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ABSTRACT

Searching the k-nearest matching patches for each patch in an in-
put image, i.e., computing the k-nearest-neighbor fields (k-NNF),
is a core part of various computer vision/graphics algorithms. In
this paper, we show that k-NNF can be efficiently computed us-
ing a novel artificial multi-bee-colony (AMBC) algorithm, where
each patch uses a dedicated bee colony to search for its k-nearest
matches. As a population-based algorithm, AMBC is capable of
escaping local optima. The added communication among differ-
ent colonies further allows good matches to be quickly propagated
across the image. In addition, AMBC makes no assumption about
the neighborhood structure or communication direction, making it
directly applicable to image sets and suitable for parallel process-
ing. Quantitative evaluations show that AMBC can find solutions
that are much closer to the ground truth than the generalized Patch-
Match algorithm does. It also outperforms the PatchMatch Graph
over image sets.
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1. INTRODUCTION

Patch-based sampling has emerged as an important component
in many computer vision and graphics applications, such as image
denoising [5], texture synthesis [25] and object recognition [31].
Such sampling techniques rely on computing k nearest neighbors
(k-NN) for each patch in the input image, where the neighboring
patches can be from the image itself, another image, or even k& dif-
ferent images in a large image set. Since a large image contains
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millions of small patches!, computing the & nearest neighbor field
(k-NNF) is a computationally expensive process.

By treating each patch as a point in a high-dimensional space,
traditional k-NN search algorithms first organize the candidates
into a tree [1, 26] or a hash table [15] and then query candidates
using these structures. Although these methods are much faster
than exhaustive search, they are still too slow for interactive image
and video editing applications. The seminal algorithm PatchMatch
(PM) [3] offers at least an order-of-magnitude improvement over
previous methods in 1-NNF search. Its extended version, general-
ized PatchMatch (GPM) [4], can compute k-NNF in real time and
supports searching in high dimensional spaces, e.g. with rotation
and scaling.

The success of PM and GPM lies in two novel operators: prop-
agation and random search. The former propagates good solutions
to adjacent patches, whereas the latter tries to improve the current
solutions using a coarse-to-fine search. Starting from initial ran-
dom solutions, these two operators allow PM and GPM to converge
quickly.

Nevertheless, these two operators have their limitations. First,
designed for quickly locating reasonably good solutions, PM and
GPM often converge prematurely to local optima. As the search
space gets bigger, this tendency for premature convergence be-
comes more of a problem. Second, the coarse-to-fine random search
operator implicitly assumes that patches adjacent in search space
are also similar. While this assumption often holds for single im-
ages, it is no longer valid when the search space covers an image
set, where adjacent patches along the dimension of the image in-
dex are unrelated. Finally, the data dependency in the propagation
operator requires PM and GPM to be performed sequentially. Al-
though jump flooding schemes [27] can be applied, the result is not
as accurate as a sequential implementation.

Several approaches have been proposed to address these short-
comings under the 1-NNF search setting [14, 23]. However, as far
as we know, few can be extended to the more general k-NNF search
problem. Motivated by these findings, we introduce a population
based approach, the artificial bee colony (ABC) algorithm [18], to
compute the k-NNF. By representing each food source as a poten-
tial solution, the ABC algorithm employs the foraging behavior of
honeybee colonies to solve numerical optimization problems. With
a good balance between local and global search, it is not only ef-
fective in escaping local optima but also performs well in high di-
mensional search spaces [21].

IPatch size is often set to 8 x 8 for image processing applications.
Different patches are allowed to partially overlap each other.
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Given the need to search k-NN for each patch in the input im-
age, a straightforward way of applying the ABC algorithm is to
attach a bee colony to each patch and search within each colony in-
dependently. However, such an approach ignores the coherence
between image patches, leading to slow convergence. Accord-
ingly, we present an artificial multi-bee-colony (AMBC) algorithm,
where a given bee colony can collect food sources from its adjacent
colonies in both domain space and range space. This allows good
solutions to be propagated in both local and non-local manners and
can greatly speed up the convergence.

Quantitative evaluations on benchmark datasets show that our
approach can find k-NNFs that are much closer to the ground truth
than GPM does. The improvement becomes more significant as
the size of the search space increases, i.e., from 1-NNF search to
k-NNF search to search with rotation and scaling. Moreover, our al-
gorithm can be directly used for computing k-NNF on an image set
and shows better performance than PatchMatch Graph [11]. Since
the processing for different colonies is independent, the algorithm
can be easily parallelized on GPUs.

2. RELATED WORK

We here limit our review to the most relevant related work in
the areas of patch-based k-NN computation, PatchMatch and its
variants, and to the ABC algorithm and its applications.

2.1 Kk-NN Search

The most widely used method for k-NN search is kd-tree [1],
which works well in low-dimensions but loses its effectiveness as
dimensionality increases. To handle high dimensional image patches,
dimensionality reduction methods such as PCA are often applied
before using kd-tree. To better organize patch candidates, various
types of tree structures have been proposed, including TSVQ [30]
and vp-trees [24]. By combining multiple randomized kd-trees, the
FLANN method [26] can automatically choose the best algorithm
and optimal parameters depending on the data. To accelerate the
k-NN search for texture synthesis, Tong et al. extended the con-
cept of coherence [2] into k-coherence [29] which pre-computes
k-NN for each patch in the input sample texture and uses them for
synthesizing a new texture.

Locality sensitive hashing (LSH) [15] is another popular method
for patch based k-NN search. Unlike kd-tree’s deterministic parti-
tion, LSH [7, 17] produces random partitions using a large number
of hash functions. With well designed hash functions, LSH offers
sub-linear time search by hashing highly similar examples together
in a hash table. Although efficient in searching, this method spends
much time in building the hash tables, limiting its applicability in
interactive image and video editing tasks.

k-NN search is applied to many real world applications associ-
ated with evolutionary computing algorithms in the literature. De
La Vega er al. [8] combine k-NN search with differential evolution
for time series forecasting. Cheng ef al. [6] formulate Chinese text
categorization as a nearest-neighbor-based optimization problem,
which is then solved by the particle swarm algorithm. Jabbar et al.
[16] solve the problem of heart disease classification by integrating
k-NN classifier and genetic algorithm. In this paper, we focus on
PatchMatch, which searches the k nearest patches for a given query
patch in an image.

2.2 PatchMatch

By taking advantage of spatial coherence, PatchMatch (PM) has
shown speedups of 20-100 times over previous state-of-the-art al-
gorithm in 1-NNF computation. This is achieved by searching for
novel solutions using random search and propagating good ones
to nearby patches. To make long distance propagation, coherency

1038

sensitive hashing (CSH) [23] replaces the random search step with
a hashing scheme used in LSH and propagates good candidates to
patches with similar appearance. Propagation-assisted kd-trees [14]
organize the candidates with a kd-tree and then use a non-iterative
propagation method for fast querying. Since this method can prop-
agate a group of candidates, it is 10-20 times faster than PM while
maintaining the same accuracy. Although the recently introduced
social-CSH approach [10] resembles our multi-bee colony, it only
computes 1-NNF and is not applicable to k-NNF problem.

Generalized PatchMatch (GPM) [4] extends PM on three fronts:
to perform k-NNF search, to support high dimensional search spaces,
and to allow arbitrary similarity functions. Recently, GPM has been
applied to color transformation [12] and computed k-NNF for an
image set using PatchMatchGraph [11]. These approaches expand
the search space but the core optimization algorithm has not been
improved. In our experiments, we found GPM to be often trapped
in local optima, especially when the parameter k or the dimension-
ality of the search space is large. With the goal of locating globally
optimal solutions, we borrow ideas from population based search
algorithms [19]. Quantitative evaluations show that our approach
can find solutions that are up to 10 times closer to the ground truth
than those of GPM.

2.3 The ABC Algorithm

As a swarm intelligence approach, the ABC algorithm [18] and
its variants [32] can handle both unconstrained and constrained op-
timization problems [21, 20]. Although having several similarities
with other population-based algorithms, the ABC algorithm has
comparable or better performance and has the advantage of em-
ploying fewer control parameters [19]. These characteristics have
motivated the use of ABC for various applications, such as numer-
ical optimization [33], data clustering [22, 28] and feature selec-
tion [13].

As far as we know, we are the first to apply the ABC algorithm
to solve the k-NNF search problem. In addition, we introduce the
new concept of search with multiple bee colonies, where a dedi-
cated colony is used to search the k-NN for each query patch. We
also show that letting different colonies search independently does
not yield satisfactory results since spatial coherence is ignored. A
novel inter-colony onlooker bees operator is presented, which can
effectively communicate good solutions among both local and non-
local neighboring patches.

3. ARTIFICIAL MULTI-BEE-COLONY
ALGORITHM

Here we start by explaining the original ABC algorithm [18] and
how it can be applied to search the k-nearest neighbors (k-NN) for
a single patch. Our multi-colony version of the ABC algorithm
developed for searching the k-nearest neighbor fields (k-NNF) is
presented next, followed by a discussion of its relationship with
GPM.

3.1 ABC-based Algorithm for k-NN Search

The original ABC algorithm, as proposed by Karaboga [18], is
an efficient population based optimization method inspired by the
intelligent foraging behavior of bee colonies. By representing each
solution as a food source, it searches the near optimal solutions with
three kinds of bees: employed bees, onlookers and scouts. Each
employed bee explores one food source and improves its position
by searching nearby positions. After the employed bee completes
the search process, it shares the food information with onlooker
bees through waggle dance. Onlooker bees evaluate the nectar in-
formation taken from all employed bees and choose a food source
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Figure 1: Visualization on a query patch (blue in (a)) from the k-nearest-neighbor field (k = 16) computed between two images.
Matches found by our approach (red in (c)) are widely spread and include the corresponding feature, indicating the approach’s

global search power.

with a probability related to its nectar amount. Once a food source
is chosen, an onlooker bee searches a better food source in the same
manner used by employed bees. Hence, the number of food sources
is equal to the numbers of both employed bees and onlooker bees.
When a food source has been fully explored and cannot be im-
proved anymore, the associated employed bee becomes a scout bee
that carries out a random search for discovering new food sources.
By default, there is at most one scout bee in each cycle.

3.1.1 k-NN Problem Formulation

The search for the k-NN of a query patch p can be formulated as
the following optimization problem: Let 2 denote the range space,
i.e., the set of all possible patches that p can match to. We compute
a subset Q), for patch p that minimizes the following average patch

distance measure:
1
<k Yy D(p,q)>
q€Q,

where | - | denotes the size of a set and D(-,-) symbolizes the dis-
tance between two input patches. Through treating patches as high
dimensional vectors, D(-,-) is computed here using Euclidean dis-
tance.

ey

Q) = argmin
Q,c2
12, |=k

3.1.2 Initial Population

To apply the ABC algorithm, we start with a randomly distributed
population of n (n > k and n = k42 by default) food sources sam-
pled from 2. In practice, a food source that corresponds to a
matching patch solution ¢ is represented using an m-dimensional
vector y,, where the value of m depends on the range space 2. For
example, when searching for matches within a given image, y, is
a 2D vector that stores the 2D coordinates of the patches. When
searching within an image set, y, is a 3D vector, where the addi-
tional dimension encodes the image ID. Similarly, when rotation
and scaling are allowed, additional dimensions are used to store
the corresponding settings. Under such a representation, a random
solution can be generated by:

ylil = ROy™[i],y™[i)),0 <i < m, )
where y and y' are the lower and higher bounds of 2 in
the " dimension, respectively. R(a,b) returns a random number
that is uniformly distributed within the range [a,b]. To prevent du-
plicate entries in the population, we store all food sources in a hash
table, which allows us to quickly identify whether a food source
already exists.

min [ i] max [ i}
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In addition, we also associate a fitness value F(y,) and a trial
count T'(y,) to each food source y, in the population. The fitness
value is computed by:

1
1+D(p,q)’

which outputs a higher value for patches with smaller distance to
the query patch p. The trial count T'(y,) stores the number of iter-
ations that y, has gone through without being updated. It is initial-
ized to 0.

F(yq) = 3

3.1.3 Employed Bees

The task of employed bees is to explore the solution space by
going through all food sources one by one and randomly perturbing
each one. For each food source y,, we first randomly select another
food source y; within the population and compute:

Yo =Yg +R0,1)(ys—y,). )

If y'q does not exist in the population, then its fitness F(y'q) is
evaluated. F (y;) is compared with the fitness of the worst food
source r in the population. Similar to GPM [4], a heap is main-
tained at each colony, which helps to quickly identify the worst
food source r.

3.1.4 Onlooker Bees

To simulate the behavior of onlooker bees, which focus the search
in the neighborhood of food sources with higher fitness, the proba-
bility of a food source y, being chosen by an onlooker bee is com-
puted as:

F(yq)
?:1 F (Yi )
Once a food source y, is picked based on this probability, a new
food source y; is generated using Eq.(4). y; is used to replace
the worst food source r if F(y;) > F(r). This importance-based
sampling is repeated n times. Due to the randomness and non-
uniform distribution of probabilities, some food sources may be

selected more than once, whereas some others may not be used at
all.

P(yq) = (&)

3.1.5 Scout Bees

When all food sources converge to a small neighborhood, the
new food sources found by both employed bees and onlooker bees
using Eq.(4) are constrained to be within the neighborhood. To
prevent the search from being trapped in local optima, the scout
bees are used to abandon a food sources that cannot be improved
after T trails, where T is a threshold of the trial count. That is, a
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Figure 2: When computing the k-NNF that maps Figure 1(b)
to itself, the performances of these methods (GPM, straight-
forward ABC and our AMBC) are compared with the ground
truth (GT, red dash line). Note that log scale is used for the Y
axis.

scout bee picks a food source y, when its trial count is lager than T
and then replaces y,; with a new solution generated using Eq.(2).

Since our objective is to search for the best k solutions, not just
the best one, we do not want the top k food sources in the popula-
tion to be replaced with generally worse random solutions. Hence,
rather than picking the foods based on the trial counts, our scout
bees selects among the the n — k food sources with the lowest fit-
ness values. In addition, we allow multiple food sources that pass
the threshold to be replaced, which we found works better in our
experiments.

3.1.6 Termination Conditions

As explained above, employed bees search within the neighbor-
hood defined by all solutions in the population, onlooker bees focus
on the areas around the best solutions in the population, whereas
scout bees conduct global and random search. With a good balance
between global exploration and local exploitation using these three
levels of search, the above ABC algorithm can quickly converge to
a population that gives the near-optimal k-NN for the query patch.
In practice, we terminate the iterative process once a given number
of iterations has been reached.

3.2 AMBC Algorithm for r-NNF Search

To compute the k-NNF for an input image / or image set S, we
associate a bee colony to each patch p in I or S and use it to search
for p’s k-NN. While we could use the ABC-based algorithm above
to search for solutions independently, such an approach ignores the
coherence among neighboring patches. We here show that through
modeling the communication among neighboring bee colonies us-
ing a novel inter-colony onlooker bee operator, we can efficiently
propagate good solutions across different patches and hence find
the optimal k-NNF much faster. The benefit of this novel inter-
colony onlooker bee is shown in Figure 2, which compares the
average patch distance (see [4] or Eq.(6) for definition) for the k-
NNF computed using different methods. It shows that the solu-
tions obtained by the straightforward ABC algorithm are far from
the ground truth (GT) and is worse than GPM. In comparison, our
AMBC algorithm reduces the error of GPM (the discrepancy with
the ground truth) by 90%.

Since the operations of employed and scout bees remain the same
in the AMBC algorithm, the rest of this section focuses on how
inter-colony onlooker bees work.

3.2.1 Problem Formulation

The search for the k~-NNF can be formulated as the following
optimization problem: Let & denote the domain space, i.e., a set
of all patches in input image / or image set S, and 2 again denote
the range space. We like to compute a superset Q = {Q,|p € &}
that minimizes the following average patch distance measure:

1
Q= argmin | — D(p,q) ©)
PP Q,C2 (k@| ,;;quzsi,,
Q| =k

3.2.2 Neighborhood Setup

To enable communication among neighboring bee colonies, we
first need to define the neighborhood for a given patch p. Here we
consider two types of neighbors: those that are adjacent to p in the
domain space & and those adjacent to p in the range space 2.
Patch ¢ is considered as p’s range space neighbor if g is one of the
k-NN found for p so far. Hence, a patch always has k range space
neighbors.

The number of p’s domain space neighbors, denoted as h, de-
pends on the configuration of the domain space. Here we iden-
tify a patch p using its coordinate X, in the domain space. When
the task is to compute k-NN for patches of a fixed size, the do-
main space has a dimension of 2 and we have 7 = 4. These four
neighbors are x,, + Ax, Ax € {(1,0),(—1,0),(0,1),(0,—1)}. When
the task is to compute k-NN for patches of different sizes, the
domain space has an extra dimension on patch size and i = 6.
The two additional neighboring patches center at the same loca-
tion as p does but have different sizes. That is, we have Ax €
{(1,0,0),(-1,0,0),(0,1,0),(0,—1,0),(0,0,1),(0,0,—1) }. Please
note that even though computing k-NN for an image set also re-
quires the domain space having an extra dimension for the image
ID, we do not consider patches from different images to be adja-
cent. Hence, 1 does not always equal twice the dimension of x,,.

3.2.3 Inter-colony Onlooker Bees

With the neighborhood defined for each patch p in &2, we now
discuss how to communicate among the bee colonies associated
with these neighbors. It is worth noting that in some applications,
e.g., computing k-NNF that map an image to itself or searching k-
NNF within an image set [11], the domain and the range spaces are
the same, i.e., & = 2. As a result, all p’s neighbors have their
k-NN calculated and have bee colonies associated with them. In
some other applications, such as mapping patches in an image /
to another image J, the two spaces are different. In these cases,
we require that the k-NNF mapping from 2 onto itself is already
calculated with the AMBC algorithm during a pre-processing step.
Hence, we can assume there are bee colonies associated with all of
p’s neighbors, even though some of these bee colonies may have
already converged and are no longer active.

The core idea of our inter-colony onlooker bee operator is that
onlookers shall not only watch the dances performed by the em-
ployed bees from its own colonies, but also the dances of employed
bees from neighboring colonies. We here denote the onlooker bees
watching domain and range space neighbors as domain and range
onlookers, respectively. After evaluating the fitness of these food
sources, onlooker bees will select the best food sources and use
them to replace existing ones. Note that, due to the large number
of candidate food sources available, we found that it is more effi-
cient to let onlooker bees just pick the best n candidates in a greedy
manner, rather than based on the probabilities defined in Eq.(5).

The food sources collected from neighboring colonies may need
to be adjusted, before letting onlooker bees evaluate their fitness.
The actual adjustment depends on whether a neighbor is from the
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Figure 3: The percentage of candidates that are either removed
by the three filtering steps or are left for fitness evaluation.

domain space or the range space, as well as whether the solution
space includes patches with different sizes and orientations. For
example, when no scaling or rotation is allowed, all food sources
¥4 collected from domain space neighbor X, + Ax are adjusted to
¥4 — Ax, whereas the ones collected from range space neighbors do
not need to be adjusted. On the other hand, when scaling or rotation
is allowed, food sources collected from range space neighbors need
to be adjusted using composition operators. Please refer to [11] for
details.

3.2.4 Candidate Filtering

The h domain space neighbors and & range space neighbors pro-
vide a total of (h+ k) x n candidates in total. Blindly evaluating the
fitness for all these candidates results in high computation cost. To
reduce unnecessary testing, a number of strategies are applied.

First of all, candidates collected from neighboring colonies may
already exist in the current population. These candidates are filtered
out first using the hash table mentioned in Section 3.1.

Next, even if a candidate does not exist in the population, it may
have already been evaluated during either the previous iteration or
the current one, and may have been found not good enough. Hence,
there is no need to repeat the fitness calculation. To detect these
candidates, we maintain a fixed sized cache using a hash table. A
food source y, is inserted into the cache when i) F(y,) is com-
puted but is not competitive; or ii) y, is currently in the population
but is being replaced by another candidate. With such a cache, a
candidate is ignored if there is a cache hit.

Finally, the patch distance function in Eq.(1) can be taken as the
Euclidean distance defined in high dimensional space, which satis-
fies the triangle inequality [9]. Hence, for each candidate patch ¢
that we collected from p’s range space neighbor s, we can estimate
the lower bound for patch distance D(p, ) using D(p, s) and D(s,t),
both of which are already calculated. That is, we have D(p,t) >
|D(p,s)—D(s,t)|. If the fitness estimated based on |D(p,s) — D(s,1)|
is lower than the worst food source in the population, then there is
no need to compute the precise fitness F(y;).

Figure 3 depicts the percentage of candidates being filtered by
the above three strategies. It shows that, during initial iterations, up
to 40% of the candidates can be removed using the lower bound
computed based on triangle inequality. As the population con-
verges, the first two filtering steps are more effective and can re-
move up to 70% of the candidates together. Hence, the three strate-
gies complement each other very well.

3.2.5 Algorithm Outline

As shown in Alg. 1, the AMBC algorithm consists of four kinds
of bees: employed bees, scouts, domain space onlookers, and range
space onlookers. Figure 4 further illustrates the contribution of
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algorithm.

each kind of bee to the overall optimization by commenting out the
corresponding bee operation when running the AMBC. It demon-
strates that both onlooker bees play important roles in searching
for good solutions. Without them, the optimization converges much
slower, which explains why the straightforward ABC approach does
not work well. The employed bee and scout bee also help to bring
solutions closer to the global optimum, with the scout bee being the
least useful.

Since there is no data dependency between different stages, our
algorithm can be easily parallelized on CPUs or GPUs. On a multi-
core CPU, our algorithm can obtain a linear speed-up, while our
unoptimized GPU implementation is roughly 20x faster than the
single core CPU algorithm on a NVIDIA Quadro K4000 card.

Algorithm 1 Artificial multiple bee colonies algorithm

. for each query patch p in & do in parallel

2. Initialize p’s population using Eq.(2)
3: Evaluate all food sources in the population
4: cycle=1
5: repeat
6: Synchronize all threads before employed bee
7: for each food source y, in p’s population
8: Produce a new solution y’q using Eq.(4)
9: Calculate F(yy)
10: Replace y, if F(y;) > F(y,)
11: Synchronize all threads before onlooker bees
12: for each neighbor s of p
13: for each y; in the population of s
14: Adjust y; if necessary
15: Apply candidate filtering
16: Calculate F(y,) if needed
17: Add y; to p’s population if needed
18: Synchronize all threads before scout bees
19: for each n — k food sources with lowest fitness
20: Find food source y, with T'(y,) > T
21: Replace y, with a new solution using Eq.(2)
22: cycle = cycle+1
23: until cycle=MCN
24: Output the best k food source in p’s population

3.3 Comparison with GPM

Although derived from the ABC algorithm, the AMBC approach
presented above bears many similarities with the GPM approach.
In what follows we review these similarities, as well as the differ-
ences.



In AMBC, the employed bees and the scout bees are used to
conduct local and global random search, respectively. Hence, they
roughly correspond to the random search step in GPM. However,
the coarse-to-fine search strategy used in GPM always performs an
equal number of global and local searches throughout the iterative
process. In contrast, AMBC applies employed bees much more of-
ten than scout bees. To be precise, within each iteration, employed
bees are performed n times, whereas scout bees at most n — k times,
with actual numbers depending on the trail threshold 7. In addi-
tion, since the employed bees always search within the convex hull
formed by the current population, its search scope is automatically
adjusted during iterations. At the beginning when the population is
widely spread, the employed bees explore a bigger area. When the
population converges, the search scope gets much smaller.

Collecting information from domain space neighbors, the inter-
colony onlooker bees’ operation is closely related to the propaga-
tion step in GPM. However, unlike GPM, which requires propa-
gation among patches being conducted in a sequential order, our
onlooker bees are used for different patches independently, which
facilitates parallel implementation. In theory, when propagation is
performed in parallel, it takes more iterations to send information
over a long distance. However, this is not a problem in AMBC
since range space neighbors are also used, which generally propa-
gate information in a non-local manner.

Our range space neighborhood is similar to the concept of for-
ward enrichment in GPM. However, instead of performing forward
enrichment only once or twice as post-processing, we use range
space neighbors to enhance solutions in every iteration. While the
number of candidates collected from all range space neighbors, i.e.,
k x n, seems prohibitive, we show that a carefully designed filtering
process can remove the majority of these candidates.

In general, AMBC spends more time evaluating candidates col-
lected from neighbors (up to (h+ k) X n) than candidates obtained
by random search (up to 2n — k). In comparison, GPM tests 2k
candidates that come from the two local neighbors and k x logW
candidates generated by random search, where W is the image res-
olution. Not only are there too many tests used by random search,
which renders it less and less effective when converging, but also
the computational costs increase as input images become larger.

Figure 5 plots the number of candidates that went through fitness
evaluation vs. the candidates that are selected into the k-NN in the
end. It shows that, after the initial four iterations, AMBC actually
makes fewer patch distance calls than GPM, thanks to the effective
filtering process. In addition, although fewer calls are made, more
candidates are selected into the k-NN at each iteration, which sug-
gests that the solution keeps improving. In comparison, after the
first four iterations, on average GPM replaces less than one solu-
tion per patch at each iteration.

Since the ABC algorithm is found to be efficient in solving op-
timization problems in a high-dimensional search space [21], the
performance gain of our AMBC algorithm over GPM also increases
as the search space grows larger. As shown in Figure 6, with scaling
and rotation options being added to the k&-NNF search, both GPM
and AMBC need more iterations to converge and the error differ-
ences of the corresponding converged solutions become bigger and
bigger.

It is worth noting that even though only the best k solutions are
needed for k-NNF search, AMBC maintains the best n food sources
at each pixel. The additional n — k solutions can be useful since 1)
random search may turn a solution into a top k solution; ii) after
being propagated to neighboring pixels, a solution may be a top k
solution. A similar idea can be applied in GPM, i.e., the best n
solutions are maintained at each pixel but only the top k are used
as output in the end. Figure 7 compares the impacts of parameter
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Figure 5: The number of candidates that have their fitness eval-
uated vs. candidates that actually become the k-NN.
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Figure 6: The convergence curves between GPM and AMBC
on tasks with different search space dimensions.

n to both approaches. It shows that making n slightly larger than k&
(e.g., n = k+2) is sufficient for AMBC. On the other hand, while
using larger n does improve the performance of GPM, the result is
still suboptimal even when n = 2k, which noticeably slows down
the GPM approach. This confirms that the performance gain of
AMBC over GPM is not simply due to additional food sources.

4. EXPERIMENTS

Section 3.3 has shown a number of comparisons between AMBC
and GPM using the test images shown in Figure 1. Here we further
compare AMBC with both GPM and PatchMatch Graph on two
sets of images. The implementations for GPM and PatchMatch
Graph come from the respective authors and are written in C++.
Although we have implemented AMBC on a GPU, we only use
the CPU implementation (in C++) for testing to allow for a fair
comparison on timing. When comparing with GPM, a PC with Intel
Core i7 3.5GHz CPU and 4GB RAM is used for testing. Running
PatchMatch Graph on image sets requires large memory and hence
a PC with Intel Xeon E5-2687 3.4GHz CPU and 32GB RAM is
used.

4.1 Comparison with GPM on Matching
within Images or between two Images

We first test on the public data set VidParis [23], which contains
133 pairs of images. We downsample these images to 0.4M pixels
for our experiments. Two experiments are conducted. The first one
uses the second image in each pair to compute the k-NNF (k = 16,
patch size = 8 x 8) that matches among patches within the given
image. For each image, three k&-NNFs are computed using GPM,
AMBC, and exhaustive search, respectively. The number of food
sources is set to n = 18 for AMBC. The k-NNF obtained by exhaus-
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Figure 7: Comparing AMBC with GPMs under different val-
ues of n. Since the X-axis is processing time, the horizontal dis-
tance between adjacent data points indicates the time needed
for each iteration, which increases as the value n does.

tive search is considered as the ground truth and is used to evaluate
the errors of k-NNFs generated by GPM and AMBC, where the
error is defined as the difference in average patch distances. Fig-
ure 8(a) compares the errors of GPM and AMBC results for each
of the 133 images, where GPM error and AMBC error are drawn
in X and Y axis for each image, respectively. It shows that the
AMBC yields less errors for all these images. On average, the er-
ror of AMBC is only 1/5 of the error produced by GPM, whereas
in extreme cases, this ratio goes down to 1/14.

The second experiment evaluates the k-NNF generated for map-
ping from the first image to the second image in each image pair. In
this case, a pre-processing step is needed to establish the matching
from 2 to 2, i.e., mapping the second image to itself, so that the
range space onlooker bees can be applied. In practice, we found
that there is no need to fully compute the k-NNF for 2 to 2 map-
ping. Instead, the results obtained by running the AMBC for three
iterations are sufficient for guiding the range space onlookers. Fig-
ure 8(b) evaluates the k-NNFs obtained by GPM and AMBC using
the ground truth. It shows that GPM has noticeable better perfor-
mance than AMBC on only 2 out of 133 pairs. The average error of
AMBC’s results is 1/3 of that of GPM’s, whereas in extreme cases,
the error of AMBC is about 1/10 of GMP’s.

4.2 Comparison with PatchMatch Graph
on Image Sets

Given an image set, PatchMatch graph searches k nearest neigh-
bors for each image patch in an image set under the constraint that
no two neighboring patches can come from the same image. The
Polo dataset [11] is used here for testing, which contains 80 im-
ages downsampled to 50% of the original size. By replacing the
searching portion of the authors’ PatchMatch graph implementa-
tion with our AMBC approach, we are able to compare AMBC with
PatchMatch graph under the same settings. These include k = 10,
patch size = 8 x 8, patch distance being computed in the CIELab
color space using L! distance. The search space includes transla-
tion, scaling, and rotation (4D in total), where the rotation is limited
to horizontal and vertical flips.

Figure 9 plots the convergence curves of PatchMatch graph and
our AMBC approach under different number of food sources. The
results demonstrate that PatchMatch graph converges prematurely
after about 14 mins. AMBC, on the other hand, keeps improving
results and generates much better final solutions.
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average over all images. The green dash line shows X =Y.

S. DISCUSSIONS AND FUTURE WORK

This paper proposes a novel AMBC algorithm for computing the
k-NNF that maps patches from an input image to either the same
image, a different image, or an image set. Quantitative evaluations
show that AMBC can avoid local optima and converge to more ac-
curate solutions than GPM and PatchMatch Graph. The key of the
success is the proposed inter-colony onlooker bees operator, which
propagates good solutions among different bee colonies in both lo-
cal and non-local manners. The experimental results demonstrate
that without using the inter-colony onlooker bees, the performance
suffers significantly.

While the GPM also utilize a propagation operator, it only prop-
agates solutions between neighboring pixels under a predefined or-
der. Hence, different pixels have to be processed sequentially. The
inter-colony onlooker bees operator breaks the data dependency
through propagating solutions in parallel manner. This not only fa-
cilitates a GPU implementation but also makes it possible to apply
AMBC to problems where the domain spaces do not have naturally
defined orders. Examples include finding the best matching nodes
between two graphs, matching points between two 3D point clouds
captured by laser scanning, and matching vertices between two 3D
mesh models, where the nodes, points, and vertices are not ordered.
In the future, we plan to apply AMBC to these problems. We would
also like to explore other optimization problems, where the overall
task can be decomposed to multiple sub-problems and the solutions
found for one sub-problem can provide useful hints to related sub-
problems. In terms of limitation, the k-NNF found by AMBC is not
as good as that of GPM at the beginning of the search (first 50 secs
for the example shown in Figure 7). This limits its usage in time
critical applications, although the GPU implementation can reduce
this time 20-fold.
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