. Of inputs % Success

10 80

50 76

100 76

250 76

500 76

750 76

1000 76
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nodes 10–20. One more additional Boolean function, BF7ða; bÞ ¼ a� b� ab is

used. Once again we write equations for the output of all nodes.

z10 ¼ x1

z11 ¼ y1

z14 ¼ c0

z15 ¼ BF7ðy1; x1Þ ¼ x1 � y1 � x1y1

z16 ¼ x1 � y1

z17 ¼ x1 � y1 � c0

z18 ¼ BF11ðc0; x1� y1 � c0Þ ¼ 1� ðx1� y1 � c0Þ � c0ðx1 � y1 � c0Þ
¼ 1� ðx1 � y1Þ � c0ðx1 � y1Þ

z19 ¼ x1 � y1 � c0

z20 ¼ BF1ðx1 � y1 � x1y1; 1� ðx1 � y1Þ � c0ðx1 � y1ÞÞ
¼ ððx1 � y1Þ � x1y1Þð1� ðx1 � y1Þ � c0ðx1 � y1ÞÞ
¼ ððx1 � y1Þ � ðx1 � y1Þ � c0ðx1 � y1Þ � x1y1 � x1y1ðx1 � y1Þ � c0x1y1 � c0x1y1

¼ x1y1� c0ðx1 � y1Þ
ð8Þ

Comparing with Eq. 6 we see that the output S is correctly obtained from z19 and the

carry-out is obtained from z20. In the phenotype at iteration 2 the carry out is passed

to the next module by the SM node DU2 (node 21).

So to summarize, at the first iteration. the duplicated section of the phenotype

activates previously inactive nodes which form the front section of a one-bit adder

and also activates a SM node which passes the carry of the previous adder (via a

DUP node) into the newly formed adder. In the second iteration the phenotype

consists of three adders connected in the manner of a ripple carry adder. The first

adder block originated in the original genotype (first phenotype). It passes out the

sum bit computed to an OUTPUT node and passes out its carry (ADD(x0, y0)) to

the next adder block, which is a full one bit adder (with carry-in and carry-out). This

is shown as ADD(x1, y1, c0). This in turn passes its carry (c1) to the final adder

block, ADD(x2, y2, c1) which passes out the two most significant sum bits. The

process is entirely regular and it can be easily seen that carrying out further

iterations adds a new adder block, ADD(x, y, c) into the existing adder. Thus we can

see that the iterated genotype represents an arbitrary bit adder.

Table 11 Truth table of a one-bit adder with carry-in and carry-out

Cin x y Cout S Cin x y Cout S

0 0 0 0 0 0 0 1 0 1

0 1 0 0 1 0 1 1 1 0

1 0 0 0 1 1 0 1 1 0

1 1 0 1 0 1 1 1 1 1
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We have many different solutions for adders which appear to be general and it is

highly likely that some of these are very innovative ways of building general adders.

Such analysis remains for the future.

6 Experiments: patterns and sequences

6.1 Digits of p

The task here is to find a program that on each iteration will output the next digit of

p, i.e., the first time the program is executed it outputs 3. Then after self-

modification is applied, the program encoded in the phenotype again should output

1. Then 4, 1, 5, and so on.

The program inputs are the iteration, i, and the previous output value.

An integer data type was used. Again, function set E was used (see Table 6). The

fitness function terminated iteration when an incorrect digit was given as output.

Fitness is defined as the total number of correct digits that were output before

making a mistake. Evolution was allowed to continue for 10,000,000 evaluations (or

100 digits of p).

6.2 Digits of p results

The experiment was repeated 310 times. The longest sequence found was 31 digits.

The shortest was 5 digits, and the average number of correct digits was 14. The best

evolved solution produced 31 digits of p, before outputting an incorrect digit. The

evolved output sequence and the expected output sequence are shown in Table 12.

Figure 13 shows the development stages of the first ten iterations of this program.

Each iteration outputs the next digit of p, starting with 3 in the first step. The

program consistently uses the final node, a copy to stop (CTS) function, as its

output. This is because no OUTPUT nodes were used, so the graph runner defaulted

to using the last node in the graph as output.

The program unfolds as follows. In iteration 0, CTS (Copy To Stop) returns the

constant 3.29, but because the program is interpreted as integers, the value is

truncated to 3. In iteration 1, INP returns the first input, which is the current iteration

(1). The CTS node returns the DSQRT (square root) of 1. In iteration 2, CTS returns

the truncated value of the constant, i.e., 4. In iteration 3, the CTS node returns the

square root of the square root of the current iteration (3). As a truncated integer, this

Table 12 Output from the p generator compared to actual digits

Evolved output Correct digits

3141592653 5897932384 6264338327

9 653334444 4444444444 4444444444

4444555555 5555555555 5555555555

5555555555

3141592653 5897932384 6264338327

9 502884197 1693993751 0582097494

4592307816 4062862089 9862803482

5342117068
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Fig. 13 The first ten developmental steps of a program that produces a p digits sequence

428 Genet Program Evolvable Mach (2010) 11:397–439

123



is 1. In iteration 4, again, the CTS node returns a value (5) from a constant. In

iteration 5, the output comes from adding two constants 4 and 5, to return 9. In

iteration 6, here the CTS node connects to a MOV (Move) function which is

returning the square root of 6 (as integer), i.e., 2. In iteration 7, the output (6) is the

sum (DADD) of 4 and 2 (which is the integer square root of 7). In iteration 8, the

output comes from the average (AVG) of 4 and 6 (via the same calculations as

iteration 7), to get 5. In iteration 9, the input value is 9, so the square root function

now outputs 3. The left most CTS function returns 3 (via the MOV node connected

to the top input). This is because of the order of modification nodes has reached a

limit on the ‘‘To Do’’ list, and the operation has failed—changing which of the

inputs is selected as the output. The program continues in this fashion for the first 31

digits.

6.3 Squares

In this task, we ask that evolution finds a program that generates a sequences of

squares 0, 1, 4, 9, 16, 25, ... without using multiplication or division operations. As

Spector [54] who first devised this problem points out, this task can only be

successfully performed if the program can modify itself—as it needs to add new

functionality in the form of additions to produce the next integer in the sequence.

Hence, genetic programming, without iteration, will be unable to find a general

solution to this problem.

6.4 Squares results

Programs were evolved using a very restricted function set. Programs have one

input: the current iteration. The initial graph size was set to 20 nodes. Mutation rate

0.1. Function set D from Table 6 was used.

Out of 50 trials and a maximum of 1,000,000 evaluations, all successfully

evolved the first ten outputs correctly. The average number of evaluations needed

was 35,224. The minimum and maximum number of evaluations are 135 and

249,969. With a standard deviation of 53,609. Of these, 84% were found to

successfully generalise to the first 100 values.

6.5 Fibonacci

In a task similar to the squares problem (see Sect. 6.3), we evolve a program that

when iterated produces the Fibonacci sequence. Again, we limit the function set to

force evolution to find a solution that requires self-modification.

We evolve for both the first n and m numbers in the sequence and test for

generality to 42 numbers (after which the value exceeds a long int). We have

previously noted that the programs produced by evolution generalize although they

have an irregular pattern to begin with (see Sect. 6.3). We were intrigued to see the

behaviour when starting the base case for Fibonacci at either the arbitrary start of 1,

1 or at the next step of that sequence 1, 2.
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6.6 Fibonacci results

Programs were evolved using a very restricted function set. Programs have one

input, the numeric constant 1. The initial graph size was set to 20 nodes. Mutation

rate 0.1. Function set D was used (see Table 6).

Out of 50 trials and a maximum of 1,000,000 evaluations, all successfully

evolved the first ten outputs correctly. The average number of evaluations needed

was 71,812. The minimum and maximum number of evaluations are 630 and

924,333. With a standard deviation of 162,998. Of these, 46% were found to

successfully generalise to the first 100 values.

7 Experiments: mathematical

7.1 Approximating p

There exist several iterative approaches to approximating p [9]. For example, the

Gregory-Leibniz series calculates:

p ¼ 4

1
� 4

3
þ 4

5
� 4

7
þ 4

9
. . .

This series is simple, but requires a large number of iterations to reach good

accuracy. Another method3 uses recursion to find an approximation:

p ¼ nðtanðp=nÞ �
tan3ðp=nÞ

3
þ tan5ðp=nÞ

5
� tan7ðp=nÞ

7
. . .Þ

for n = 1, 2, …. Curiously, there has been little work on evolving approximators to

p, despite it being a well defined problem with many human designed solutions to

compare against.

Krohn et al. [33] employed an artificial developmental system based on fractal

proteins [7] to produce approximations to p using two different approaches. The first

approach was to generate the digits as a binary sequence. The second, and more

successful, approach was to use the output of the developmental system to provide

values for the equation:

XI

i¼1

PN
n¼2 Bn;iQi
t¼1 B1;i

where I is the number of developmental iterations, N is the number of behavioural

genes (an output of the evolved program) and Bn,i is the output of the nth

behavioural gene at iteration i.
Our fitness function was designed to produce a program where subsequent

iterations of the program would produce more accurate approximation to p.

Programs were allowed to iterate for a maximum of ten iterations. If the output after

an iteration did not approximate p more closely, evaluation was stopped and a large

3 http://www.ams.org/featurecolumn/archive/pi-calc.html.
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fitness penalty applied. Note that it is possible that after the ten iterations the output

value diverges from p, and the quality of the result would therefore worsen.

The fitness score of an individual is defined as the absolute error of the last

output. In addition, the string representation of the output was checked to ensure that

all digits matched correctly. We were limited to a precision of 14 decimal places

(i.e., 3.14159265358979), due to using double precision representation. Four

variants of the fitness function were tested, each with different configurations of

inputs given to the programs, these are described in Table 13.

7.2 Approximating p results

The statistical results for these experiments are shown in Table 14. Each experiment

was conducted approximately 150 times. The standard deviations are large and

overlap, which means that the algorithms appear to perform similarly.

7.3 Example p generator

Figure 14 shows the output of an evolved SMCGP program that accurately

converges to p. Table 15 shows the output of the program at each time step. As the

program is relatively short, it was possible to extract the evolved generating

function:

f ðiÞ ¼ cosðsinðcosðsinð0ÞÞÞÞ i ¼ 0

f ði� 1Þ þ sinðf ði� 1ÞÞ i [ 0

�
ð9Þ

Equation 9 is a nonlinear recurrence relation. However, it can be shown that it

converges rapidly to p. When i = 10, the output matches the first 2,048 digits of p.4

We can note that the value of p is a fixed point of Eq. 9 since x = x ? sin(x) is

obeyed when x = p. It is stable since f0(x) = 1 ? cos(x) = 0 when x = p. How rapidly

it converges to p can be seen from the following argument. Suppose at some

Table 13 Variants of the fitness function with different input strategies

Config. Inputs Description

A One input: the current iteration Functions can be built using the current iteration counter as

a parameter

B One input: numeric constant (1) The program has no real input, and therefore has to build a

structure that performs the iterative process

C Two inputs: the current iteration

and last outputted value

This form can, in some sense, be viewed as recurrent, as

programs can depend on the previous output

D Two inputs: numeric constant (1)

and last outputted value

This form can also be viewed as recurrent, as programs can

depend on the previous output

4 Tested using the mpmath library for Python: http://www.code.google.com/p/mpmath/.
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iteration m, f(m) is close to p. Then we can write f(m) = p - d, where d is a small

quantity. Then from Eq. 9 f ðmþ 1Þ ¼ p� dþ sinðp� dÞ � p� d3

3!:

7.4 Summing numbers

Here we wished to evolve a program that could sum an arbitrarily long list of

numbers. At the n-th iteration, the evolved program should be able to take n inputs

and compute the sum of all the inputs. We devised this problem because we thought

it would be difficult for genetic programming, but relatively easy for a technique

such as neural networks. The premise being, that neural networks appear to perform

well when combining input values and genetic programming seems to work well

using feature selection on the inputs.

Input vectors consist of random sequences of integers. The fitness is defined as

the absolute cumulative error between the output of the program and the expected

sum of the values. We evolved programs which were evaluated on input sequences

of 2 to 10 numbers. The function sets consists of the self-modifying functions and

just the ADD function.

Table 14 Finding p using various inputs to the evolved programs

Config. % Success Avg. Evals Min SD Min., Avg. iterations

A 96.7 8,952,441 6,731 17,766,584 3, 5.95

B 99.4 2,905,673 526 8,826,492 3, 5.49

C 96.2 4,953,518 869 13,674,006 3, 6.78

D 98.7 2,146,348 642 9,515,520 3, 5.90

Experiment types: A, One input, the current iteration; B, One input, numeric constant (1); C, Two inputs,

the current iteration and last outputted value; D, Two inputs, numeric constant (1) and the last outputted

value. Iterations refers to the number of times the program has to be iterated before it reaches p to 14

decimal places

Fig. 14 SMCGP program that produces an approximation to p. Each row is a different time step
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7.5 Summing numbers results

All experiments were found to be successful, in that they evolved programs that

could sum between 2 and 10 numbers (depending on the number of iterations the

program is iterated). Table 16 shows the number of evaluations required to reach

the n-th sum (where n runs from 2 to 10).

After evolution, the best individual for each run was tested to see how well it

generalized. This test involved summing a sequence of 100 numbers. It was found

that most solutions generalized, however, in 1% of cases, they did not.

We also tested the ability of conventional CGP to sum a set of numbers. Here

CGP could only be evolved for a given size of set of input numbers. The results

(based on 200 runs) are also shown in Table 16. This experiment revealed that CGP

is able to solve this problem only for a smaller sets of numbers. This shows a clear

benefit of the self-modification approach in comparison with the direct encoding.

7.6 Regression

We devised a new problem that tests the ability of SMCGP to learn a ‘‘modular’’

regression problem. The task is to evolve a program that, depending on the iteration,

approximates the expression xn where n is the iteration number. The fitness function

applies x as integers from 0 to 20. The fitness is defined as the number of wrong

outputs (i.e., lower is better). Function set F was used, as detailed in Table 6. As

with the squares problem, without self-modification, it would be impossible for GP

to produce a general solution to this problem.

We evolved to n = 10 and then tested for generality up to n = 20. As with other

experiments, we evolved incrementally. We first required the programs to solve

n = 1. When that was successful, we evolved for n = 1 and n = 2. Next for

n = 1, 2, 3 and so on.

Table 15 Output from program shown in Fig. 14

Iteration Output error Output Correct digits

0 3.14159265358979 0 0

1 2.47522590819691 0.666366745392881 0

2 0.897795232223359 2.24379742136643 0

3 0.115840730988874 3.02575192260092 0

4 0.000258905467357184 3.14133374812244 3

5 2.89235302375346E-12 3.1415926535869 11

6 0 3.14159265358979 14

7 0 3.14159265358979 14

8 0 3.14159265358979 14

9 0 3.14159265358979 14

Output is error is the difference between p (.Net’s Math.PI) and the output from the program. Correct

digits is the count of the correctly matching digits after the decimal point. Errors will appear to be 0 when

the actual error is very small
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7.7 Regression results

Table 17 shows the results summary for the powers regression problem. All runs

were successful. In this instance, we see an interesting difference between the two

starting conditions. If the fitness function starts with n = 1, ..., 5, we find that fewer

evaluations are required to reach n = 10. However, this leads to reduced

generalization. Using a Kolmogorov-Smirnov test, we find that the difference in

the evaluations required is statistically significant (P \ 0.01).

7.8 Classification

In this experiment we wanted to investigated the behaviour of SMCGP on a problem

in which there appeared to be no clear benefit for self-modification. The problem we

chose is a protein classification problem—as described in [35]. The task is to predict

the location of a protein in a cell, from the amino acids in the particular protein. We

used the entire dataset as training set. The set consisted of 2,427 entries, with 19

variables each and 1 output. The function set for SMCGP includes all the

mathematical operators in addition to the self-modifying command set. The CGP

function set contained just the mathematical operators.

We allowed the phenotype to iterate the number of times specified in the

genotype before we tested the program on the training set. Function set F (see

Table 6) was used for the SMCGP function set, and for CGP the same set was used

but without the self-modification functions.

Table 16 Evaluations required to evolve a SMCGP program that can add a set of numbers of a given

size

Size of set Average Minimum Maximum SD % CGP

2 50 50 50 0 100

3 1,208 54 6,764 987 80

4 2,338 62 19,307 2,025 95.8

5 3,120 87 23,149 2,549 48

6 4,026 126 42,168 4,068 38.1

7 5,010 204 48,824 5,447 0

8 5,931 213 68,201 7,033 0

9 6,788 231 87,949 8,348 0

10 7,434 246 87,976 8,779 0

Hundred percent of SMCGP experiments were successful. The % success rate for conventional CGP is

also shown

Table 17 Summary of results

for the powers regression

problem

Number of initial

test sets

Average

evaluations

SD Percentage

generalize

1 687156 869699 60.4

5 527334 600800 55.6
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7.9 Classification results

Table 18 shows the summary of results for the protein localization problem. We see

under these conditions, that both CGP and SMCGP perform similarly.

This is encouraging as it suggests that using SMCGP does not worsen

performance (compared with CGP) on a problem where there is no clear need for

self-modification. Of course, further work is needed to confirm this on a wider

collection of problems.

8 Conclusions and further work

It is 10 years since the birth of Cartesian Genetic Programming and it is fitting that

we should now be reporting on an improved form of it called Self-Modifying CGP.

The new technique has borrowed some concepts from developmental biology. It

extends the capability of CGP. Unlike CGP, SMCGP allows us to evolve solutions

to whole classes of problems rather than specific instances with a fixed number of

inputs and outputs.

We have also shown that it is suitable for a wide range of computational

problems, and that it can out perform previous approaches on many of these

problems. Given the remarkable success of the technique, it might be worth

investigating whether other methods of GP couldn’t be extended following a similar

route. We speculate that in both linear GP an in tree-based GP, it should be possible

to implement analogous operations, perhaps with similar effects.

There remains much to be investigated. For example, it is unclear what the best

parameter configuration should be. Here we used arbitrary parameters, and tried to

maintain consistency throughout experiments, however, it is likely that these were

sub optimal. Parameter settings seem to be very different from CGP. For example,

here we use small genotypes and large mutation rates, whereas CGP appears to work

best with large genotypes and small mutation rates.

The available function set is also an area that needs investigating. The current set

of self-modifying functions is unlikely to be optimal. However, it is very hard to

predict what functions are actually most useful. When examining the evolved

Table 18 Results summary for the bioinformatics classification problem

- CGP SMCGP

Average fitness (training) 66.81 66.83

SD fitness (training) 6.35 6.45

Average fitness (validation) 66.10 66.18

SD fitness (validation) 5.96 6.46

Avg. evaluations to best fitness (training) 7,679 7,071

SD evaluations to best fitness (training) 2,452 2,644

Avg. evaluations to best fitness (validation) 7,357 7,161

SD evaluations to best fitness (validation) 2,386 2,597
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programs, our intuition has sometimes been proved wrong about whether certain

functions would be beneficial to evolution.

The methods used to activate self-modifying functions depending on the values

of numerical inputs need to be investigated further to ascertain how useful they are.

At present they are designed with bi-arity functions in mind. It would be interesting

to consider activation mechanisms for self-modifying functions inspired by

epigenetics in biology.

Although SMCGP is a relatively complex technique, conceptually it is simple,

and it is straight forward to implement. SMCGP execution can be implemented very

efficiently, and graphs containing thousands of nodes are easily handled. We have

yet to explore the possibilities that this brings.

A significant aspect of SMCGP is that it can produce mathematically provable

solutions to general classes of problems. It seems possible that it could produce

hitherto unknown general solutions to some problems. These solutions may have

utility in a number of research domains. We intend to continue to investigate such

areas. Utilizing a theorem prover in the fitness function, rather than carrying out

post-hoc proofs though desirable, is likely to be computationally intractable as

theorem provers, even if they could be used, have poor time complexity.

The form of SMCGP we have described here uses a one-dimensional graph

representation, however, we have also been investigating a form of SMCGP in

which programs can be developed that are a two-dimensional sheet of nodes. Early

experiments indicate that this allows solutions to problems to be evolved even faster

than the one-dimensional form.
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