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Abstract Redundancy is a ubiquitous feature of genetic programming (GP), with

many-to-one mappings commonly observed between genotype and phenotype,

and between phenotype and fitness. If a representation is redundant, then neutral

mutations are possible. A mutation is phenotypically-neutral if its application to a

genotype does not lead to a change in phenotype. A mutation is fitness-neutral if its

application to a genotype does not lead to a change in fitness. Whether such neu-

trality has any benefit for GP remains a contentious topic, with reported experi-

mental results supporting both sides of the debate. Most existing studies use

performance statistics, such as success rate or search efficiency, to investigate the

utility of neutrality in GP. Here, we take a different tack and use a measure of

robustness to quantify the neutrality associated with each genotype, phenotype, and

fitness value. We argue that understanding the influence of neutrality on GP requires

an understanding of the distributions of robustness at these three levels, and of the

interplay between robustness, evolvability, and accessibility amongst genotypes,

phenotypes, and fitness values. As a concrete example, we consider a simple linear

genetic programming system that is amenable to exhaustive enumeration and allows

for the full characterization of these quantities, which we then relate to the
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dynamical properties of simple mutation-based evolutionary processes. Our results

demonstrate that it is not only the distribution of robustness amongst phenotypes

that affects evolutionary search, but also (1) the distributions of robustness at the

genotypic and fitness levels and (2) the mutational biases that exist amongst

genotypes, phenotypes, and fitness values. Of crucial importance is the relationship

between the robustness of a genotype and its mutational bias toward other

phenotypes.

Keywords Accessibility � Coreness � Evolvability � Genotype-phenotype map �
Phenotype-fitness map � Networks � Neutrality � Redundancy � Robustness

1 Introduction

Redundant mappings between genotype and phenotype are common in genetic

programming (GP), where many mutational variants of a genotype yield identical

phenotypes [40]. Redundant mappings between phenotype and fitness are also

common, with multiple phenotypes producing identical fitness values [43].

Redundant mappings allow for neutrality [1]. In the genotype-phenotype map, a

mutation is neutral if its application to a genotype does not lead to a change in

phenotype (referred to as phenotypically-neutral). In the phenotype-fitness map, a

genetic mutation is neutral if it does not affect fitness (referred to as fitness-neutral).

Redundancy and neutrality are thus separate, but related concepts. While neutrality

requires redundancy, redundancy does not guarantee neutrality.

Based on a parsimonious model of evolutionary dynamics [40], it has been

argued that the potential benefits of redundancy hinge on two distinctions. The first

is whether the genotype-phenotype map is uniformly or non-uniformly redundant. A

mapping is uniformly redundant if each phenotype is represented by the same

number of genotypes and non-uniformly redundant otherwise. The second

distinction is whether the genotype-phenotype map is synonymously or non-

synonymously redundant. A mapping is synonymously redundant if the genotypes

that map to the same phenotype are similar to one another and non-synonymously

redundant otherwise. The results of [40] suggest that a non-uniformly redundant

mapping is only advantageous in an evolutionary search if the optimal phenotype is

overrepresented, while a uniformly redundant mapping offers no advantage.

Further, non-synonymously redundant mappings can frustrate evolutionary search

because they do not allow recombination operators to work properly.

The neutrality of a redundant mapping, if it exists, can be characterized as a

genotype network (a.k.a. a neutral network). In such networks, vertices represent

genotypes and edges connect genotypes that share the same phenotype and can be

interconverted via single mutational events1 [51]. By partitioning genotype space

into distinct genotype networks, it is possible to provide a more detailed description

of redundant representations, complementing the information provided by the

1 The structure of a genotype network depends upon the type of mutation under consideration. Here, as in

related studies [6, 8, 51], we are concerned with point mutations.

306 Genet Program Evolvable Mach (2012) 13:305–337

123



uniformity- and synonymity-based classification scheme. For example, within a

non-uniformly redundant mapping, the overrepresented phenotype may comprise a

single genotype network or a set of several independent genotype networks. Within

a non-synonymously redundant mapping, the disparate genotypes of a given

phenotype may be connected via a series of phenotypically-neutral point mutations

or they may be completely isolated from one another. Clearly these different

scenarios have implications for evolutionary search.

In biological systems, genotype networks are often used to describe the

neutrality of redundant mappings in terms of robustness [50]. One of the many

definitions of robustness is resilience to genetic change, which can be measured

using genotype networks. Specifically, the robustness of a genotype is linearly

proportional to the number of connections it possesses in the genotype network.

The robustness of a phenotype can be quantified as the average genotypic

robustness of the genotypes in a genotype network [51] or as the total number of

genotypes in the genotype network [8]. If in the latter case a phenotype is made

up of more than a single genotype network, then the average number of genotypes

per genotype network can be used to measure phenotypic robustness. Fitness

robustness can be measured as the sum of the phenotypic robustness of all

phenotypes that are connected via mutational events that do not yield a change in

fitness.

Genotype networks provide a general framework for characterizing the neutrality

of a redundant mapping, and have found application in a wide array of systems,

including sulfur metabolism [39], RNA [14, 38, 41], gene regulatory networks [6,

35, 36], and field programmable gate arrays [37]. One of the primary advantages of

discussing neutrality in terms of robustness is that an exact measure of neutrality can

be specifically assigned to each genotype, phenotype, and fitness value [51, 52].

This allows for the assessment of the distributions of robustness, which describe the

frequency with which a given robustness value is observed, at each of these three

levels. Further, it allows for the quantification of the mutational biases that exist

amongst genotypes, phenotypes, and fitness values. For example, the set of

phenotypically-non-neutral mutations associated with a genotype need not be

evenly divided amongst other genotype networks; some mutational transitions may

be more likely than others.

This last point is of particular importance, as the utility of a redundant

representation in evolutionary search is not only dependent upon the various

distinctions of redundancy [40], but also upon the manner in which genotype space

is partitioned into genotype networks and how this impacts mutational transitions

amongst genotypes, phenotypes, and fitness values. For example, increasing the

number of genotypes that map to a given phenotype will be of limited value if this

increase does not provide mutational opportunities to discover new phenotypes.

Similarly, a genetic overrepresentation of the optimal phenotype will only be

advantageous if there is a corresponding increase in the number of mutational

opportunities to access that phenotype. Genotype networks provide a framework for

the systematic investigation of such mutational opportunities, through the charac-

terization of phenotypically- and fitness-non-neutral genetic mutations, and thus for

the concrete assessment of the potential benefits of neutrality in mutation-based
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evolutionary search. Specifically, both the relationship between robustness and the

ability to discover novel phenotypes, i.e., evolvability, and the relationship between

robustness and the relative ease with which a phenotype is accessed by a mutation-

based evolutionary process, i.e., accessibility, can be described exactly using

genotype networks [8, 47, 51, 52].

The utility of neutrality in GP is a contentious topic [16]. While some studies

have found no benefit [7, 44, 45], others have claimed that neutrality buffers against

deleterious genetic perturbation [20, 46, 57] and reduces the risk of premature

convergence through an expansion of the search space [12, 18]. However, little

work has been done to explicitly characterize robustness, evolvability, and

accessibility at the genotypic, phenotypic, and fitness levels, nor to describe their

relationships within and between these levels [21]. However, in biological systems

these relationships have been the focus of numerous theoretical [6, 10, 22, 30, 34,

35, 51, 52, 54, 55] and empirical [4, 13, 19, 23] analyses. For example, the enhanced

robustness of rewired bacterial gene networks has been shown to increase cell

viability in novel environments [23]. Similarly, increased robustness in the

cytochrome P450 BM3 protein has been shown to increase the probability that

mutants can hydroxylate novel substrates [4]. These empirical observations can be

explained theoretically by considering robust phenotypes as large genotype

networks, through which a population diffuses neutrally and builds up genetic

diversity [22, 48]. This facilitates access to novel phenotypes through phenotypi-

cally-non-neutral mutations into adjacent genotype networks [51].

Expanding upon the work of [2], we have recently used genotype networks to

describe the distributions of robustness at the level of the genotype and phenotype in

a simple linear genetic programming (LGP) system used to solve a Boolean search

problem [21]. This LGP system was chosen because it offers several advantages

over alternative GP systems. First, the fixed-length representation is compact; the

set of all genotypes is finite and computationally enumerable. Second, redundancy is

intrinsic to the system; in our implementation, a total of 228 genotypes map to 16

phenotypes, which in turn map to 5 fitness values. Third, there is a clear delineation

between genotype, phenotype, and fitness, allowing for a full description of their

interplay. By capitalizing on recent developments in the characterization of

robustness, evolvability, and accessibility in RNA [8, 52], we provided a

quantitative analysis of the genotype and phenotype spaces in this LGP system.

We then conducted a preliminary exploration of the relationships between

robustness, evolvability, accessibility, and mutation-based search, using a large

ensemble of random walks.

The primary goal of our previous and current study is to describe the redundancy

of this LGP system and to relate the properties of this redundancy to mutation-based

evolutionary processes. To this end, we address several research questions. For

example, is the redundancy uniform or non-uniform, synonymous or non-

synonymous? Is neutrality present? If so, how is genotype space partitioned?

How is robustness distributed amongst genotypes, phenotypes, and fitness values?

What are the relationships between robustness, evolvability, and accessibility within

and between each of these three levels? How do these properties relate to mutation-

based evolutionary search?
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Here, we embed our previous results [21] within an extended study, broadening

our analysis in several ways. First, we describe the genotype networks in greater

detail, providing additional topological analyses that clarify some previously

unexplained observations regarding their structure. Second, we expand the scope of

analysis to include robustness, evolvability, and accessibility at the fitness level.

Third, we augment our evolutionary analyses to include random walks (1) that are

constrained to a single genotype network and (2) that only permit mutations that

maintain or improve fitness. Lastly, we use Markov chains to analytically

approximate the duration and trajectory of these evolutionary processes, and we

provide a mechanistic explanation for their occasional failure.

2 Methods

2.1 Linear genetic programming

In the LGP representation, an individual (or program) consists of a set of

L instructions, which are structurally similar to those found in register machine

languages. Each instruction is made up of an operator, a set of operands, and a

return value. In the programs considered in this study, each instruction consisted of

an operator drawn from the set {AND, OR, NAND, NOR}, two Boolean operands, and

one Boolean return value. The inputs, operands, and return values were stored in

registers with varying read/write permissions. Specifically, R0 and R1 were used as

calculation registers that could be read and written, whereas R2 and R3 were used as

input registers that were read-only. In this formulation, a calculation register can

serve in an instruction as an operand or a return, but an input register can only be

used as an operand. An example program with L = 4 is given below.

R1 ¼ R2 OR R3

R0 ¼ R1 AND R2

R1 ¼ R0 NAND R1

R0 ¼ R3 NOR R1

Instructions were executed sequentially from top to bottom. Prior to program exe-

cution, the values of R0 and R1 were initialized to 0. After program execution, the

final value in R0 was returned as output.

2.2 Genotype, phenotype, and fitness space

To facilitate the enumeration of the entire genotype, phenotype, and fitness spaces,

we considered a two-input, one-output Boolean problem instance with L = 4

instructions. This sequence of instructions is referred to as the genotype, xg. Letting

C and I denote the numbers of calculation and input registers, respectively, and O
the cardinality of the operator set, there are a total of (C 9 (C ? I)2 9 O)L

genotypes in the LGP representation. We refer to this set of programs as the

genotype space, Ug. In the system considered here (L = 4, C = 2, I = 2, O = 4),
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the genotype space comprises jUgj ¼ 228 unique programs and each genotype can

be converted into any one of 40 neighboring genotypes with a single point mutation

to one of its 16 loci.

These genotypes map to a considerably smaller set of phenotypes, which are

defined by the functional relationship between the input and output registers.

Specifically, the phenotype xp is defined by the set of outputs observed across each

of the four possible combinations of Boolean inputs. Since the outputs are also

Boolean, the phenotype space, Up comprises jUpj ¼ 24 ¼ 16 unique phenotypes.

This genotype-phenotype map wg7!p : Ug 7!Up is thus redundant, because

jUgj[ jUpj [40]. As an example of wg 7!p; consider the program provided above,

which yields the following truth table

The phenotype is the 4-bit vector in the rightmost column of the truth table, which

corresponds to the function x AND !y, where ! denotes negation.

Each of the 16 phenotypes can be assigned a fitness value xf within the fitness

space Uf using a mapping wtp

p7!f : Up 7!Uf that depends upon the prescribed

phenotypic target tp. In this study, wtp

p 7!fðxpÞ is the Hamming distance between the

phenotype xp and the target tp. We assume fitness minimization. Since the

phenotypes are represented as 4-bit vectors, there are five possible fitness values and

the mapping of phenotype to fitness depends upon which phenotype is chosen as the

target. For example, the phenotype TRUE ði.e., h1111iÞ has a fitness of 4 when the

target phenotype is FALSE ði.e., h0000iÞ, but has an improved fitness of 1 when the

target phenotype is x OR y ði.e., h0111iÞ.

2.3 Genotype, phenotype, and fitness networks

The redundant mapping of genotype to phenotype may generate neutrality. As

mentioned in the Introduction, a convenient formalism for describing the neutrality

of a redundant mapping is a genotype network, in which genotypes are represented

as vertices and edges connect genotypes that can be interconverted via phenotyp-

ically-neutral point mutations2. A genotype network Gxp ¼ ðCxp

;HxpÞ corresponding

R2½x� R3½y� R0

0 0 0

0 1 0

1 0 1

1 1 0

2 Note that a phenotype may comprise multiple, independent genotype networks that cannot be reached

from one another via phenotypically-neutral point mutations. Such collections of genotype networks are

referred to as genotype sets [53]. Since it is known that the phenotypes of this LGP system each comprise

a single genotype network [21], we do not present the mathematical formalisms needed to describe

genotype sets.
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to phenotype xp is formally defined as a set of genotypes Cxp � Ug and a set of edges

Hxp

connecting these genotypes; an edge hxg; ygi 2 Hxp

if for genotype xg an

application of the mutation operator h : Ug 7!Ug yields a different genotype yg of the

same phenotype xp, i.e., h(xg) = yg and wg7!pðxgÞ ¼ wg7!pðygÞ ¼ xp: In this study,

we are concerned with point mutations, which we define as a single change to an

operand, operator, or return of the instruction set of a program. This point mutation

is phenotypically-neutral if it does not lead to a change in phenotype (Fig. 1).

Genotype networks corresponding to different phenotypes may be connected to

one another via phenotypically-non-neutral point mutations, in which case they are

referred to as adjacent. Note that there may be many individual points of contact

between adjacent genotype networks, but that each of these points corresponds to a

single point mutation (Fig. 1a). Formally, two genotype networks Gxp

and Gyp

are

adjacent if there exist some xg 2 Cxp

and yg 2 Cyp

such that h(xg) = yg. The set of

edges that correspond to phenotypically-non-neutral point mutations between

genotypes in the genotype networks of phenotypes xp and yp is denoted by Xxp;yp

. By

considering the adjacency of all genotype networks in the genotype space, we can

construct a phenotype network (Fig. 2). Vertices correspond to phenotypes and are

weighted according to the number of genotypes in their underlying genotype

network, and edges correspond to the adjacency of genotype networks and are

weighted according to the number of phenotypically-non-neutral point mutations

between genotype networks. Vertices may also be assigned a fitness value, which

corresponds to the phenotype’s Hamming distance from a pre-specified phenotypic

target tp. Thus, we can formally define a phenotype network in three ways,

depending upon whether phenotypes are assigned fitness values, and if so, whether

deleterious mutations are allowed.
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Fig. 1 a Schematic diagram of a subset of genotype space in linear genetic programming. Vertices
correspond to genotypes, their color to phenotypes, and edges connect genotypes that can be
interconverted via point mutations. b Point mutations (highlighted in gray) correspond to a single change
in the instruction set and can be phenotypically-neutral or phenotypically-non-neutral, depending on
whether the phenotype is preserved. For visual clarity, we only depict a small subset of the 40 potential
point mutations to the 16 loci of each genotype
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1. In the first case, phenotypes are not assigned fitness values. The phenotype

network P ¼ ðUp;!Þ comprises the set of all phenotypes Up and a set of

undirected edges ! connecting phenotypes; an edge hxp; ypi 2 ! if jXxp;yp j[ 0.

The weight of each phenotype xp 2 Up is jCxp j. The weight of each edge

hxp; ypi 2 ! is jXxp;yp j.
2. In the second case, phenotypes are assigned fitness values and deleterious

mutations are allowed. The phenotype network is therefore identical to the

previous case, save the fact that each phenotype now corresponds to a particular

fitness value, which is determined by the phenotype-to-fitness mapping wtp

p 7!f .

3. In the third case, phenotypes are assigned fitness values, but deleterious

mutations are not allowed. This corresponds to a ‘‘replace if better or equal’’

selection strategy [9, 24]. The phenotype network is therefore modified Ptp ¼
ðUp;!tpÞ such that it depends upon the target. The set of edges !tp

are now

directed; an edge hxp; ypi 2 !tp

points from phenotype xp to phenotype yp if

jXxp;yp j[ 0 and wtp

p 7!fðxpÞ[ wtp

p 7!fðypÞ.

The mapping from phenotype to fitness wtp

p7!f is also redundant, with several

phenotypes yielding the same fitness value. This redundancy may yield an addi-

tional layer of neutrality. By considering the connectivity of phenotypes with differ-

ent fitness values, we can construct a fitness network (Fig. 2), where each vertex

corresponds to a single fitness value and is weighted according to the sum of the

sizes of the underlying phenotypes’ genotype networks. Edges correspond to the adja-

cency of fitness values and are weighted according to the number of fitness-non-neutral

Fig. 2 Schematic diagram of the redundant mapping between genotype, phenotype, and fitness networks.
The dashed vertical lines show that multiple vertices at a lower level can be mapped to a single vertex at a
higher level. The thickness of the solid lines indicates the number of possible mutational transitions
between vertices. Each vertex corresponds uniquely to a single genotype, phenotype, or fitness value
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point mutations between the genotype networks of the phenotypes that make up

each fitness value. Fitness networks can be formally defined in two ways, depending

upon whether deleterious mutations are allowed.

1. In the first case, deleterious mutations are allowed. The fitness network Ftp ¼
ðUf ;DtpÞ corresponding to the phenotypic target tp comprises the set of all

fitness values Uf and a set of undirected edges Dtp

connecting fitness values; an

edge hxf ; yfi 2 Dtp

exists between fitness value xf and fitness value yf if 9xg; yg 2
Ug such that h(xg) = yg and wtp

p7!fðwg7!pðxgÞÞ ¼ xf and wtp

p7!fðwg 7!pðygÞÞ ¼ yf .

2. In the second case, deleterious mutations are not allowed. This leads to a

modification of the fitness network such that the set of edges are directed.

Formally, an edge hxf ; yfi 2 Dtp

points from fitness value xf to fitness value

yf if 9xg; yg 2 Ug such that h(xg) = yg and wtp

p 7!fðwg 7!pðxgÞÞ ¼ xf and

wtp

p7!fðwg7!pðygÞÞ ¼ yf and xf [ yf.

In both cases, the set of edges between the genotype networks of the phenotypes

with fitness values xf and yf is denoted by Xxf ;yf

. The weight of each fitness value

xf 2 Uf is
P
fxpjwtp

p 7!fðxpÞ¼xfg jC
xp j. The weight of each edge hxf ; yfi 2 Dtp

is jXxf ;yf j.

2.4 Observable quantities

To characterize the genotypic, phenotypic, and fitness spaces of this LGP system,

we consider the topological measures defined below. In addition to describing how

these quantities relate to one another, both within and between levels, we will also

consider their relationship with simple, mutation-based evolutionary processes.

2.4.1 Robustness

We use robustness to quantify the degree of neutrality associated with each

genotype, phenotype, and fitness value. Specifically, we define genotypic robustness
Rg as [52]

RgðxgÞ ¼ kxg

=40; ð1Þ

where kxg

is the number of connections genotype xg possesses in the genotype

network and 40 is the total number of possible point mutations. Genotypic

robustness is thus the fraction of the total number of possible point mutations to a

given genotype that are phenotypically-neutral. We define phenotypic robustness Rp

as the number of genotypes in the phenotype’s underlying genotype network,

RpðxpÞ ¼ jCxp j: ð2Þ

This is the number of genotypes that yield the same phenotype and that are con-

nected via a series of phenotypically-neutral point mutations. We define fitness
robustness Rf as the sum of the phenotypic robustnesses of all phenotypes with a

given fitness value,
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RfðxfÞ ¼
X

fxpjwtp

p 7!fðxpÞ¼xfg

RpðxpÞ: ð3Þ

2.4.2 Evolvability

Several definitions of evolvability have been put forth [26, 52, 54]. Here, we focus

on those definitions that can be expressed in terms of the properties of genotype

networks. We define genotypic evolvability Eg of a genotype xg with phenotype xp

as the proportion of the total number of possible phenotypes that can be reached via

individual, phenotypically-non-neutral point mutations to genotype xg (i.e., all

genotypes that are of edit distance 1 from xg) [52]

EgðxgÞ ¼ fypjhðxgÞ ¼ yg;wg7!pðygÞ ¼ yp; xp 6¼ ypg
�
�

�
�=15 ð4Þ

For phenotypic evolvability, we consider two measures. The first measure, E1
p, is

simply the proportion of the total number of possible phenotypes that are adjacent to

a given phenotype (i.e., via phenotypically-non-neutral point mutations to geno-

types in the underlying genotype network) [52],

Ep
1ðxpÞ ¼ kxp

=15 ð5Þ

where kxp

is the number of edges emanating from phenotype xp in the phenotype

network. In Eqs. (4) and (5), the denominator is the total number of possible

adjacent phenotypes. The second measure, E2
p, provides a more nuanced analysis of

the potential to mutate from one phenotype to another [8]. Letting

f p
xpyp ¼

jXxp ;yp jP
z 6¼y
jXxp ;zp j ; if xp 6¼ yp

0; if xp ¼ yp

(

ð6Þ

denote the proportion of phenotypically-non-neutral point mutations to genotypes of

phenotype xp that result in genotypes of phenotype yp, we define the evolvability E2
p

of phenotype xp as

Ep
2ðxpÞ ¼

0; if f p
xpyp ¼ 08yp

1�
P

ypðf p
xpypÞ2 otherwise.

(

ð7Þ

This corresponds to the probability that two randomly chosen phenotypically-non-

neutral point mutations to genotypes of phenotype xp result in genotypes with distinct

phenotypes. Thus, this measure takes on a value of zero if phenotype xp can only

mutate into one other phenotype. More generally, this measure takes on low values

when a phenotype is adjacent to only a few other phenotypes and its phenotypically-

non-neutral mutations are biased toward a subset of these phenotypes. It takes on

high values when a phenotype is adjacent to many other phenotypes and its phe-

notypically-non-neutral mutations are uniformly divided amongst these phenotypes.

These two measures can be adapted to measure fitness evolvability. The first

measure E1
f corresponds to the proportion of all fitness values possibly adjacent to

fitness value xf
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Ef
1ðxfÞ ¼ kxf

=4; ð8Þ

where kxf

is the number of connections emanating from fitness value xf in the fitness

network and 4 is the total number of possible adjacent fitness values. The second

measure uses

f f
xfyf ¼

jXxf ;yf jP
z 6¼y
jXxf ;zf j

; if xf 6¼ yf

0; if xf ¼ yf

8
<

:
ð9Þ

to measure fitness evolvability E2
f as

Ef
2ðxfÞ ¼

0; if f f
xfyf ¼ 08yf

1�
P

yf ðf f
xf yf Þ2 otherwise.

(

ð10Þ

2.4.3 Accessibility

In addition to measuring phenotypic evolvability E2
p, which describes the uniformity

of phenotypically-non-neutral mutations emanating from phenotype xp, we also

measure phenotypic accessibility [8],

ApðxpÞ ¼
X

yp

f p
ypxp ; ð11Þ

which represents the propensity to mutate into phenotype xp. This measure takes on

high values if a phenotype is relatively easy to access from other phenotypes, and

low values otherwise3. For an alternative formulation of this quantity see [27, 28].

The analogous definition of fitness accessibility is

AfðxfÞ ¼
X

yf

f f
yf xf ; ð12Þ

which represents the propensity to mutate into fitness value xf. Note that when

deleterious mutations are not allowed, the worst fitness value has Af(xf = 4) = 0.

2.4.4 Distance and diversity

The distance between two genotypes xg and yg is calculated as

Dðxg; ygÞ ¼ 1

16

X16

i¼1

dðxg
i ; y

g
i Þ; ð13Þ

where d(xi
g,yi

g) = 1 if genotypes xg and yg differ at location i and d(xi
g,yi

g) = 0

otherwise. The summation is taken across all 16 loci and then normalized.

3 Note that genotypic accessibility is not a useful concept. This is because it is equivalent to the total

number of possible point mutations to a genotype. Specifically, if we used f g
xgyg to denote the fraction of

point mutations to genotype xg that result in genotype yg, then
P

yg f g
ygxg ¼ 408xg 2 Ug.
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The diversity of the sets of phenotypes Kxg

and Kyg

that are accessible within the

1-neighborhood of two genotypes xg and yg of the same phenotype xp is calculated

as [6]

FðKxg

;KygÞ ¼ jfKxg \ Kyggj=15; ð14Þ

where f�g denotes set complement. The denominator reflects the extreme case

where one genotype can access all of the 15 possibly adjacent phenotypes and the

other can access none ðe.g:;Kxg ¼ Up n fxpg;Kyg ¼ ;Þ. If F is small, the two

genotypes are adjacent to similar sets of genotype networks. If F is large, the two

genotypes have mutational access to diverse sets of genotype networks.

2.4.5 Coreness

The genotype networks considered in this study are too large to visualize directly.

However, we can gain further insight into their structure by describing the

distributions of certain vertex-level properties. One such property is vertex degree,

which we use to calculate genotypic robustness. Another property is coreness,

which is an integer index k that defines the position of a vertex as belonging to one

of several non-overlapping k-shells [33]. Each k-shell is defined as a subset of

vertices in which each vertex is connected to at least k other vertices. Thus, vertices

with large k are close to the innermost core of the network, and vertices with small k
are nearer the periphery.

3 Results

3.1 Statistical characteristics of genotype, phenotype, and fitness spaces

To investigate the genotype, phenotype, and fitness spaces of the two-input, one

output LGP system of L = 4 instructions, we exhaustively enumerated all 228

genotypes, which allowed for a full characterization of their mutational connec-

tivities. We present our analysis of these spaces incrementally, beginning at the

level of the genotype and ending with a description of the interplay between

genotype, phenotype, and fitness. We use the measures provided in Sect. 2.4 to

describe these spaces and we often illustrate the relationships between these

quantities using correlations, which we summarize with Pearson’s correlation

coefficient and a standard permutation test of statistical significance.

Our goal is to use these measures to address the following research questions,

among others. What is the relationship between evolvability and robustness at the

genotypic level? Is this relationship different at the phenotypic or fitness levels? Are

genotype networks confined to specific regions of genotype space or do they extend

throughout its entirety? Does the location of a genotype on a genotype network

impact the set of phenotypes it can access via phenotypically-non-neutral mutation?

How does the choice of phenotypic target impact the structure of the phenotype

network and fitness network?
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3.1.1 Genotype space

Genotype space was partitioned into 16 independent genotype networks. These

genotype networks ranged in size from a minimum of 24,832 genotypes to a

maximum of 60,393,728 genotypes (ranging in size from �1 % to 23 % of

genotype space, respectively).

In Fig. 3, we depict several properties of the genotype network that corresponds

to the representative phenotype !x AND y. In this particular genotype network, as

well as all others in this LGP system, the distribution of genotypic evolvability is

unimodal (Fig. 3a), while the distribution of genotypic robustness is bimodal

(Fig. 3b). These quantities exhibit a slight, but highly significant, inverse

relationship, such that genotypes of greater robustness are generally less evolvable

(R2 = 0.01, p � 0.01, Fig. 3c).

The coreness of a genotype is shown as a function of its robustness in Fig. 3d.

The data are positively correlated (R2 = 0.79, p � 0.01) and fall into two discrete

clusters, suggesting that the genotype network consists of a single dense core of

highly robust genotypes and a periphery of less robust genotypes. The clear

delineation of the two clusters explains the bimodality in the distribution of

genotypic robustness (Fig. 3b).

Figure 3e shows the distribution of genotypic distance between randomly

sampled genotypes in this genotype network. The distribution is unimodal, with an

average distance that falls within one standard deviation of the mean of the

corresponding null distribution (vertical dashed lines). This indicates that the

genotype network is not restricted to a specific region of genotype space, but instead

extends broadly into distant regions of genotype space. The average genotypic

distance grows logarithmically from a minimum of 0.62 to a maximum of 0.68 as

the size of the genotype network increases (Fig. 3e, inset, R2 = 0.91, p� 0.01), but

never falls outside the bounds of the null distribution.

To assess the implications of such expansive genotype networks, we calculated

the diversity of the genotype networks adjacent to each randomly chosen pair of

genotypes. The diversity of adjacent genotype networks is shown as a function of

genotypic distance in Fig. 3f. In general, the diversity of adjacent genotype

networks increases as the distance between two genotypes increases (the non-

monotonicity of the trend is attributable to undersampling at the tails of the

distribution, cf., Fig. 3e). This indicates that a genotype’s position in genotype

space has a strong influence on the genotype networks that surround it.

3.1.2 Phenotype space

Each of the 16 genotype networks in this system correspond uniquely to a single

phenotype. As such, any two genotypes that yield the same phenotype are connected

through a series of phenotypically-neutral point mutations. The phenotype network

of the mutational transitions between these 16 genotype networks is depicted in

Fig. 4. The network is fully connected, such that any phenotype can be reached

directly from any other. However, the number of phenotypically-non-neutral point

mutations between phenotypes, depicted by edge width, is heterogeneous. Some
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a b

dc

fe

Fig. 3 Properties of genotypes within the phenotype !x AND y. Distributions of a genotypic evolvability
Eg and b genotypic robustness Rg for all &4 million genotypes. c Genotypic evolvability Eg as a function
of genotypic robustness Rg. The solid line represents the best linear fit to the data and is provided as a
guide for the eye. (d) Coreness k as a function of genotypic robustness Rg. Data are linearly binned, with
darker bin shades indicating higher frequency. Note the clear delineation between genotypes with
coreness k B 18 and k [ 18 (dashed horizontal line). This arbitrary distinction is used to color the bars in
b, indicating that highly robust genotypes reside in the core of the genotype network. e Distribution of the
genotypic distance D between 200,000 randomly sampled pairs of genotypes. The dashed vertical lines
represent one standard deviation from the mean of the corresponding null distribution, which was
determined by sampling pairs of genotypes at random from the entire genotype space (i.e., without regard
to phenotype) and calculating the genotypic distance between these pairs. The inset depicts the mean
genotypic distance for all 16 genotype networks as a function of their size. The solid line represents the
best logarithmic fit to the data and is provided as a guide for the eye. (f) The diversity of adjacent
genotype networks F is shown as a function of genotypic distance D
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phenotypes are mutationally biased toward a small subset of phenotypes

(e.g., Fig. 4, x AND y), while others mutate nearly uniformly to all other phenotypes

(e.g., Fig. 4, x ¼¼ y). Note that the edges are undirected, because in the absence of

fitness there are no deleterious mutations. All mutational events between phenotypes

are reversible and therefore symmetric. Phenotypic robustness is denoted by vertex

size, and the variety of vertex sizes mirrors the heterogeneous distribution of the

sizes of the underlying genotype networks. Note that the phenotype FALSE is larger

than the phenotype TRUE, despite the inherent symmetry of this LGP system. This

occurs because the output register R0 is initialized to 0. Therefore, if a program does

not modify its output register, its default phenotype is FALSE.

The means of the distributions of genotypic evolvability and robustness vary as a

function of phenotypic robustness (Fig. 5a, b). Specifically, average genotypic

evolvability decreases logarithmically as a function of phenotypic robustness

(Fig. 5a, R2 = 0.95, p� 0.01). This intuitive observation implies that within robust

phenotypes, most mutations are phenotypically-neutral and do not allow access to

adjacent phenotypes. It follows that the individual genotypes that make up robust

Fig. 4 Phenotype network for linear genetic programming with two inputs, one output, and four
instructions. Each vertex comprises a genotype network, as depicted schematically in Fig. 1, and thus
vertex size corresponds to phenotypic robustness. Edge width denotes the number of phenotypically-non-
neutral point mutations between two phenotypes, and is normalized by the total number of
phenotypically-non-neutral point mutations between all pairs of phenotypes. Phenotypes are labeled

according to their functional relationship between input and output, where x and y denote the inputs

stored in registers R2 and R3; respectively
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phenotypes are collectively more robust. Indeed, we observe that the average

genotypic robustness increases logarithmically as a function of phenotypic

robustness (Fig. 5b, R2 = 0.98, p � 0.01).

The relationship between phenotypic evolvability and phenotypic robustness is

less intuitive. Because the phenotype network is fully connected, all phenotypes are

equally and maximally evolvable according to E2
p (filled circles, Fig. 5c). In

contrast, when mutational biases are taken into account with E2
p, phenotypic

evolvability exhibits a nonlinear relationship with phenotypic robustness (open

circles, Fig. 5c). Phenotypic evolvability is lowest for phenotypes of intermedi-

ate robustness ðxAND!y; !xANDyÞ, and then increases logarithmically with

increasing phenotypic robustness (R2 = 0.87, p = 0.02). The relationship is made

non-monotonic by the high evolvability of the least robust phenotypes

ðx XOR y; x ¼¼ yÞ.
Phenotypic accessibility increases monotonically as a function of phenotypic

robustness, following the power-law Ap � (Rp)1/2 (Fig. 5d, R2 = 0.99, p � 0.01).

This implies that random mutations are more likely to lead to robust than to non-

robust phenotypes. Taken together, these results suggest that the most robust

phenotypes are both easy to find (Fig. 5d) and highly evolvable (Fig. 5c), with the

a b

dc

Fig. 5 Properties of phenotype space and their relation to genotype space. Average genotypic

a evolvability Êg and b robustness R̂g and phenotypic, c evolvability E1
p, E2

p and d accessibility Ap as a
function of phenotypic robustness Rp. The data in (a, b) correspond to the average of all genotypes within
a given phenotype and error bars denote their standard deviation. The solid lines correspond to the best (a,
b) logarithmic, c piecewise logarithmic, and d power-law fit to the data, and are provided as a guide for
the eye
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exception of the least robust phenotypes, which are simultaneously the least

accessible and the most evolvable of any of the phenotypes in this system.

3.1.3 Fitness space

Due to the inherent symmetry of certain pairs of phenotypes (e.g:; x AND !y and

!x AND y), there are 11 unique mappings of phenotype to fitness. Further, the fitness

networks can be constructed under two different assumptions regarding deleterious

mutations. This results in a total of 22 distinct fitness networks.

We first consider the case where deleterious mutations are allowed. In Fig. 6a, b

we depict two fitness networks, for the phenotypic targets TRUE and x ¼¼ y,

respectively. The distributions of fitness robustness (vertex size) and the number of

fitness-non-neutral mutations (edge width) are heterogeneous and vary between the

11 fitness networks. The set of phenotypes that make up each fitness value also

varies depending on the phenotypic target (e.g., compare vertices of the same shade

a b

dc

Fig. 6 Fitness networks for the phenotypic targets a TRUE and b x ¼¼ y, when deleterious mutations

are allowed. Each vertex represents a fitness value. Vertex annotation reflects all of the phenotypes within
each fitness value and vertex size corresponds to fitness robustness. Vertex color is used to depict the
fitness value, which shifts from black to white as the fitness value improves. The width of the undirected
edges between two vertices corresponds to the number of fitness-non-neutral point mutations, normalized
by the total number of fitness-non-neutral point mutations between all fitness values. Phenotype networks

for the phenotypic targets c TRUE and d x ¼¼ y. Vertex color is the same as a, b. Vertex annotation,

size, and edge width are as in Fig. 4
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between Fig. 6a, b), but the number of phenotypes per fitness value always remains

the same.

The structure of the underlying phenotype network (Fig. 6c, d) is identical to that

of Fig. 4, except that each phenotype now possesses a fitness value, which varies

depending upon the phenotypic target (e.g., compare Fig. 6c, d). The relationship

between the robustness, evolvability, and accessibility of a phenotype therefore does

not vary between phenotypic targets.

Considering all 11 phenotypic targets simultaneously, the means of the

distributions of phenotypic robustness within each fitness value are positively

correlated with fitness robustness (data not shown; R2 = 0.85, p� 0.01), as are the

means of the distributions of phenotypic accessibility (data not shown; R2 = 0.81, p

� 0.01). The means of the distributions of phenotypic evolvability Êp
2 exhibit a

nonlinear relationship with fitness robustness (data not shown), akin to the trend

depicted in Fig. 5c. Robustness, accessibility, and evolvability each therefore

exhibit functional relationships between the phenotypic and fitness levels.

At the level of the fitness network, the correlation between fitness evolvability

and fitness robustness is weak (R2 = 0.06, p = 0.03; Fig. 7a). However, fitness

accessibility exhibits a strong positive correlation with fitness robustness (Fig. 7b),

again increasing according to the power-law Af � (Rf)1/2 (R2 = 0.90, p � 0.01).

Thus, the most robust fitness values are also the most accessible, an intuitive result

given the positive correlation between fitness robustness and average phenotypic

accessibility.

Next, we consider the case where deleterious mutations are not allowed. In

Fig. 8a, b we again depict the fitness networks for the phenotypic targets TRUE and

x ¼¼ y, respectively. The sets of phenotypes that make up each fitness value are the

same as in Fig. 6a, b. However, the edges are now directed and the fitness networks

are weakly connected. This implies that a directed path may not exist between two

vertices, reflecting the fact that mutational transitions between phenotypes are only

permitted if those transitions are beneficial or fitness-neutral.

a b

Fig. 7 Properties of fitness space when deleterious mutations are allowed. Fitness a evolvability E2
f and

b accessibility Af as a function of fitness robustness Rf. The solid lines correspond to the best
a logarithmic fit to the data and b the power-law Af � (Rf)1/2. Both are provided as a guide for the eye
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Prohibiting deleterious mutations affects the underlying phenotype network

(Fig. 8c, d), leading to several fundamental changes in its structure. First, the

number of phenotypically-non-neutral mutational events between phenotypes is no

longer symmetric; the edges are now directed. Second, the network transforms from

strongly connected to weakly connected, meaning that some phenotypes are left

unreachable from some others. Third, the edge sets vary markedly between the 11

unique phenotype networks (e.g., compare Fig. 8c, d). Therefore, the relationship

between the robustness, evolvability, and accessibility of phenotypes varies between

phenotypic targets.

Indeed, any correlation that was previously observed between phenotypic

robustness and phenotypic evolvability (Fig. 5c) is now lost, as measured using

either E2
p or E2

p (data not shown; E1
p: 3.1 9 10-5 B R2 B 2.7 9 10-2, p [ 0.55;

E2
p: 1.4 9 10-5 B R2 B 1.7 9 10-1, p [ 0.11, for all 11 phenotype networks).

However, the correlation between phenotypic robustness and phenotypic

a b

dc

Fig. 8 Fitness networks for the phenotypic targets a TRUE and b x ¼¼ y, when deleterious mutations

are not allowed. Vertex color, size, and annotation are as in Fig. 6a, b. The width of the directed edges
between two vertices corresponds to the number of fitness-non-neutral point mutations, normalized by the
total number of fitness-non-neutral point mutations emanating from each fitness value. Note that the worst
fitness value (black vertex) only has edges pointing away from it and the best fitness value (white vertex)

only has edges pointing into it. Phenotype networks for the phenotypic targets c TRUE and d x ¼¼ y.

Vertex color, size, and annotation are as in Fig. 6c, d. The width of the directed edges between two
vertices corresponds to the number of phenotypically-non-neutral point mutations, normalized by the total
number of phenotypically-non-neutral point mutations emanating from each phenotype. Note that edges
only point toward phenotypes of equal or better fitness (same or lighter color)
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accessibility remains both positive and significant (data not shown;

0.48 B R2 B 0.75, p � 0.01 for all 11 phenotype networks). Thus, in the absence

of deleterious mutations, the most robust phenotypes generally remain the easiest to

find, but are no longer the most evolvable.

Since the prohibition of deleterious mutations does not impact phenotypic

robustness, the correlation between fitness robustness and the means of the

distributions of phenotypic robustness within each fitness value is identical to the

previous case where deleterious mutations were allowed (data not shown;

R2 = 0.85, p � 0.01). However, prohibiting deleterious mutations does impact

phenotypic evolvability and phenotypic accessibility. Specifically, the correlation

between fitness robustness and the means of the distributions of phenotypic

accessibility is lost (data not shown; R2 = 0.09, p = 0.02), as is the correlation

between fitness robustness and the means of the distributions of phenotypic

evolvability �Ep
2 (data not shown; R2 = 0.07, p = 0.01).

At the level of the fitness network, there is no correlation between fitness

evolvability and fitness robustness (data not shown; E1
f : R2 = 0, p =

1.00; E2
f : R2 = 1.8 9 10-4, p = 0.91) nor between fitness accessibility and fitness

robustness (data not shown; R2 = 2.3 9 10-3, p = 0.71). The robustness of a

fitness value therefore does not affect the ease with which it is identified, an

observation that stems from the lack of correlation between fitness robustness and

the average accessibility of the phenotypes that make up a fitness value.

3.2 Random walks and hill climbing

To understand how the structure of genotype, phenotype, and fitness networks

influence evolutionary search, we conduct four interrelated analyses. Each is a

highly stylized abstraction of an evolutionary process, in which we consider the

behavior of only a single individual, which is subject to mutation. These analyses

are also introduced incrementally. We begin with random walks that explore a

single genotype network, and end with a hill climber that concurrently traverses

genotype, phenotype, and fitness space.

Our goal is to relate the dynamical properties of mutation-based search with the

structural properties of genotype, phenotype, and fitness networks presented in Sect.

3.1. We address the following questions, among others: How does the robustness of

a genotype influence the frequency with which a random walk encounters that

genotype? Is the waiting time of a random walk to reach a target phenotype

correlated with the evolvability of the phenotype in which the walk began? Can we

predict waiting times using Markov chains?

3.2.1 Random walks through genotype space

In our first analysis, we consider a random walk in the genotype network of the

representative phenotype !x AND y. Each step in the random walk corresponds to a

single point mutation. We record the robustness of the genotype encountered in each

step, and use this to calculate the visit frequency, which is the distribution of the
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proportion of steps spent at each genotypic robustness value. To ensure sufficient

sampling, the number of steps in the random walk is set to the number of genotypes

in the genotype network (&4 million).

The visit frequency is depicted in Fig. 9a. The distribution is bimodal, akin to the

distribution of genotypic robustness presented in Fig. 3b. However, dividing the

former distribution (Fig. 9a) by the latter (Fig. 3b) reveals that the two distributions

are in fact distinct (Fig. 9b). Genotypes are not visited uniformly, but rather in

proportion to their robustness. Thus, genotypes of high robustness are visited more

often, and genotypes of low robustness less often, than would be expected in a

random sampling of genotypes from the genotype network. This comes with the

caveat that low-evolvability genotypes are visited more often than high-evolvability

genotypes (Fig. 3c).

3.2.2 Random walks through genotype and phenotype space

In our second analysis, we consider all of the 16 interconnected genotype networks,

using random walks to explore both genotype and phenotype space.

For each of the 16 9 15 possible combinations of pairs of unique phenotypes, we

designate one phenotype as a source and the other as a target. We then perform

1,000 random walks, starting from a randomly chosen genotype in the source

phenotype and ending when the random walk reaches any genotype in the target

phenotype. We record the average number of steps required to get from one

phenotype to another, which we refer to as the mean waiting time, TW.

a

b

Fig. 9 A random walk in the genotype network of phenotype !x AND y. a Visit frequency, defined as the
proportion of steps in a random walk that are spent at a genotype of a given robustness. The bin centers
are the same as in Fig. 3b. b Visit frequency normalized by the frequency with which a given genotypic
robustness value is observed in the genotype network (i.e., the distribution in a divided by the distribution
in Fig. 3b). The horizontal dashed line indicates a visit frequency that is exactly proportional to the
frequency with which a given genotypic robustness value is observed in the genotype network
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In Fig. 10, we depict the mean waiting time of a random walk as a function of the

source phenotype’s evolvability (Fig. 10a) and the target phenotype’s accessibility

(Fig. 10b). The mean waiting time is independent of the evolvability of the source

phenotype (R2 = 0.001, p = 0.62), due to the Markovian nature of the random

walk. However, it is strongly correlated with the accessibility of the target

phenotype (R2 = 0.99, p� 0.01). Specifically, the mean waiting time decreases as a

function of target accessibility according to the power-law TW � (Ap)-5/3. Thus,

accessible phenotypes are found more rapidly by random mutation than less

accessible phenotypes. As highly accessible phenotypes are also highly robust

(Fig. 5d), random mutation leads to robust phenotypes. We note that the waiting

time for random search to identify a target phenotype is inversely proportional to the

phenotypic robustness of the target.

The Markovian nature of the random walk suggests that an analytical

determination of the expected waiting time between source and target phenotypes

may be possible (‘‘Appendix 1: Markov chains to determine the mean first passage

time’’) [17]. In brief, the analytical treatment uses the phenotype network (Fig. 4) as

the transition matrix of a Markov chain, and designates the target phenotype as an

absorbing state. After some algebraic rearrangement and a single matrix inversion,

the waiting time is easily calculated. A fundamental assumption of this analysis is

that the phenotype network accurately encodes the mutational transitions between

phenotypes, despite the fact that the actual mutational transitions are occurring at

the level of genotypes.

The analytically determined and empirically observed waiting times are strongly

correlated (data not shown; R2 = 0.99, p� 0.001). However, the average residual

between analysis and observation is 126 steps, which constitutes approximately 15 %

of the empirically observed waiting time. Such a large discrepancy suggests that

the phenotype network does not actually provide an accurate description of the

mutational transitions between phenotypes, as will be revealed in the subsequent

section.

a b

Fig. 10 Random walks in genotype and phenotype space. Mean waiting time TW as a function of a the
source phenotype’s evolvability E2

p and b the target phenotype’s accessibility Ap. The solid lines
correspond to the best a exponential and b power-law fit to the data, and are provided as a guide for the
eye
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3.2.3 Random walks through genotype, phenotype, and fitness space

In our third analysis, we consider the case where each phenotype is assigned a

fitness value and deleterious mutations are allowed. We therefore use the same

random walk data as in Sect. 3.2.2 to explore the relationships between the

properties of fitness values and the number of steps required to get from a source

phenotype to a target phenotype.

We depict the mean waiting time as a function of the source fitness value’s

evolvability in Fig. 11a and as a function of the target fitness value’s accessibility in

Fig. 11b. The mean waiting time decreases exponentially as the evolvability of the

source fitness value increases (R2 = 0.61, p � 0.01), in contrast to the analogous

observation made at the level of the phenotype (Fig. 10a). Mean waiting time

decreases according to a power-law as the accessibility of the target fitness value

increases (R2 = 0.94, p � 0.01). The relationship between mean waiting time and

accessibility can be approximated by the function TW � (Af)-2.

Note that since deleterious mutations are allowed, the phenotype networks have

not been structurally modified (cf., Fig. 6c, d). The previously observed relation-

ships between mean waiting time, phenotypic evolvability, and phenotypic

accessibility (Fig. 10) therefore remain intact. Further, the results of the Markov

chain analysis presented in Sect. 3.2.2 are identical to those found in this section.

3.2.4 Hill climbing through genotype, phenotype, and fitness space

In our fourth analysis, we consider the case where each phenotype is assigned a

fitness value, but deleterious mutations are not allowed. We employ an ensemble of

hill climbers that sample potential movements at random, but only accept steps that

maintain or improve fitness. We again investigate each of the 16 9 15 possible

combinations of unique source and target phenotypes. For each combination of

source and target phenotype, we perform 100,000 hill climbing simulations, starting

from a randomly chosen genotype in the source phenotype and ending when the

walk reaches any genotype in the target phenotype. The duration of this trajectory is

referred to as the mean adaptation time, TA.

We depict the mean adaptation time as a function of the source fitness value’s

evolvability in Fig. 11c and as a function of the target fitness value’s accessibility in

Fig. 11d. Mean adaptation time and the evolvability of the source fitness value are

uncorrelated (R2 = 0.02, p = 0.31), contrasting with the previous case where

deleterious mutations were allowed. Note that some fitness values have E2
f = 0

because they only point to the optimal fitness value (cf., Fig. 8a, b). Mean

adaptation time remains correlated with the accessibility of the target fitness value

(R2 = 0.64, p � 0.01).

The directed phenotype networks (e.g., Fig. 8c, d) can be used as transition

matrices in Markov chains to analytically determine the expected adaptation time

between source and target phenotypes (‘‘Appendix 1: Markov chains to determine the

mean first passage time’’) [17]. We again find a strong correlation between the

analytical and empirical results (R2 = 0.97, p � 0.01), but a relatively large

discrepancy in the average residual difference in adaptation time (112 steps). Similar
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discrepancies are observed when using a related technique [3] to determine the most

common path between source and target phenotypes (‘‘Appendix 2: Markov chains to

determine the most common path’’). Specifically, the predicted most common path

matches the empirically observed most common path in only 54 % of the 16 9 15

combinations of source and target phenotype. In each mismatched case, the length of

the observed most common path is greater than or equal to the length of the predicted

most common path. For example, when the source phenotype is y and the target

phenotype is !x AND y, the predicted most common path is y ! TRUE ! !x AND y.

In contrast, the empirically observed most common path is y ! !y ! TRUE !
!x AND y. This occurs despite the facts that (1) the transition probability encoded in the

phenotype network fy;TRUE ¼ 0:19 exceeds that of fy;!y ¼ 0:185 and (2) the total

probability of the former path exceeds that of the latter.

To elucidate the cause of this discrepancy, we depict in Fig. 12 the average

proportion of phenotypically-non-neutral mutations from a genotype in phenotype y

to (1) a genotype in phenotype !y and (2) a genotype in phenotype TRUE, as a

function of genotypic robustness. Highly robust genotypes are clearly biased toward

phenotype !y. Since genotypes are visited in proportion to their robustness

(Fig. 9b), a random walk through the genotype network of phenotype y is more

a b

dc

Fig. 11 Random walks and hill climbing in genotype, phenotype, and fitness space. a, b Mean waiting
time TW and c, d mean adaptation time TW as a function of a, c the evolvability of the source fitness value
E2

f and b, d the accessibility of the target fitness value Af, when deleterious mutations are a, b and are not
c, d allowed. The solid lines correspond to the best a, c exponential and b, d power-law fit to the data, and
are provided as a guide for the eye
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likely to encounter mutational opportunities to enter phenotype !y than phenotype

TRUE despite the fact that in total there are more mutational opportunities to enter

the latter than the former. Thus, the transition probabilities encoded in the

phenotype network belie the actual mutational biases between genotype networks,

and thus violate the assumption that the transition matrix accurately encodes the

probability with which one phenotype changes to another.

4 Discussion

Through an exhaustive characterization of genotype networks, this study has

described the relationships between robustness, evolvability, and accessibility

within and between the genotypic, phenotypic, and fitness levels of a simple LGP

system.

At the genotypic level, robustness and evolvability were found to be negatively

correlated (Fig. 3c), echoing previous results regarding RNA landscapes [52]. This

intuitive observation implies that robust genotypes are located far from the

periphery of the genotype network, prohibiting direct mutational access to adjacent

genotype networks. Indeed, k-shell decomposition [33] reveals that highly robust

genotypes are located in the dense, innermost core of the genotype network

(Fig. 3b). This separation of the dense core of highly robust genotypes from the

periphery of less robust genotypes (Fig. 3d) also explains the bimodal distribution

of genotypic robustness. The peripheral component extends broadly throughout

genotype space (Fig. 3e), rendering this representation non-synonymous [40], and

the position of a genotype in this space impacts its adjacency to other genotype

networks (Fig. 3f).

At the phenotypic level, the distribution of robustness was heterogeneous,

indicating that the inherent redundancy of this LGP encoding is non-uniform [40].

Since every phenotype was made up of exactly one genotype network, as opposed to

several independent genotype networks, each of the many genotypes that mapped to

a given phenotype could be reached via a series of phenotypically-neutral point

Fig. 12 Phenotypically-non-neutral mutations are not uniformly distributed amongst genotypes. Average
proportion of phenotypically-non-neutral mutations from phenotype !y to phenotypes !y (circles) and
TRUE (squares), as a function of genotypic robustness Rg. Error bars denote one standard deviation
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mutations. The distribution of phenotypically non-neutral point mutations was also

heterogeneous, such that some mutational transitions were more likely than others

(Fig. 4). Similar results have been observed in the redundant mappings of

alternative evolutionary systems [5, 31, 42].

The mutational transitions between phenotypes varied between the case where

deleterious mutations were allowed and the case where they were not allowed.

Specifically, when deleterious mutations were allowed, the phenotype network was

fully connected, implying that the underlying genotype networks were highly

‘‘intertwined,’’ a feature that is thought to increase evolvability [11, 12]. The exact

relationship between robustness and evolvability varied depending on how

evolvability was defined (Fig. 5c). When defined by the total connectivity of a

phenotype in the phenotype network (E1
p), evolvability was independent of

robustness; all phenotypes were maximally evolvable (cf., Fig. 4). In contrast,

when mutational biases were taken into account (E2
p), the relationship between

evolvability and robustness was nonlinear, with phenotypes of intermediate

robustness exhibiting the lowest evolvabilities. These results contrast with those

made in RNA systems where E1
p was found to be positively correlated [52], and E2

p

negatively correlated, with robustness [8], providing further evidence that the

relationships between these quantities are system-dependent. However, accessibility

and robustness were positively correlated (Fig. 5d), in line with observations made

in RNA systems and supporting the intuitive notion that phenotypes formed by

many genotypes are easier to access than phenotypes formed by few genotypes.

When deleterious mutations were not allowed, as is the case in ‘‘replace if better

or equal’’ selection strategies [9, 24], the relationship between phenotypic

robustness and phenotypic evolvability was lost, as measured using either E1
p or

E2
p. Since phenotypes of lower fitness could only mutate into phenotypes of equal or

higher fitness, the connectivity of a phenotype in the phenotype network was

arbitrarily determined and there was consequently no relationship between these

evolvability measures and phenotypic robustness. In contrast, the relationship

between phenotypic robustness and phenotypic accessibility remained positive, but

with a diminished strength of correlation.

At the fitness level, the distribution of robustness varied between phenotypic

targets, as did the mutational connectivities between fitness values (Figs. 6a, b; 8a,

b). When the fitness network was constructed under the assumption that deleterious

mutations were allowed, there was a weak relationship between the robustness and

evolvability of a fitness value (Fig. 7a) due to the distance-based mapping of

phenotype to fitness, which arbitrarily grouped phenotypes into fitness values. In

contrast, there was a positive correlation between fitness accessibility and fitness

robustness (Fig. 7b), again supporting the intuitive notion that what is more

common is easier to identify. When the fitness network was constructed under the

assumption that deleterious mutations were not allowed, these correlations were

completely lost.

As the resolution of analysis shifted from genotype to phenotype, several

functional relationships were observed between the two levels. For instance, the

means of the distributions of both genotypic robustness and genotypic evolvability

were correlated with phenotypic robustness (Fig. 5a, b). Similarly, as the analysis
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shifted from phenotype to fitness, the means of the distributions of phenotypic

robustness and phenotypic accessibility (Fig. 7b) were correlated with fitness

robustness, so long as deleterious mutations were allowed. While some properties

were thus correlated between levels, others were not. For example, when deleterious

mutations were not allowed, fitness evolvability was independent of robustness at

both the phenotypic and fitness levels, a disconnect that again stems from the

mapping of phenotype to fitness, in two ways. First, prohibiting deleterious

mutations leads to the modification of the phenotype networks so as to only allow

mutational transitions from phenotypes of lower fitness to phenotypes of equal or

higher fitness (Fig. 8c, d). This arbitrarily severed many of the mutational

connections between phenotypes, thus negating any relationship between the

robustness and evolvability of a phenotype. Second, the grouping of phenotypes into

fitness values without regard to their robustness or evolvability precluded any

possibility of a functional relationship between these quantities at the two levels.

To understand how the distributions of robustness, evolvability, and accessibility

impact the evolutionary dynamics of LGP, we performed a series of four

interrelated analyses. In the first analysis, random walks were used to ascertain

the frequency with which a blind evolutionary search would visit a genotype as a

function of its robustness. We found that this visit frequency was positively

correlated with genotypic robustness (Fig. 9), mirroring classical results for random

walks on complex networks [33] and population diffusions on neutral networks [48, 56].

Thus, even in the absence of any selection pressure, blind mutation tends toward

increased genotypic robustness.

In the second analysis, we considered an ensemble of random walks between

source and target phenotypes. The mean waiting time of random mutation to reach a

target phenotype was found to be uncorrelated with the evolvability of the source

phenotype (Fig. 10a), a result that calls into question the utility of existing

phenotypic evolvability measures. While these measures provide useful information

concerning the immediate adjacency of phenotypes [52] and their mutational

biases [8], they are too myopic to predict the length of an evolutionary trajectory

from one phenotype to another. Consider, for example, that correlations may exist

between the evolvabilities of adjacent phenotypes, such that high evolvability

phenotypes are mutationally biased toward low evolvability phenotypes. As these

correlations (a.k.a. mixing patterns [32]) are not taken into account, the applicability

of current phenotypic evolvability measures are left severely constrained, at least for

this LGP system. In contrast, the mean waiting time of random mutation to reach a

target phenotype was strongly correlated with the target phenotype’s accessibility

(Fig. 10b). This result provides additional support to earlier suggestions that

accessibility is a useful measure for understanding evolutionary dynamics in neutral

search spaces [27, 28].

In the third analysis, we assigned fitness values to each phenotype and again

considered an ensemble of random walks between source and target phenotypes.

The mean waiting time was correlated with both the evolvability of the source

fitness value and the accessibility of the target fitness value. That there was a strong

correlation between mean waiting time and the evolvability of the source fitness

value, but not of the source phenotype, underscores the point that the predictive
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power of these measures varies between levels and among evolutionary processes.

This point is further supported by the results of our fourth analysis, which was a

slight modification of the third. Specifically, the random walk was constrained to

always maintain or improve fitness, which corresponds to the case where deleterious

mutations are prohibited. In this case, the mean adaptation time was not correlated

with the evolvability of the source fitness value (Fig. 11c), but was correlated with

the accessibility of the target fitness value (Fig. 11d).

5 Conclusions and future work

There has been much debate regarding the benefit of neutrality in GP. As argued

in [16], much of this contention stems from the overly complex problems,

representations, and search algorithms used in these investigations, which make it

difficult to tease apart the effects of neutrality from other confounding factors. In

addition, neutrality is often artificially added to the problem representation and little

attention is paid to how this alters the fitness landscape. We circumvented these

issues by using a compact representation with inherent neutrality, a simple target-

matching problem, and an elementary search algorithm.

Recent experimentation with a minimal GP system has demonstrated that the

benefits of neutrality are problem-dependent [15]. Our results provide further

support for this hypothesis, as the mean waiting time varied significantly between

target phenotypes. For non-uniformly redundant encodings, as considered herein,

theoretical models suggest that neutrality only offers an advantage if the optimal

phenotype is overrepresented at the genetic level [40]. This prediction is in line with

our observation that the mean waiting time decreases as the accessibility of the

target phenotype increases, since accessibility is positively correlated with

robustness. Our results also extend those of [40] to show that it is not only the

uniformity and synonymity of a redundant representation that affect evolutionary

search, but also (1) the distributions of robustness at the genotypic and fitness levels

and (2) the mutational biases that exist amongst genotypes, phenotypes, and fitness

values. Of particular importance is the relationship between the robustness of a

genotype and its mutational bias toward other genotype networks.

This study opens the door for several future research directions. First, our

analysis can be extended to both larger LGP systems and alternative GP systems.

For example, recent investigations in grammatical evolution have demonstrated

that the mutational connectivities between phenotypes varies amongst represen-

tations and objective functions [31]. Further quantifying these mutational biases

using the measures discussed herein could shed additional light on this variability

and provide insight into the relationship between robustness, evolvability, and

accessibility in another branch of GP. Expanding to these larger and varied

systems will require the adoption and modification of the approximation

techniques developed for RNA systems [25], as the corresponding genotype

networks will not be amenable to exhaustive enumeration. Second, the phenotypic

evolvability measures used in this study could be revised to take into account the

global structure of a phenotype network, as opposed to only considering the

332 Genet Program Evolvable Mach (2012) 13:305–337

123



immediate adjacency of a phenotype. Measures of vertex centrality [33] may

provide a useful starting point. Third, the simple evolutionary processes

considered in this study can be extended to include population-level processes.

This will provide a better understanding of how the structure of genotype,

phenotype, and fitness networks impacts the evolutionary dynamics of LGP.

Fourth, the role of alternative variation operators, such as recombination, should

be considered. Related work on model gene regulatory circuits has demonstrated

that recombination can lead to an increase in both robustness and evolvability [29].

However, the sheer breadth of the genotype networks observed in this study

implies that this LGP encoding is nonsynonymously redundant, which suggests

that recombination may be disruptive in this search space [40]. Nevertheless,

understanding how recombination impacts robustness, evolvability, and accessi-

bility in LGP is an important challenge and exciting direction for future work.

Lastly, several of the trends revealed in this study may lend themselves to

analytical treatment. For example, it may be possible to analytically derive the

relationship between the accessibility and robustness of a phenotype Ap � (Rp)1/2.

Earlier analytical results on the convexity of genotype networks [27] may be of

relevance in this endeavor. Another relationship that may prove analytically

tractable is between the waiting time of a random walk and the accessibility of the

target phenotype TW � (Ap)-5/3. Such analysis could help generalize our results to

other phenotype networks, such as those observed in [49].

In summary, this study has demonstrated that the relationships between

robustness, evolvability, and accessibility vary amongst the genotypic, phenotypic,

and fitness spaces of LGP, as does the ability of these measures to predict the

dynamical properties of an evolutionary process. While mapping the mutational

connectivities between phenotypes and fitness values may allow for the develop-

ment of predictive analytical techniques, such abstractions never tell the complete

story; so long as they do not encode the mutational biases that exist at the level of

the genotype, their explanatory power will be limited.
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Appendices

In the appendix, we lay out the details of our analytical treatment, which is based on

the techniques described in [3, 17]. Both texts provide exceptionally lucid

expositions of absorbing Markov chains and their applications.

Appendix 1: Markov chains to determine the mean first passage time

The mean waiting time and mean adaptation time can be obtained analytically with

absorbing Markov chains [17], using the stochastic transition matrix P whose elements
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pxpyp ¼
jXxp ;yp j

jHxp jþ
P

z 6¼y
jXxp ;zp j ; if xp 6¼ yp

jHxp j
jHxp jþ

P
z 6¼y
jXxp ;zp j ; if xp ¼ yp

8
><

>:
ð15Þ

denote the probability of a transition from phenotype xp to phenotype yp.

The target phenotype tp is the absorbing state of the Markov chain; all other

phenotypes are transient. The row corresponding to phenotype tp is therefore

modified such that ptptp ¼ 1 and ptpxp ¼ 08xp 6¼ tp. Placing P in canonical form, we

have

P ¼

p11 p12 . . . p1tp

p21 p22 . . . p2tp

..

. ..
. . .

. ..
.

ptp1 ptp2 . . . ptptp

0

B
B
B
@

1

C
C
C
A
¼

p11 p12 . . . p1tp

p21 p22 . . . p2tp

..

. ..
. . .

. ..
.

0 0 . . . 1

0

B
B
B
@

1

C
C
C
A
¼ Q R

0 1

� �

; ð16Þ

where Q is a ðjUpj � 1Þ � ðjUpj � 1Þ matrix, R is a ðjUpj � 1Þ � 1 column vector,

and 0 is a 1� ðjUpj � 1Þ row vector. To obtain the mean waiting time, we use Q to

calculate the fundamental matrix

N ¼ ðI�QÞ�1; ð17Þ

where I is the identity matrix and entry nxpyp is the expected time spent in transient

phenotype xp, given that the random walk started in the transient phenotype yp. The

fundamental matrix is then used to calculate

s ¼ Ne; ð18Þ

where e is a column vector of ones and sxp is the mean waiting time to reach

phenotype tp from phenotype xp.

Appendix 2: Markov chains to determine the most common path

Absorbing Markov chains can also be used to determine the most common path

from a transient phenotype sp to a target phenotype tp. Since the most common path

must visit each phenotype at most once, the length of the path must be less than or

equal to the total number of phenotypes jUpj. Every path has an associated

probability, which can be calculated using the entries of the transition matrix P. For

example, the path sp ! xp ! yp ! tp has probability pspxp pxpyp pyptp . The most

common path is the one with the highest such joint probability, which can be

determined efficiently using the message passing approach described in [3].
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