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ABSTRACT
In this contribution, we employ the recently proposed Kaizen
Programming (KP) approach to find high-quality nonlin-
ear combinations of the original features in a dataset. KP
constructs many complementary features at the same time,
which are selected by their importance, not by model qual-
ity. We investigated our approach in a well-known real-
world credit scoring dataset. When compared to related
approaches, KP reaches similar or better results, but evalu-
ates fewer models.

CCS Concepts
•Computing methodologies → Supervised learning
by classification; Genetic programming; •Software
and its engineering → Automatic programming;

Keywords
Credit approval, Logistic regression, Classification, Kaizen
Programming

1. INTRODUCTION
Accurate credit scoring prediction is an extremely impor-

tant task for financial companies. Credit scoring through
classification categorizes credit applicants into good or bad
risk classes, aiming to reduce the risk of losing money. Even
small accuracy improvements may save financial companies
huge amounts of money, making these methods interesting
to financial companies.

Several researchers have been using Evolutionary Compu-
tation (EC) methods to solve this task [1, 2, 3, 4, 5, 6]. Here,
we investigate Kaizen Programming (KP [7]) for construct-
ing high-level features to improve the classification.

Our contribution has three aspects: (i) We use, for the
first time, KP with Logistic Regression (LR), a traditional
and very popular statistical tool for classification; (ii) we
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use a hybrid method of GP and LR for credit scoring; (iii)
we evaluate KP performance on a publicly available dataset
and compare the results with state-of-the-art EC methods
from the literature.

2. KAIZEN PROGRAMMING
Kaizen Programming [7] is a computational method based

on the concepts of the Kaizen methodology [8], i.e., a com-
putational implementation of a Kaizen event with Plan-Do-
Check-Act (PDCA) methodology to guide a continuous im-
provement process. KP iteratively improves complementary
partial solutions to solve a particular problem. Both the
partial solutions and the complete solution are evaluated af-
ter building a model, which is the actual solution to the
problem.

In this contribution, we use Logistic Regression (LR) as
the model building technique, the p-value of each covariate
as feature importance, and AIC as model (complete solu-
tion) quality for selection. KP employs GP crossover and
mutation operators as experts.

3. EXPERIMENTAL RESULTS
We investigate the performance of KP on the well-known

Australian Credit Approval dataset. It has 690 examples
with 14 features, and two classes, 383 positive examples and
307 negative. As some features are categorical but our im-
plementation does not work with mixed-type variables, we
discretize the continuous features.

The discretized dataset is transformed using the one-hot
procedure, where each discrete value becomes a binary col-
umn. KP is configured to use only Boolean functions (AND,
OR, NOT) to construct features. The number of desired
features varies from D = 2 to 15 and is run for a max-
imum of 100 iterations, resulting in 201 models. Before
building models, duplicate and highly correlated features
are dropped (a feature that appears first is kept). We im-
plement KP in Python and run the experimental analysis
on Weka 3.6.11 [9].

3.1 Evaluation
We executed ten independent runs of KP to minimize

AIC. After constructing the features, all ten new datasets
(only the new features, not the original ones) were loaded
into WEKA Experimenter and evaluated on 10 distinct 10-
fold cross-validation runs (100 runs) using the Logistic Re-
gression classifier with default configuration.
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For each value of D, we selected the new dataset (out
of ten) that presented the best accuracy. We compare the
results to the original dataset. Accuracy was chosen because
it is the measure used in the related works and the dataset
is just slightly unbalanced.

3.2 Results and Comparison with the Litera-
ture

The best results obtained here are compared to state-of-
the-art evolutionary algorithms from the literature. Those
methods generate either features from the dataset or actual
classifiers. Our method employs only discrete features, while
other methods were able to cope with mixed attributes. Not
all of these methods used 10 -fold cross-validation, and a di-
rect comparison is not absolutely fair, just an approxima-
tion.

Table 1 shows that KP produces competitive results. It
generates several features while some of the other methods
generate a single feature. However, KP works by decom-
posing the problem into partial solutions; thus, it is not
appropriate for constructing a single feature. Even though
KP generates several features, they are short (no such in-
formation available from related work). For D = 2, for
instance, the results were F1= or(A3 (25.2-inf), A11 (33.5-
40.2]) and F2= or(A9 t, A11 (33.5-40.2]), which presented
Correlation = 0.06, TP = 0.9277, FP = 0.2259, TN =
0.7905, and FN = 0.067.

Table 1: Comparison with works from the literature
(averages). ’-’ means not available.

Method Evaluation Accuracy # Models

LR w/ Original data 10 x 10-fold cv 83.83 1
KP (D=2) 10 x 10-fold cv 85.54 201
KP (D=3) 10 x 10-fold cv 86.38 201
KP (D=5) 10 x 10-fold cv 86.48 201
KP (D=10) 10 x 10-fold cv 87.59 201
KP (D=15) 10 x 10-fold cv 87.59 201

GP [1] 5 x 2-fold cv on test set 82.40 50,000
GP [2] 5-fold cv 88.27 72,000

kNN-GP [3] 10-fold cv 83.1 2000
MOGP [4] 5 x 2-fold cv 87.4 350,000

GBMGP [5] (resampling) 10-fold cv 87.00 160,000
GP [6] 10-fold cv 87.00 700,000

The second comparison criterion is the number of models
that were tested in the process. For KP, this is calculated
as Number of initial random models + 2 × Number of cy-
cles = 1 + 2 × 100 = 201. Here, a single random model is
created to be the Initial Standard ; then, at every cycle one
model is generated using all partial ideas and another model
is generated using only the most important ideas.

We estimated the number of models for the related work
as Population size × Number of generations × 2 children ×
Crossover probability. As individuals in evolutionary algo-
rithms normally encode a complete solution, each individual
is a model to solve the classification problem, ignoring cross-
validation steps during the training.

With respect to the number of models, KP largely outper-
formed all other methods, showing that its search procedure
can be very efficient. The model building technique is very
effective and implicitly selects features generated by KP ex-
perts, which only need to keep improving them as they are
not responsible for actually solving the problem.

4. SUMMARY AND CONCLUSIONS
Kaizen Programming (KP) is a hybrid collaborative prob-

lem-solving approach. Here, KP was coupled with Logistic
Regression (LR) to extract useful features from a widely
studied credit scoring dataset, aiming at improving the pre-
diction performance of LR.

Our comparison with related work shows results using KP
to be similar or better than those reported in the literature;
however, much fewer models were evaluated, i.e., 201 by KP
versus many thousands by other methods.

We will test KP on other credit scoring datasets reported
in the literature, with or without the application of a dis-
cretization procedure.
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