
A Hierarchical Cooperative Evolutionary Algorithm

Shelly X. Wu
Computer Science Department

Memorial University of Newfoundland
St John’s, Canada, A1B 3X5

xiaonan@mun.ca

Wolfgang Banzhaf
Computer Science Department

Memorial University of Newfoundland
St John’s, Canada, A1B 3X5

banzhaf@mun.ca

ABSTRACT
To successfully search multiple coadaptive subcomponents
in a solution, we developed a novel cooperative evolutionary
algorithm based on a new computational multilevel selection
framework. This algorithm constructs cooperative solutions
hierarchically by implementing the idea of group selection.
We show that this simple and straightforward algorithm is
able to accelerate evolutionary speed and improve solution
accuracy on string covering problems as compared to other
EAs used in literature. In addition, the structure of the
solution and the roles played by each subcomponent in the
solution emerge as a result of evolution without human in-
terference.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms, Design, Experimentation

Keywords
Cooperative evolutionary algorithms, Multilevel selection,
Hierarchical model, Emergent decomposition, Coevolution

1. INTRODUCTION
Evolution is based on fierce competition between individu-

als [6]. Evolutionary Computation (EC), which mimics nat-
ural evolution, also favors fitter individuals, and therefore is
normally regarded as an optimization process on individu-
als. This implies that EC may fail to solve problems which
require a set of cooperative individuals jointly to perform a
computational task. Those individuals might be highly de-
pendent on one another. From this perspective, EC should
conduct not merely a multimodal search; the interactions be-
tween coadapted individuals need to be taken into account.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

To complicate matters further, individuals may contribute
differently in cooperation, and hence might carry unequal fit-
ness. Weak individuals will be more likely to be eliminated
from the population, despite their unique contributions in
a collaboration. In order to provide reasonable opportuni-
ties for the emergence of cooperation through evolution, it is
therefore necessary to consider extensions to the basic evo-
lutionary computational models.

Cooperative CoEvolutionary Algorithms (CCEAs) [7] and
Individual Evolutionary Algorithms (IEAs) [4] are two well-
known extensions of classic EAs used for evolving coopera-
tive solutions. Both algorithms address, in different ways,
the issues of problem decomposition, interdependencies be-
tween subcomponents, credit assignment, and the mainte-
nance of diversity, which according to Potter and de Jong [8]
are essential in cooperative EAs. However, they lack flexibil-
ity in determining the structure of solutions. In both cases,
optimization is defined on individuals but not on collabora-
tions. In this paper, we propose a hierarchical cooperative
EA based on a new computational multilevel selection frame-
work. This novel algorithm constructs cooperative solutions
hierarchically with the help of the group selection model
proposed by Traulsen et al. [10] and the hierarchical model
suggested by Banzhaf [1]. The former encourages coopera-
tion by introducing competition between groups. The latter
allows the algorithm to automatically control the number of
levels in a hierarchical structure and the size of a collabo-
ration. We investigated the performance of the algorithm
on string covering problems, and compared it with a clas-
sic EA, a CCEA, and an IEA. Experimental results demon-
strate that our algorithm not only improves accuracy but
also accelerates evolution. Hierarchical structures emerge
through the algorithm without human intervention.

The paper is organized as follows. Section 2 begins with
the introduction of two cooperative EAs, CCEAs and IEAs,
and multilevel selection (MLS) theories. Section 3 discusses
string covering problems and data sets used in this contribu-
tion. Section 4 introduces a computational MLS framework,
and explains the new algorithm in detail. Section 5 shows
the experiments and obtained results. Section 6 concludes.

2. RELATED WORK

2.1 Cooperative Evolutionary Algorithms
Cooperative EAs assume a complex problem can be de-

composed into simpler subproblems, and therefore solve the
problem in a divide-and-conquer fashion. They extend the
basic evolutionary computational model to support the evo-

233

lution of cooperation (see [8] for details). The discussion
here will focus on two cooperative EAs: cooperative coevo-
lution algorithms [7] and individual evolutionary algorithms
[4], as they represent two principal ways to organize popula-
tion.

CCEAs divide the population into multiple subpopula-
tions, where each subpopulation is analogous to a species.
Individuals in a species represent a subcomponent of a solu-
tion, and are evolved in their own subpopulation. To eval-
uate the fitness of an individual, a collaboration with rep-
resentatives from each of the other species is formed. The
fitness of the collaboration is evaluated, and is used as the
fitness of the individual being evaluated. The collaborative
fitness measures how good the collaboration is as a solution.
Individuals who cooperate well with others will achieve high
fitness.

IEAs are also known as Parisian approach. Their pop-
ulation is comprised of individuals which represent partial
solutions to a target problem. A collaboration is formed
by selecting n individuals from the population, where n is
the number of subcomponents in a solution. In each gen-
eration, the performance of every single individual and the
collaboration are evaluated by a local fitness function and
a global fitness function, respectively. Periodically the local
fitness values of individuals are adjusted based on the results
of global fitness evaluations. In particular, the local fitness
value of an individual is incremented or decremented after
considering aspects such as: global fitness value of the col-
laboration, local fitness values of other individuals, as well
as the individual’s potential for improving the aggregate so-
lution.

If we compare the two algorithms, on the one hand they
both i) define individuals as partial solutions, and evolve
them to locally built better subcomponents that jointly form
better solutions; ii) form a collaboration as a complete solu-
tion and measure its performance by a fitness function. This
sort of fitness function introduces evolutionary pressure for
coadaption to occur; iii) consider credit assignments so that
cooperative individuals with unique contributions to a solu-
tion are favored by evolution; iv) require preserving diver-
sity in the population in order to maintain a set of com-
plementary partial solutions. On the other hand, they lack
flexibility in determining the structure of solutions. IEAs
need to know a priori the number of subcomponents in a
solution to determine the size of a collaboration. CCEAs
can dynamically adjust the number of species (correspond-
ing to sub-problems), but depend on an accurate definition
of evolutionary stagnation. Normally evolution stagnates
when the fitness of the best collaboration does not make
a specified improvement over a certain number of genera-
tions. In addition, adding a new species will discard pre-
vious computational efforts, because evolution has to start
over again. Furthermore, both algorithms neglect the op-
timization on collaborations. Since evolution is driven by
individual fitness, in order to reflect individuals’ contribu-
tions, CCEAs use collaborative fitness as individual fitness,
which may cause the Red Queen effect [11], while IEAs have
to introduce an extra step to redistribute the global fitness.

2.2 Group Selection and Multilevel Selection
In nature, the success of cooperation is witnessed at all

levels of biological organization. A growing number of biol-
ogists have come to believe that the theory of group selec-

tion is the explanation, even though this theory has been
unpopular for some decades [2]. Group selection models
divide individuals into groups, where they only get to in-
teract with members of the same group. Selection operates
within groups and between groups. Within-group selection
equals natural selection as understood commonly; it selects
individuals in a group proportionally to fitness. Individuals,
therefore, compete against each other in the pursuit of their
own interests. Between-group selection, in contrast, exam-
ines the total productivity of groups, and prefers the group
with the best performance or the group whose individuals
cooperate best. It forces individuals to coadapt so that a
cohesive group can be formed. It also resolves and reduces
conflicts within groups, because conflicts would compromise
group performance. In short, competition between groups
encourages the emergence of cooperation within groups. In
group selection models, individuals and groups are relative:
groups can be regarded as individuals on a higher level, so
that a new level of dynamics can act upon them. In this way,
a hierarchical or nested structure can be constructed. This
new perspective is now called multilevel selection (MLS) the-
ory [10].

Competition between groups not only helps to construct
hierarchies, but also accelerates evolution, as demonstrated
by Banzhaf [1] through a series of experiments on a very sim-
ple artificial chemistry system. In that article, lower level
entities are bonded together as a group by cooperative inter-
actions. When such a group, which we can term a new entity,
competes with less cooperative entities from lower-levels, it
will take over the population at the end. The larger the
difference among competing entities, the quicker the compe-
tition is settled; for example, the population with a group of
3 entities, and 4 autocatalysts converges faster than a pop-
ulation with 2 groups of 3 each, and 1 autocatalyst. The
reason is that entities on different levels are allowed to com-
pete against each other.

This design leads to a very interesting extension. Suppose
the fitness of entities now no longer depends on their size, but
rather on how they maximize a specific goal of a problem;
therefore, a group on a higher level would not necessarily
have a higher fitness. When groups on different levels com-
pete with each other, groups with higher fitness regardless
of their level will be favored by selection, hence are more
frequently selected. In a sense, at which level the selection
should act on is totally determined by the fitness of entities.
We know evolution is parsimonious; higher level groups with
lower fitness will be unstable, and will be eliminated from
the population by competition; so the hierarchies will not
grow exponentially, but stop at the most appropriate level
required by the nature of the problem. Once the most stable
level is decided, the best group structure will be found.

3. STRING COVERING PROBLEMS
String covering problems aim to discover a set of N binary

strings that matches as strongly as possible another set of
K binary strings, where K is typically much larger than N .
The N and K binary strings are called match set (M) and
target set (T), respectively. If every string in T has to be
matched by at least one string in M , the strings in M must
contain patterns shared by multiple target strings. Hence,
the match set must have the capacity to generalize. How-
ever, on the other hand, we prefer the matches as strong as
possible; so the match set also needs to be specific. In other

234

words, M must satisfy two contradictory criteria: general-
ization and specialization. The former means to minimize
the size of M , and the latter means to maximize the match
strength of M .

In this research, we generate four target sets by using the
four schemata shown in Figure 1, respectively.

• Schema 1 (half-length schema):
11111111111111111111111111111111################################

################################11111111111111111111111111111111

• Schema 2 (quarter-length schema):
1111111111111111##

################1111111111111111################################

################################1111111111111111################

##1111111111111111

• Schema 3 (eighth-length schema):
11111111##

########11111111##

################11111111##

########################11111111################################

################################11111111########################

##11111111################

##11111111########

##11111111

• Schema 4 (skewed schema):
1111111111111111##

################11

Figure 1: The four target sets used in this study are generated from above
schemata.

Each schema contains at least two 64-bit string templates
with a fixed region (marked by 1’s) and a variable region
(marked by #’s). Target strings created by a string tem-
plate will share the same fixed region, but have randomly
decided 0’s and 1’s in the variable region. For the first 3
schemata, 200 target strings are generated by each single
string template; hence in total there are 400 target strings
in target set 1, 800 in set 2 and 1600 in set 3. We create
skewed data distribution for target set 4 by generating 200
strings from the first template and 20 from the second one.

Given any target set above, there is no overlap between
patterns specified by fixed regions; so more than one match
string needs to cooperate to fully cover a target set. Search-
ing for several match strings simultaneously, or we say multi-
ple coadaptive subcomponents in general, poses a challenge
for classic EAs, as they always converge to a single opti-
mum. Researchers, such as Forrest et al. [5, 9] and Potter
et al. [8], investigated how to extend classic EAs to evolve
cooperative solutions, and tested their algorithms on string
covering problems to find all necessary match strings.

Our research also uses string covering problems as a test
bed for the same purpose. Other reasons for selecting string
covering are that it is simple (we are able to construct artifi-
cial string covering problems with known optima in different
fitness landscapes) and practical (the experiment findings
can be easily applied to similar application domains, such
as other instances of set covering problems).

4. ALGORITHM DESIGN
The inspiration of this research comes from group selec-

tion theories and the hierarchical model in [1]. The former
promotes the emergence of cooperation through evolution,
and the latter is able to control the hierarchical structure

in a solution. In this section, we will first show a computa-
tional multilevel selection framework that utilizes both ideas.
Based on this framework, we will introduce a novel cooper-
ative EA which automatically constructs cooperative solu-
tions in a hierarchical way.

4.1 A computational MLS framework
Multilevel selection extends group selection from two lev-

els to multiple levels. Adaptations now can potentially evolve
at any level. When between-group selection dominates within-
group selection, the groups resulting from one level may be-
come the individuals for groups at the next level, as shown in
Figure 2(a). Hence, MLS plays a role in explaining the tran-
sitions to new levels of hierarchical organization. This idea
sheds some light on how cooperative solutions can be built
incrementally in computational settings. However, when
one applies this model computationally, immediate ques-
tions arise as to how to organize and define selection on
groups, how many levels to use, which level to select, and
how to bring those levels together.

Here we propose the computational multilevel selection
framework of Figure 2(b) to address these questions. Our

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
������

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�
�
�

�
�
�

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��

��
��
��

Level 0

Level 1

Level 2

Level 3

(a)

������������������������������������

������������������������������������

������������������������������������

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

Level 0

Level 1

Level 2

Level 3

(b)

Figure 2: Comparison of two Multilevel Selection frameworks. (a) Frame-
work by Chu et al. [3], in which competition takes place between
groups on the same level; (b) Hierarchical framework, which con-
siders selection not only between groups, but also between levels.

framework contains two types of entities. One is individuals,
denoted by dots on level 0. Individuals are the most basic el-
ements after problem decomposition. They are independent,
without being aware of the collaborative goal. Apparently,
there is no cooperation on this level. The other type of en-
tities are groups, represented by dots on level 1 and higher.
They are compositions of existing individuals or groups.

Initially, only individuals exist in the framework. Groups
and new levels are created dynamically by a new operator
called “cooperation”. When cooperation applies, individ-
uals and groups on all levels, if any, are mixed together,
from which two entities, either groups or individuals, are
selected proportional to fitness to form a new group. For
example, as highlighted in Figure 2(b) by white circles, an
individual on level 0 and a group on level 2 can cooperate
to create a new group on level 3. This applies the idea from
[1] but with an explicit fitness function added. Compared to
the biological MLS framework, which considers competition
between entities only on the same level, the new operator
applies selection pressure not only between groups, but also
between levels. One advantage of this scheme is to auto-
matically decide the levels to select on; because selection is
driven by the fitness of entities on different levels. A new
level emerges only if groups on a particular level have an ad-
vantage in fitness; otherwise, the new level will be removed
by competition between levels. As a result, the structure
of the hierarchy develops to the most appropriate level. We
keep crossover and mutation as two further operators, which

235

are able to introduce new groups at all levels. These three
operators push evolution forward on group levels.

Individuals also need to be optimized locally to build bet-
ter groups. To this end, a group is first selected proportional
to fitness from groups on all levels; an individual is then se-
lected from this group as a parent. Parents cross over or
mutate to produce new individuals. Obviously, the survival
of an individual is now associated with the performance of
its group. Individuals have to specialize on different roles
in a group to strive for a high group fitness, even though
such kind of roles are not assigned or unknown prior to runs.
We use Traulsen’s group selection model [10] instead of Wil-
son’s [12], as it is more robust against parameter changes
[13]. As required by this model, groups will not mix and
reform during the evolution.

4.2 The algorithm
The algorithm that implements the above framework is

shown in Figure 3. In a first step (initialization) N1 individu-

Yes

No

Initialization

Reproduction on Individual Level

− Crossover

− Mutation

Reproduction on Group Level

− Cooperation

− Crossover

− Mutation

Fitness Sharing
* On group level

* On individual level

* Output solution

Termination

Stop Criteria Reached?

* Randomly create N1 individuals

* Evaluate individual fitness

* Reproduce N1 individuals by

* Evaluate individual fitness

* Reproduce N2 groups by

* Evaluate group fitness

Figure 3: Outline of the hierarchical evolutionary algorithm with N1 indi-
viduals and N2 groups.

als are randomly generated and have their fitness evaluated.
Reproduction on group levels produces N2 new groups

every generation by applying three evolutionary operators,
i.e. cooperation, crossover and mutation, with a user-defined
probability. Entities involved in these operators are selected
by the roulette-wheel selection, but from different sources.
Cooperation selects participants from both individuals and
groups (i.e. from level 0 and above), while the other two op-
erators select only from groups (i.e. from level 1 and above).
Cooperation composes a new group by adding individuals
from the two selected entities; crossover exchanges individu-
als in two groups starting from a randomly selected position
in each group; and mutation randomly adds, removes, or
replaces an individual in a group (for simplicity, we only

consider removing individuals in the following experiments).
Once a new group is created, its group fitness and its valida-
tion are evaluated. A group is valid only when every mem-
ber has a unique contribution towards the cooperative goal.
This is to guarantee there are no free riders in a group, so
group size will not increase unnecessarily. New groups and
groups in the current generation compete for N2 positions
in the next generation.

To produce offspring on the individual level, we first ap-
ply group selection to select parent individuals for crossover
and mutation. If no groups are currently available in the
population, parents are selected directly from the individual
level based on fitness. Once parents are selected, two-point
crossover and bit-flip mutation are conducted. The fitness
of new individuals is evaluated. Only the best N2 individu-
als among the new offspring and individuals in the current
generation are kept for the next generation.

Please note that this algorithm evolves N1 individuals and
N2 groups separately. We keep a constant number of indi-
viduals in the population, simply because individuals are
the most basic building blocks. Only when individuals have
fully exploited their local environment, or have maximized
their fitness, will it be possible to find optimal groups.

The probability of conducting cooperation and crossover
is controlled by a user-defined parameter, but the proba-
bility for mutation is decided by an entity’s fitness: it is
inversely proportional to the fitness, such that entities with
lower fitness experience larger changes to their genotypes.

Preserving diversity is mandatory on the individual and
group levels, because the algorithm needs to maintain a set
of different partial solutions so that all required subcom-
ponents can present in the final solution. Various niching
mechanisms can be used, such as crowding, fitness sharing,
implicit sharing, or even user-defined niching schemes.

The above steps will be repeated until a predefined termi-
nation criterion is reached, e.g. the maximum generation, a
desired fitness or accuracy.

In summary, we proposed a novel hierarchical EA to search
multiple coadaptive subcomponents in a solution; this algo-
rithm extends classic EAs by introducing group selection
and the evolution on group levels. Group selection favors
individuals who cooperate and contribute in a group. It
avoids manually linking roles of individuals to their fitness,
which unfortunately is a mandatory step in IEAs. It also
overcomes the Red Queen Effect in CCEAs, because the
performance of both individuals and groups are measured.
The evolution on group levels optimizes groups, which in
turn should accelerate evolution on the individual level. We
expect the algorithm will evolve faster and find better solu-
tions. In addition, because of the selection between levels,
this algorithm is able to build solutions hierarchically, and
decide the most appropriate level of hierarchies and the size
of a collaboration without human interference.

5. EXPERIMENTS
In order to test whether the Hierarchical EA (HEA) can

indeed build solutions hierarchically from smaller subcom-
ponents, we ran experiments on the four target sets for the
string covering problems discussed in Section 3. For each set,
we expect the algorithm to return a match set whose match
strings have the exact patterns as the string templates in
the corresponding schemata. We compare the results with

236

the ones produced by the three control algorithms: a classic
EA, a CCEA, and an IEA.

5.1 Representation, Fitness Function and Fit-
ness Sharing

Individuals are represented as 64-bit strings on the alpha-
bet {1, *}, not {1, 0} used in previous work [5, 8, 9]. “*”
is a “don’t care” symbol representing either “1” or “0” on a
position, whose value is not shared by most strings in a tar-
get set. This change allows us to easily tell the accuracy of
solutions and the level of generality.

We define the individual fitness function as the following:

f(x) = α × Ratio1(x) × Coverageidv(x), (1)

where Ratio1(x) shows the percentage of the number of 1’s
in the representation of individual x, Coverageidv(x) the
string coverage of individual x, calculated by the number of
target strings covered by individual x over the cardinality of
the target set, and α is a weighting coefficient. Basically, the
individual fitness function is looking for a specific individual
(individuals with more 1’s), but at the same time with high
string coverage.

Once we know how the performance of individuals is mea-
sured, our intention of conceiving the four different target
sets is obvious. For the first three target sets, solutions are
becoming harder to find as the number of subcomponents in-
creases and fixed regions become progressively shorter with
respect to the variable regions of the string templates. Tar-
get set 4 is the only set whose solution contains subcompo-
nents with unequal fitness, because of the unequal length
in the fixed regions and its skewed data distribution. There-
fore, target set 4 presents a more difficult problem than the
others.

The group fitness is defined as

g(y) =

Pn
i=0 f(xi)

n
× Coveragegrp(y), (2)

which considers average individual fitness in group y and
string coverage, Coveragegrp, of group y, where n is the
group size. Group fitness favors groups whose individuals
cooperate to provide maximum coverage, while each indi-
vidual is optimized to specialize its role in the cooperation.

We apply fitness sharing on the individual level to explic-
itly preserve diversity. Two individuals have to share their
fitness if their genotypic distance is within the range of a
sharing radius. On the group level, we reward groups who
provide new string coverage that does not appear in the cov-
erage of the best group from the previous generation; we
also penalize groups who share coverage with others.

5.2 Experimental setup
We ran HEA and the three control algorithms on a PC

with an AMD TurionTM 64×2 CPU at 1.6GHz and with 2
GB of RAM. The parameter settings are shown in Table 1.
The four target sets are denoted as ts1, ts2, ts3, and ts4,
respectively.

We measure the performance of all algorithms by conver-
gence time and average number of mismatched bits. The
convergence time is the number of seconds an algorithm
needs to find the best solution. In our evaluations it is a
better indicator than the number of fitness evaluation in
reflecting evolutionary speed, given the fact that the algo-
rithms conduct fitness evaluation differently (e.g. CCEAs

Table 1: Parameter settings

Parameter Classic EA CCEA IEA HEA
Run 50 50 50 50
Generation 1000 1000 2000 2000
Number of
groups

N/A N/A 1 10

Cooperation
rate

N/A N/A N/A 0.5

Crossover
rate

0.95 0.95 0.95 0.95

Mutation
rate

0.05 0.05 0.05 N/A

Group
N/A

ts1/4:2 ts1/4:2
N/Asize ts2:4 ts2:4

ts3:8 ts3:8
Fitness ts1/4:4

N/A
ts1/4:4 ts1/4:4

coefficient ts2:16 ts2:16 ts2:16
ts3:64 ts3:64 ts3:64

Niching
N/A N/A

ts1/2:0.7 ts1/2:0.7
radius ts3:0.5 ts3:0.5

ts4:0.9 ts4:0.9

only consider fitness on the collaboration level), which cause
various amounts of time to complete. To calculate the aver-
age number of mismatched bits, we first count the number of
different bits between each string template used by a target
set and the closest match string returned by an algorithm,
and then average over all string templates.

5.3 Evaluating HEA and Control Algorithms
We ran HEA and the three control algorithms on all four

target sets. Table 2 shows average performance of the algo-
rithms over 50 runs. Standard deviation of the convergence
time and of average number of mismatched bits are enclosed
in brackets. In order to allow a fair comparison, given the
same target sets, all algorithms have the same amount of
individuals in their population, as this number has direct
implications for the evolutionary speed and solution quality.
Species size in CCEA is calculated by dividing the total pop-
ulation size by the number of species. We also ran another
set of experiments on CCEA using this number as the size
of species, and kept the results for reference.

For target set 1 and 4, HEA always found a match set with
2 match strings, which perfectly matched all target strings;
in other words, there was no mismatch in either case. How-
ever, it took a longer time for runs to converge on target
set 4 than for runs on target set 1, because exploring and
maintaining multiple match strings with unequal fitness is
more difficult. For target set 2 and 3, all match sets returned
by HEA contained 4 and 8 match strings, respectively. Be-
cause both sets obtained low average number of mismatched
bits and relatively high standard deviation, we further col-
lected the median as an extra evidence, which was 0 on both
sets. The three numbers together indicate that most runs
returned correct match sets. Convergence time on the two
target sets was longer because the difficulty of the problem
increased.

We now compare the four algorithms on the first three
target sets. The classic EA can only find one match string
out of many, as all match strings for a target set are equally
good in terms of specialization and coverage. That algo-
rithm fails the task with no surprise, because we know that

237

Table 2: Performance of four algorithms on target set 1, 2, 3, and 4.

Algorithms
Target set 1 Target set 2

of Idv. Convergence Time Mismatch Bits # of Idv. Convergence Time Mismatch Bits
HEA 20 1.539(0.509) 0.000(0.000) 20 10.828(3.239) 0.095(0.256)
Classic EA 20 0.595(0.169) 32.00(0.000) 20 2.140(1.113) 24.017(0.207)

CCEA1 20(10×2) 1.658(0.289) 0.617(0.462) 20(5×4) 19.664(9.246) 0.758(0.350)

CCEA2 40(20×2) 2.236(0.397) 0.600(0.536) 80(20×4) 23.132(7.429) 0.592(0.282)
IEA 20 3.171(1.091) 0.717(0.429) 20 7.560(1.529) 0.708(0.378)

Algorithms
Target set 3 Target set 4

of Idv. Convergence Time Mismatch Bits # of Idv. Convergence Time Mismatch Bits
HEA 40 20.665(6.801) 0.088(0.145) 20 3.020(1.664) 0.000(0.000)
Classic EA 40 12.743(3.717) 12.225(5.298) 20 0.350(0.372) 32.000(0.000)

CCEA1 40(5×8) 289.060(57.951) 0.950(0.270) 20(10×2) 5.258(2.170) 1.983(0.517)

CCEA2 320(40×8) 367.540(144.319) 0.467(0.183) 40(20×2) 5.970(2.839) 1.867(0.472)
IEA 40 59.323(18.991) 0.504(0.268) 20 1.981(0.987) 0.983(0.160)

it has a strong tendency to converge. Given same population
size, CCEA outperforms IEA only on simple target sets, but
not on hard ones. It cannot beat HEA on any of the three
sets because of two limitations. First, CCEA does not main-
tain diversity within species; the way fitness is defined only
helps to preserve diversity between species. In our experi-
ments, the algorithm converged at generation average 88.8
for target set 1 given 40 individuals, at generation average
125.467 for set 2 on 80 individuals, and at generation aver-
age 263.226 for set 3 on 320 individuals. Once species have
lost their diversity, the algorithm stops exploring the search
space. Second, individual fitness depends on exactly who
is in a collaboration, so it does not accurately measure the
performance of individuals. As a result, the search will drift
to suboptimal solutions. Increasing population size, though
improving accuracy somewhat, provides little help to over-
come these limitations. HEA also performs better than IEA
on all test runs. The difference between the two algorithms
is the choice of group selection. IEA only composes a single
group by selecting the best n individuals from the popula-
tion (where n is the group size), while HEA forms more than
one group with various sizes and compositions, and consid-
ers the evolution on group levels. From this perspective, it
increases the possibility of finding a solution faster.

Target set 4 is a new set we introduced in this study, which
requires algorithms to optimize and maintain multiple sub-
solutions with unequal fitness simultaneously. It has proven
to be the hardest one among the four sets; the classic EA
converged to a string with 48 1’s despite the low fitness, as
searching for such a string is much easier than searching
for a string with 16 1’s; CCEA and IEA both obtained the
highest average number of mismatched bits on this set. In
contrast, HEA found a perfect match set very quickly.

Table 3 shows the statistical comparison of HEA over the
two control algorithms on convergence time and average mis-
match bits, using the two-tailed t-test with 98 degrees of free-
dom at a 0.05 level of significance. Since the p-value is less
than 0.05 (except the convergence time of CCEA1 on ts1),
we can conclude that HEA achieved a significant improve-
ment on accuracy and evolutionary speed when compared
to the control algorithms on string covering problems.

5.4 Looking inside of HEA
In order to get a better idea why HEA evolves faster and

finds more accurate solutions than the other cooperative

Table 3: The T-test results between HEA and the two con-
trol algorithms.

Target set CCEA1 CCEA2 IEA

ts1
Time 0.227 4.807E-07 6.287E-08
Mismatch 8.053E-08 7.061E-07 4.802E-10

ts2
Time 2.346E-05 2.499E-09 1.787E-05
Mismatch 2.758E-10 2.155E-07 3.568E-08

ts3
Time 1.00E-21 8.007E-14 3.286E-12
Mismatch 3.156E-16 1.815E-10 2.741E-08

ts4
Time 5.108E-05 6.856E-05 0.015
Mismatch 4.218E-19 1.891E-19 8.405E-25

EAs, we investigate the algorithm by examining its perfor-
mance in a typical run on target set 2 and 4. We choose
these two sets because they represent two different situa-
tions, namely equal and unequal fitness of subcomponents
in a solution. Target set 1 and 3 are not discussed here
because they share the same features with target set 2.

Fitness is always a good place to start investigations as it
reflects how evolution proceeds. Figure 4(a) and (b) depict
fitness related information in a typical run on target set 2
and 4, respectively. We show the fitness of the best group,
the average fitness of individuals and the average fitness of
groups. Individual fitness and group fitness by definition are
affected by coverage and specialization (the number of 1’s in
the representation). Therefore, we also show the average spe-
cialization of individuals and of the best group in Figure 4(c)
and the coverage of the best group in Figure 4(d).

As we can see clearly in Figure 4(a) and (b), average indi-
vidual fitness and group fitness improve steadily due to the
evolution happening on individual and group levels. As a
result, the fitness of the best group increases constantly on
both sets. To be more specific, HEA optimizes the coverage
first (see Figure 4(d)), because increasing the coverage will
improve both individual and group fitness. However, the
different properties of the two sets cause HEA behaving dif-
ferently at this stage. Individuals are randomly generated at
the initialization, so their average specialization on both sets
is around 32 at the outset (see Figure 4(c)). For target set 2
which requires 16 1’s in all match strings, the specialization
has to drop in order to maximize the coverage. For target
set 4, the specialization is increased first to optimize the cov-
erage of the match string with 48 1’s, and then decreased to
optimize the coverage of the one with 16 1’s. After coverage

238

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge

Generations

HierarchicalEA---Fitness

Fitness of the best group
Avg. fitness of groups

Avg. fitness of individuals

(a) Fitness changes on target set 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge

Generations

HierarchicalEA---Fitness

Fitness of the best group
Avg. fitness of groups

Avg. fitness of individuals

(b) Fitness changes on target set 4.

 0

 8

 16

 24

 32

 40

 48

 0 100 200 300 400 500 600 700 800 900 1000

B
its

Generations

HierarchicalEA---Average Specialization

the best group’s on set 2
individuals’ on set 2

the best group’s on set 4
individuals’ on set 4

(c) Average specialization on target set 2 and 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge

Generations

HierarchicalEA---Coverage of the best group

Target set 2 Target set 4

(d) Coverage of the best group on target set 2 and 4.

Figure 4: A typical run on target set 2 and 4.

hits 1 (i.e. coverage has been optimized), HEA then turns
to optimize the second part of the individual fitness, so we
see that the specialization on both sets increases.

The run on target set 4 demonstrates very well the contri-
butions of group selection to encourage cooperation, regard-
less of individuals fitness. As shown in Figure 4(c), during
the first 200 generations, no matter whether the average spe-
cialization of the best group is moving towards 48 or 16, the
average specialization of individuals always keeps a distance.
This implies that even though HEA optimizes the match
string with 48 1’s in the first place, a few individuals cover-
ing target strings with 16 1’s have managed to stay in the
population. Such individuals provide new coverage to their
group (i.e. they increase group fitness), hence the group and
the individuals inside are more frequently selected and opti-
mized. Therefore, they gradually dominate the population
(the average specialization of the best groups and individuals
begin to drop). Similarly, after the coverage hits 1, the spe-
cialization of individuals with 48 1’s continues to increase,
despite their low fitness and the domination of high fitness
individuals with 16 1’s.

The process of searching for the structure of a solution on
the four target sets is shown in Figure 5. We can easily see
that the HEA is able to return a solution with the correct
number of subcomponents, even though that number was
not known a priori. Driven by the between-level selection
introduced in [1], groups are maintained in the population
if they show advantages in fitness; otherwise, they are elim-
inated. Therefore, we observe the size of the best group
changing till the best size is found. We also notice that the
group size fluctuates at the beginning of the evolution. This
is because individuals during that time have similar cover-

age and fitness; small changes on group composition and size
easily affect the group fitness.

6. CONCLUSIONS
In this paper, we discussed a hierarchical evolutionary al-

gorithm to encourage cooperation through evolution. We
claim the following contributions. First, the algorithm is
based on a new multilevel selection framework that suits
computational needs. Second, it applies Traulsen’s group
selection model in biology to promote cooperation. Third, a
new operator called “cooperation” is introduced to construct
the hierarchical structure in solutions. Finally, it uses the
hierarchical model in [1] to control the structure. The new
algorithm is investigated and compared with three control
algorithms on string covering problems whose fitness land-
scapes have multiple equal or unequal fitness peaks. Based
on our experiments, we conclude that the new algorithm im-
proves both solution accuracy and evolutionary speed. In
addition, the structure of a solution and the roles played by
their subcomponents emerge as a result of evolution, rather
than being designed by hand. In the future, we plan to study
the evolutionary dynamics of this algorithm further and to
tackle real-world problems that require a substantial degree
of cooperation.

7. ACKNOWLEDGMENTS
W.B. would like to acknowledge support from NSERC Dis-

covery Grants, under RGPIN 283304-07. The authors would
also like to thank anonymous reviewers for their helpful com-
ments and suggestions.

239

 0

 2

 4

 6

 8

 10

 0 100 200 300 400

G
ro

up
 S

iz
e

Generations

HierarchicalEA---Size of the best group

(a) The size of the best group on target set 1

 0

 2

 4

 6

 8

 10

 0 100 200 300 400

G
ro

up
 S

iz
e

Generations

HierarchicalEA---Size of the best group

(b) The size of the best group on target set 2

 0

 2

 4

 6

 8

 10

 0 100 200 300 400

G
ro

up
 S

iz
e

Generations

HierarchicalEA---Size of the best group

(c) The size of the best group on target set 3

 0

 2

 4

 6

 8

 10

 0 100 200 300 400

G
ro

up
 S

iz
e

Generations

HierarchicalEA---Size of the best group

(d) The size of the best group on target set 4

Figure 5: Hierarchically finding subcomponents in the solution for all target sets.

8. REFERENCES
[1] W. Banzhaf. On the dynamical of competition in a

simple artificial chemistry. Nonlinear Phenomena in
Complex Systems, 5(4):318–324, 2002.

[2] M. E. Borrello. The rise, fall and resurrection of group
selection. Endeavour, 29(1):43–47, March 2005.

[3] D. Chu and D. J. Barnes. Group selection vs
multi-level selection: Some example models using
evolutionary games. In IEEE Congress on
Evolutionary Computation (CEC ’09), pages 808–814,
2009.

[4] P. Collet, E. Lutton, F. Raynal, and M. Schoenauer.
Individual GP: an alternative viewpoint for the
resolution of complex problems. In W. Banzhaf,
J. Daida, and et al., editors, Proceedings of the 1st
Genetic and Evolutionary Computation Conference
(GECCO ’99), volume 2, pages 974–981, Orlando,
Florida, USA, 1999. Morgan Kaufmann.

[5] S. Forrest, R. E. Smith, B. Javornik, and A. S.
Perelson. Using genetic algorithms to explore pattern
recognition in the immune system. Evolutionary
Computation, 1(3):191–211, 1993.

[6] M. A. Nowak. Evolutionary dynamics of cooperation.
In Proceedings of the International Congress of
Mathematicians, pages 1523–1540, Madrid, Spain,
2006. European Mathematical Society.

[7] M. A. Potter and K. A. de Jong. A cooperative
coevolutionary approach to function optimization. In
Y. Davidor, H.-P. Schwefel, and R. Männer, editors,
Proceedings of the 3rd International Conference on
Parallel Problem Solving from Nature (PPSN III),
Jerusalem, Israel, volume 866/1994 of LNCS, pages
249–257. Springer Berlin/Heidelberg, 1994.

[8] M. A. Potter and K. A. de Jong. Cooperative

coevolution: An architecture for evolving coadapted
subcomponents. Evolutionary Computation, 8(1):1–29,
2000.

[9] R. E. Smith, S. Forrest, and A. S. Perelson. Searching
for diverse, cooperative populations with genetic
algorithms. Evolutionary Computation, 1(2):127–149,
1993.

[10] A. Traulsen and M. A. Nowak. Evolution of
cooperation by multilevel selection. In Proceedings of
the National Academy of Sciences of the USA (PNAS),
volume 103, pages 10952–10955. National Academy of
Sciences, 2006.

[11] R. P. Wiegand. An Analysis of Cooperative
Coevolutionary Algorithms. PhD thesis, George Mason
University, Fairfax, Virginia, 2003.

[12] D. S. Wilson. A theory of group selection. In
Proceedings of the National Academy of Sciences of
the USA (PNAS), volume 72, pages 143–146. National
Academy of Sciences, 1975.

[13] S. X. Wu and W. Banzhaf. Investigations of Wilson’s
and Traulsen’s group selection models in evolutionary
computation. In Proceedings of the 10th European
Conference on Artificial Life, Budapest, Hungary,
2009. LNCS, Springer, in press, 2010.

240

	Introduction
	Related Work
	Cooperative Evolutionary Algorithms
	Group Selection and Multilevel Selection

	String Covering Problems
	Algorithm Design
	A computational MLS framework
	The algorithm

	Experiments
	Representation, Fitness Function and Fitness Sharing
	Experimental setup
	Evaluating HEA and Control Algorithms
	Looking inside of HEA

	Conclusions
	Acknowledgments
	References

