
On the Nature of the Phenotype in Tree Genetic Programming
Wolfgang Banzhaf∗
banzhafw@msu.edu

Department of Computer Science and Engineering,
Michigan State University

East Lansing, Michigan, USA

Illya Bakurov
bakurov1@msu.edu

Department of Computer Science and Engineering,
Michigan State University

East Lansing, Michigan, USA

ABSTRACT
In this contribution, we discuss the basic concepts of genotypes
and phenotypes in tree-based GP (TGP), and then analyze their
behavior using five real-world datasets. We show that TGP exhibits
the same behavior that we can observe in other GP representations:
At the genotypic level trees show frequently unchecked growth
with seemingly ineffective code, but on the phenotypic level, much
smaller trees can be observed. To generate phenotypes, we provide
a unique technique for removing semantically ineffective code from
GP trees. The approach extracts considerably simpler phenotypes
while not being limited to local operations in the genotype. We
generalize this transformation based on a problem-independent
parameter that enables a further simplification of the exact pheno-
type by coarse-graining to produce approximate phenotypes. The
concept of these phenotypes (exact and approximate) allows us to
clarify what evolved solutions truly predict, making GP models
considered at the phenotypic level much better interpretable.

CCS CONCEPTS
• Computing methodologies → Matching.

KEYWORDS
Genetic Programming, Genotype-Phenotype Map, Simplication,
Neutrality, Explainability, Symbolic Regression
ACM Reference Format:
Wolfgang Banzhaf and Illya Bakurov. 2024. On the Nature of the Phenotype
in Tree Genetic Programming. In Genetic and Evolutionary Computation
Conference (GECCO ’24), July 14–18, 2024, Melbourne, VIC, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3638529.3654129

1 INTRODUCTION
Since early in its development, GP has been associatedwithMachine
Learning (ML) tasks [10, 38]. What is special about GP compared to
other EC approaches is that its expected result is an active solution
(the program, formula, model, etc.) that itself behaves in some way
to process inputs into outputs. Thus it is not enough to simply
consider a static solution to an optimization problem, but what is
required is the ability to modify a solution in both its content and
its complexity. The genetic operators for GP must therefore be able
∗Both authors contributed equally to this research.

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0494-9/24/07.
https://doi.org/10.1145/3638529.3654129

to grow and shrink the complexity of solutions in the evolutionary
process, an ability that comes with its own particular challenges.

All this is well known and has led to some surprises early on in
the history of GP [4, 10, 38]: To the bafflement of many researchers,
a substantial portion of the code produced by GP was ineffective
(neutral, non-effective, junk, etc.), which did not seem to play a role
in the actual behavior of the evolved algorithms, but was produced
by the evolutionary process. Researchers found that if they waited
long enough in evolutionary runs, the overwhelming majority of
code was of this type, a phenomenon coined ’bloat’.

Several theories have been put forward as to what the reasons
are for this apparent inefficiency of code with its attendant strain on
computational resources with respect to both memory and compute
cycles. Obviously, some of the genetic material (genotypes) does
not have an impact on the behavior which we can conceptualize by
introducing a map between genotypes and behavioral determinants
(phenotypes). Most GP representations today have such a mapping,
even if it is somewhat hidden from view.

Three of the most typical representations employed in GP are ex-
pression trees in tree GP (TGP), linear sequences of instructions in
linear GP (LGP) and circuit-type graphs in Cartesian GP (CGP). Here
we shall be mostly concerned with TGP, and want to only briefly
touch the other two representations. All three require genotypes
(lists of program nodes in TGP, numbers encoding instructions in
LGP, and numbers encoding graphs in CGP) and phenotypes (ef-
fective subtrees in TGP, effective subset of instructions in LGP and
effective sub-graphs in CGP). To draw a clear distinction: genotypes
are manipulated by genetic operations while phenotypes are the
effective encoded structures that provide the behavioral function
of the algorithms. Because genotypes are larger than phenotypes,
taking into account that some of the code is non-effective or neu-
tral (either structurally or semantically), it is the phenotypes that
provide an understanding of what the algorithms do.

In an ML context, GP provides a user with a completely differ-
ent experience in terms of transparency and interpretability of the
final models when compared to "black-box" models of, say, deep
neural networks. By manipulating discrete structures, the inner
workings of a model are clearer, and the relationships between
features and predictions are explicitly defined in GP. As a result,
evolved solutions can offer insights into how the model arrives at its
predictions, allowing humans to understand the decision-making
process. Although GP is not the only "white-box" method in the
spectrum of ML methods, it allows for unprecedented flexibility
of representations and modularity, making it suitable for numer-
ous tasks: classification [32, 39, 53], regression [15, 40, 51], feature
engineering [54, 69], manifold learning [45], active learning [29],
image classification [33, 68, 71, 77], image segmentation [9], image
enhancement [16, 17], automatic generation of ML pipelines [58]

868

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0002-6458-942X
https://doi.org/10.1145/3638529.3654129
https://doi.org/10.1145/3638529.3654129
https://creativecommons.org/licenses/by/4.0/

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Banzhaf and Bakurov.

and even neural architecture search [6, 27]. The area of explain-
able AI receives consistently more attention from both practition-
ers and researchers [47, 72] and GP has gained popularity where
human-interpretable solutions are paramount. Real-world exam-
ples include medical image segmentation [18], prediction of human
oral bioavailability of drugs [65], skin cancer classification from
lesion images [1], and even conception of models of visual percep-
tion [8], etc. Besides being able to provide interpretable models,
there is evidence that GP can also help to unlock the behaviour of
black-box models [9, 26].

Given that GP phenotypes are even smaller than genotypes, inter-
pretability is enhanced by focussing on phenotypes when analysing
GP models. In this contribution, we study the relationship between
genotypes and phenotypes in TGP, and develop a unique simplifi-
cation technique that allows us to remove semantically ineffective
code from GP genotype trees based on numerical simplification.
Particularly, in this work, we show that:
• Trees of TGP represent both the genotype and phenotype.
• Smaller phenotypes are hidden within the larger genotypic trees
but can be extracted via simplification algorithms without affect-
ing their behavior, which facilitates models’ understanding.

• Phenotypes can be further simplified to shrink model size but
this might impact generalization ability.

• We observe the population dynamics of genotypes and pheno-
types throughout the evolutionary process to facilitate our un-
derstanding of the genotype-phenotype relationship.

The paper is organized as follows: Section 2 introduces the nec-
essary theoretical background by providing a brief discussion of
the bloat phenomenon in TGP, an analogy to phenomena in living
systems, some approaches to remedy this situation and a generic
look at the difference between genotypes and phenotypes. Section 3
describes our algorithm to extract phenotypes from genotypes in
TGP. We also introduce the notion of an approximate phenotype.
Section 4 characterizes the datasets used in our study, discusses
the hyper-parameters used, and shows the results obtained. Finally,
Section 5 draws the main conclusions and proposes future research
ideas.

2 BACKGROUND
As a natural result of genetic operators applied to tree genotypes,
GP trees tend to grow in size during evolution in search of a better
match to the desired behaviour. However, growth is not always
justified by an improvement in performance (such as the generaliza-
tion on unseen data). It has long been observed that standard TGP
tends to produce excessively large and redundant trees without a
corresponding improvement in terms of fitness [4, 38]. Moreover,
it was shown that beyond a certain program length, the fitness
distribution of individuals converges to a limit [43]. The apparent
unnecessary growth of GP trees is often called the bloat phenome-
non and several justifications were proposed for its existence. For
decades, researchers tried to address this problem. We briefly re-
view part of this voluminous literature here, but cannot address it
in its full breadth.

The consequences of bloat in TGP are hard to underestimate:
the amount of computer memory to store a population grows and
concomitantly the evaluation time of trees increases, making the

system less attractive for real-time applications. Moreover, unnec-
essarily large genotypes make visual inspection and interpretation
difficult, if not impossible. In LGP and CGP the mechanisms for
bloat result mainly in structural ineffective code. The difficulty for
TGP is that its bloat is mostly semantic [11, 48].

2.1 Bloat
In binary-string Genetic Algorithms (GAs), it was found that highly
fit building blocks become attached, by coincidence, to adjacent un-
fit building blocks. As a result, these joint entities were propagated
throughout the population using recombination, subsequently pre-
venting highly fit building blocks at adjacent locations from join-
ing [50]. W. Tackett demonstrated that this phenomenon, called
’hitchhiking’, also exists in TGP and that it was a consequence of
recombination acting in concert with fitness-based selection [68].

In [41, 42], W. Langdon and R. Poli show that fitness-based se-
lection makes the evolutionary search converge to mainly finding
candidate solutions with the same fitness as previously found so-
lutions. In the absence of improvement, the search may become a
random search for new representations of the best-so-far solution.
Given the fact that the variable-length representation of TGP al-
lows many more representations of a given behaviour to be longer,
these solutions are expected to occur more often and representation
length naturally tends to increase. In other words, a straightfor-
ward fitness-based approach contributes to bloat. These findings
are in agreement with the earlier findings of W. Tackett [68] who
concluded that (i) the average growth in size is proportional to the
underlying selection pressure, and that (ii) bloat does not occur
when fitness is completely ignored.

In [23] the authors provide a theoretical model of program length
distribution in the population assuming a repeated application of
subtree crossover (i.e., crossover with a uniform selection of points)
on a flat fitness landscape. The model is validated empirically and
it is proved that the reproduction process has a strong bias towards
sampling shorter programs when crossover with a uniform selec-
tion of points is applied. It was demonstrated that, if a reasonable
minimum program size exists for relatively fit programs, the re-
peated application of fitness-based selection and subtree crossover
will cause bloat to occur and it will be more acute if allowing
crossover to distribute a population before applying fitness-based
selection.

Several researchers demonstrated that bloat is an evolutionary
response to protect solutions from the destructive effects of opera-
tors, with crossover the main focus of their studies [3, 13, 49, 56, 66].
In particular, when a program contains large sections of code that
do not have a significant effect on its behaviour (introns), the ap-
plication of a given genetic operator in that section is expected to
have no overall effect on the program’s behaviour (i.e., it is neutral).
Several studies demonstrate that genetic operators are more likely
to deteriorate offspring fitness than increase it and that a large
proportion of recombinations are fitness-neutral [44, 57, 66]. Thus,
by increasing the proportion of introns to effective sections of code
(exons), evolution increases the likelihood that the product of ge-
netic operators will be neutral in terms of fitness [12]. However, if
bloat makes it more difficult to deteriorate the fitness of a solution,

869

On the Nature of the Phenotype in Tree Genetic Programming GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

it also makes it harder to improve it. In this sense, bloat constitutes
a serious problem for a sustainable evolutionary process.

2.2 Simplification
Here we consider the concept of the phenotype in TGP as that
part of an individuum that produces overall behavior. We use a
simplification algorithm to extract the phenotype tree from a geno-
type tree, and keep them side by side to monitor their development
throughout evolution. Simplification algorithms have been tradi-
tionally used in TGP, but not with a concept of phenotype in mind.
We divide such contributions into two categories: (i) those that
have no effect on the evolutionary trajectory of a run (observing
approaches); and (ii) those that do affect the evolutionary trajectory
(intervening approaches). As pointed out in [35], historically, the
former approaches were first, but quickly overtaken by the latter.
Javed et al. call the former ’offline’ approaches vs. the latter called
’online’.

Under category (i), we count ”offline simplification”, prop-
erly defined as "the analysis and reduction in complexity" of
an individual outside an evolutionary run, e.g. at the end of a
run [30, 34, 38, 61, 67], or during a run, but not returned to evolution
- the latter we call ”monitoring” [52, 56]. What researchers have
done there, without saying it, is to observe the phenotype of an
individual similar to what we do here, without explicitly calling it
that.

Under category (ii), we count ”online simplification” or ”prun-
ing” [2, 34, 36, 55, 74], as well as limiting the size of individ-
uals in various ways [23, 24, 38, 44, 63], operator equalization
and its variants [25, 62, 64], time-based approaches to controlling
bloat [20, 21], fitness and selection approaches (like double tour-
naments etc.) [46, 59], and elitism [60, 73]. All of these methods
work directly on the genotype, with the result of modifying that
genotype and intervening in the evolutionary process. A recent
review of simplification and bloat control techniques can be found
in [35].

Here, we focus on the former category of approaches, that are
observing the runs, rather than intervening, because we believe that
understanding the underlying phenomena is important to engineer
better and faster evolutionary processes.

2.3 Genotype and Phenotype - Definitions and
Relations

It is useful to recall a crisp definition of the term ”genotype” and
”phenotype” in GP. In this line of work, we discern them sharply by
asking the following questions:
• Which structure is manipulated by genetic operators (like muta-
tion and crossover)? This structure we define as the genotype.

• Which structure determines behavior, i.e. has an impact on the
output of the program? This we define as the phenotype.
The situation is depicted in Figure 1. The phenotype determines

the behavior of an individual which in turn is judged by the fitness
function.

In Biology, the notion of phenotype is somewhat vague. Any-
thing that can be observed can be considered the phenotype [22]. So
the definition of phenotype is relative to the intent of the observer.
It could be one specific trait that is under observation, and thus

the phenotype is restricted to that trait. Or it could encompass the
entire organism. But in GP we can tie the phenotype to that part
of the algorithm that makes a semantic contribution to the output.
Thus we can tie it to the behavior of the algorithm that is then
judged by a fitness function.

Between genotype and phenotype is the so-called genotype-
phenotype map (GPM). In GP, this is normally a relatively simple
many-to-one mapping between genotypes and phenotypes. In Biol-
ogy, on the other hand, the genotype-phenotype map can be much
more complicated and typically is dynamic, a feature that few GP
GPMs have (see [19] for examples). It has been argued that the
GPM is a key ingredient in evolvability in living organisms [37].
For GPMs in GP, the mapping is normally many-to-one, with many
genotypes leading to the same structure with its subsequent behav-
ior.

It is easy to see the difference in a linear GP approach [14]. As
is well known, LGP individuals consist of sequences of instruc-
tions, some of which might not impact the overall behavior of an
individual. In LGP this comes about because such non-effective
instructions manipulate registers that have no impact on the output
of a program. We can easily identify those instructions and exclude
them from the phenotype of that individual. A similar, if less fre-
quent, phenomenon has been termed ”dormant nodes” [34] in tree
GP. Only what is effective in terms of causing effective behavior is
relevant and thus belongs to the phenotype.

The problem for tree GP is that the parse trees we see under evo-
lution are genotypes, not phenotypes, but somewhat hidden within
such parse trees are the phenotypes of the TGP individuals [48].
Thus, it is only a subset of nodes in a tree that effectively impacts
its semantics or behavior, and it is that subset we are interested in
when we want to understand what an individual evolving in TGP
does. The problem of bloat in TGP is a problem of the growth of
genotypes under evolution, not of the phenotypes. Provided we
have a means to extract phenotypes from genotypes, we can hope
to better understand the solution semantics on the phenotype level.

The next section will describe an algorithm for extracting the
phenotype of a TGP individual from its genotype. We shall use this
algorithm and its variants (which extract approximations to the
phenotype) to argue that the relevant part of a GP individual, i.e.,
the part that requires explanation and understanding when solving

Figure 1: The relation between genotype, phenotype and
behavior in Genetic Programming

870

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Banzhaf and Bakurov.

a problem is only the phenotype and its behavior. Everything else
is a distraction, perhaps necessary for the evolution of a solution,
but not relevant to its behavior.

3 THE PHENOTYPE IN TREE GENETIC
PROGRAMMING

Most researchers consider the size of the tree as a proxy for a
solutions’ complexity in TGP. Thus, extracting the phenotype from
a genotype can reduce the complexity of a tree and enhance the
interpretability of a solution while not changing the behavior, at
least not significantly. In this study, the quality of a solution is
measured as generalisation ability on regression problems. For each
tree under evolution (genotype) we shall derive its phenotype and
judge its behavior.

The impact of the simplification algorithm on the solutions’ be-
havior will depend on the type of simplifications we apply to the
genotype, and can be two-fold: (i) the behaviour is preserved, since
the removed code has absolutely no impact, or (ii) it is changed, as
the removed code contributed measurably to the behavior. We refer
to the former as exact simplification, whereas the latter is referred
to as approximate simplification. For approximate simplification,
a problem-independent parameter 𝑡 is introduced to control for
different levels of approximation accuracy and represents the per-
centile of the distance distribution within a tree (see Section 3.1 for
more details).

Consider a tree 𝑇 implemented as a list of program elements
(or nodes). Given a set of 𝑛 training instances, the corresponding
𝑛-dimensional output vector is represented by 𝑦 and is called its
semantics. Let 𝑇𝑠 represent a given subtree in 𝑇 , rooted at node 𝑠 ,
and 𝑦𝑠 the respective semantics (𝑇𝑠 can also be a terminal node).
During fitness evaluation, calculating 𝑦 requires calculating 𝑦𝑠 for
each 𝑇𝑠 in 𝑇 . Specifically, the evaluation algorithm recursively tra-
verses the tree in a bottom-up manner, starting from the deepest
levels of𝑇 and computes the outputs for each successive𝑇𝑠 in𝑇 up
the tree.

Algorithm 1 Pseudo-code for the proposed simplification method.
(1) Compute �̂�𝑠 ∀ 𝑇𝑠 ∈ 𝑇 .
(2) Given some similarity measure 𝑓 (𝑥, 𝑦) , create𝑀 .
(3) Given some value of 𝑡 ≥ 0, reduce 𝑀 to semantically equivalent

pairs (i.e., ∀ (�̂�𝑠𝑖 , �̂�𝑠 𝑗), 𝑓 (�̂�𝑠𝑖 , �̂�𝑠 𝑗) ≤ 𝑝 (𝑡)).
(4) While𝑀 has entries:

(a) Select the largest tree𝑇𝑠𝑖 ∈ 𝑀 .
(b) Select the smallest semantically equivalent tree𝑇𝑠 𝑗 for𝑇𝑠𝑖 .
(c) Replace𝑇𝑠𝑖 with𝑇𝑠 𝑗 .
(d) Remove all trees contained by𝑇𝑠𝑖 (i.e., ∀ 𝑇𝑠𝑖 𝑗

∈ 𝑇𝑠𝑖).
(e) Remove𝑇𝑠𝑖 from𝑀 .

The proposed simplification algorithm capitalizes upon the me-
chanics of this fitness evaluation. In this way, we can avoid redun-
dant function calls and calculations. In particular, when 𝑦𝑠 is calcu-
lated for each𝑇𝑠 (which includes terminal nodes), the semantics are
temporarily stored in a dictionary 𝐷 of the form 𝐷 = {𝑖𝑑𝑥𝑠 : 𝑦𝑠 },
where 𝑖𝑑𝑥𝑠 represents the index of node 𝑠 (the root of𝑇𝑠). As a worst-
case, assume a fully grown binary tree of depth 𝑑 with 2𝑑+1 − 1
subtrees; thus, 𝐷 will store 2𝑑+1 − 1 vectors of length 𝑛. We use 𝐷

to create a similarity matrix𝑀 between every pair of semantics 𝑦𝑠𝑖
and 𝑦𝑠 𝑗 . In practice, we only calculate and store the lower triangu-
lar matrix since we assume symmetry, 𝑓 (𝑦𝑠𝑖 , 𝑦𝑠 𝑗) = 𝑓 (𝑦𝑠 𝑗 , 𝑦𝑠𝑖) and
𝑓 (𝑦𝑠𝑖 , 𝑦𝑠𝑖) = 0, where 𝑓 is some similarity measure. Being this the
most computationally demanding step, the worst-case computa-
tional effort requires 𝑁 ×(𝑁 −1)/2 operations for the lower triangle
of an 𝑁 ×𝑁 matrix. Technically, 𝐷 and𝑀 may be constructed from
incomplete semantics to save memory and computing time. 𝑀 is
then filtered to store only semantically equivalent pairs. When the
exact simplification is desired, 𝑇𝑠 𝑗 is said to be equivalent to 𝑇𝑠𝑖
if 𝑓 (𝑦𝑠𝑖 , 𝑦𝑠 𝑗) � 0, where � denotes equality within floating-point
rounding errors. In the case of an approximation, the equivalence
means 𝑓 (𝑦𝑠𝑖 , 𝑦𝑠 𝑗) ≤ 𝑝 (𝑡), 𝑡 > 0. We denote the exact equivalence
(the exact phenotype) with 𝑡 = 0. Additional meta-data is pro-
vided with𝑀 : the length of each subtree and whether one subtree
contains another.

The proposed algorithmwill then use this information as follows:
First, the largest tree 𝑇𝑠𝑖 is selected from𝑀 and, for it, the smallest
semantically equivalent tree 𝑇𝑠 𝑗 is chosen. Second, 𝑇𝑠𝑖 is replaced
by 𝑇𝑠 𝑗 . Finally, 𝑇𝑠𝑖 is removed from 𝑀 along with the subtrees
it contained. The procedure is iterated while 𝑀 has entries, see
Algorithm 1.

Additionally, a dedicated global library can be provided andmain-
tained for creating𝑀 to accelerate redundancy removal. It can be
user-specified or created dynamically by caching all, or the most
commonly found, semantically equivalent trees; a combination of
both methods is also possible. However, a user-specified library
requires additional effort and domain knowledge, and the main-
tenance of a global library would significantly increase both the
memory and computational burden of the system. In this work, we
rely on local tree information alone.

3.1 Approximate simplification accuracy

+

*

𝟎

/

𝑿𝟑 𝑿𝟑

-

𝑿𝟎

𝑿𝟏

*

𝑿𝟑

+

𝟏

𝑿𝟏 𝑿𝟏

𝑿𝟏

/

+𝑿𝟐

-

+*

𝟏

-

*

𝟎

𝑿𝟏3

*

+

𝑿𝟏

+

𝑿𝟑

𝟑 𝑿𝟏

/

*𝑿𝟐

-

𝑿𝟎

𝟑 𝑿𝟏

/

*𝑿𝟐

-

𝑿𝟎

𝑮 𝑷𝒕=𝟎

𝑷𝒕≠𝟎

𝟑𝑿𝟏

𝑿𝟎 + 𝑿𝟏

𝟑𝑿𝟏

𝑿𝟑

𝟐𝑿𝟏

𝟏

𝑿𝟎 𝟎

𝑿𝟏

𝑿𝟎

𝑿𝟎

𝑿𝟎

[9.12, 4.5, 3.5, 0.24]

[0. 02, 0.1, 0.2, 0.03]

[9.14, 4.6, 3.7, 0.27]

Figure 2: Illustrative mapping from genotype to phenotype.
The genotype is represented with 𝐺 (left box), whereas the
exact and approximate phenotypes are represented with 𝑃𝑡=0
and 𝑃𝑡=10 (right boxes). Left: Semantics indicated by small
colored boxes; Right: Semantics listed at selected nodes for
all inputs.

We introduce a relaxation on the exact phenotype extraction
algorithm which translates into an additional degree of simplifi-
cation by coarse-graining the phenotype. This is achieved by a
problem-independent parameter 𝑡 representing the 𝑡𝑡ℎ percentile

871

On the Nature of the Phenotype in Tree Genetic Programming GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

of the similarity distribution generated when simplifying a given
tree 𝑇 . Specifically, when 𝑀 is constructed for a given tree, the
values it contains represent a similarity distribution. In this sense,
𝑝 (𝑡) is the value of the 𝑡𝑡ℎ percentile of that distribution and in-
versely represents the approximation accuracy for the phenotype
extraction. In our experiments, we explore four different values of
𝑡 : 2.5%, 5%, 10% and 20%. Thus 𝑇𝑠 𝑗 is said to be compatible to 𝑇𝑠𝑖 if
𝑓 (𝑦𝑠𝑖 , 𝑦𝑠 𝑗) ≤ 𝑝 (𝑡). Given the fact that the input data for different re-
gression problems have different distributions, including the range
of values of the target, by defining 𝑝 (𝑡) as the 𝑡𝑡ℎ percentile of the
similarity distribution, a robust and problem-independent approach
for approximate simplification is achieved. From this perspective,
the exact simplification corresponds to 𝑡 = 0. To accommodate for
floating-point rounding errors, in our experiments, two semantic
vectors are considered equal if the similarity between them, after
being rounded to five decimals, equals zero.

Figure 2 provides a demonstration of the method. It is divided
into three areas: 𝐺 , 𝑃𝑡=0 and 𝑃𝑡≠0. The grey area 𝐺 depicts the
genotype, while the other two represent different phenotypes, sim-
plifications depending on the value of 𝑡 . For 𝑡 = 0, we perform
exact simplification, thus extracting the true phenotype. For 𝑡 ≠ 0,
we perform approximate simplification. From the figure, 𝑡 = 0 re-
quires only three iterations of the algorithm (represented in red,
blue and green subtrees, respectively). Note that, however, more
redundancies are present within the subtrees. For example, at the
bottom of the red subtree, on the right, we find the expression
0 × 3 × 𝑋1 = 0. However, with 𝑋0 being the smallest semantically
compatible subtree of the large red subtree rooted on +, the algo-
rithm will replace the red subtree completely with 𝑋0, avoiding an
unnecessary replacement of 0 × 3 × 𝑋1 with 0. Additionally, the
algorithm can perform simplification by leveraging information
from different branches. For the subtrees in blue, the semantics of
3×𝑋1 is the same as that of𝑋1+𝑋1+𝑋1. Although both subtrees are
on different branches, this algorithm still identifies this redundancy
and replaces the smallest with the largest.

To better follow the replacement logic for 𝑡 = 0, at the root
of the we provide the respective exact phenotype as a symbolic
expression.

To better understand what happens when 𝑡 ≠ 1, let’s assume
that the result of adding 𝑋3 to 𝑋0 has a small effect on the overall
behavior of𝑇 because variable𝑋3 has small values. The semantics of
each node and the resulting operation are provided as lists, colored
according to the node they relate to. Assuming some value of 𝑡 ≠ 0
(like 10), 𝑓 (𝑦𝑋0 , 𝑦+) ≤ 𝑝 (10); whereas 𝑓 (𝑦𝑋3 , 𝑦+) > 𝑝 (10). Thus,
𝑋0 will replace the subtree rooted at +, resulting in an approximate
phenotype. It is semantically different from that obtained through
exact simplification of the genotype.

4 EXPERIMENTS
4.1 Datasets
We assess ourmethod on five real-world regression problems, which
are described in Table 1.

4.2 Experimental settings
Table 2 lists the hyper-parameters (HPs) used in this study, along
with cross-validation settings. The HPs were selected following

Table 1: Five datasets used in the empirical study.

Dataset #Instances #Features Target range

Boston [28] 506 13 [5, 50]
Bioav [5] 358 241 [0.4, 100.0]

Heating [70] 768 8 [6.01, 43.1]
Slump [76] 103 7 [0, 29]
Strength [75] 1005 8 [0, 1145]

Table 2: Summary of the hyper-parameters. Note that 𝑃 (𝐶)
and 𝑃 (𝑀) indicate the crossover and the mutation probabili-
ties, respectively.

Parameters Values
№Train/test split 70/30%
Cross-validation Monte-Carlo (repeated random subsampling)
№runs 30
№ generations 100
Population’s size 100
Functions (𝐹) {+, -, x, /}
Initialization Ramped Half&Half (RHH) with max depth of 5
Selection tournament with size 4
Genetic operators {swap crossover, subtree mutation}
𝑃 (𝐶) {0.8, 0.2}
𝑃 (𝑀) {0.2, 0.8}
Maximum depth limit Not applied
Stopping criteria Maximum № generations

common practice found across the literature to avoid a computa-
tionally demanding tuning phase. No limit to tree depth was applied
during evolution in order not to interfere with the evolutionary pro-
cess and to allow bloat to reveal itself in all its splendour. Although
this resulted in a heavy computational demand, it allowed us to
perform an unbiased assessment of monitoring the phenotypes.
We used two sets of experiments: (i) one with a low mutation and
high crossover rate, (ii) the other with a high mutation and low
crossover rate. Low mutation / high crossover encourages a more
exploitative search, whereas high mutation / low crossover tends
towards exploration. These cases have different implications on
the genotype of candidate solutions: high recombination of already
existing genetic material in the former, and a higher disruption and
novelty in the latter. Following previous studies about bloat [56, 57],
we expected to observe more bloat to occur with higher crossover
rates.

We rely on GPOL [7] to conduct our experiments. GPOL is a flex-
ible and efficient multi-purpose optimization library in Python that
covers a wide range of stochastic iterative search algorithms, includ-
ing GP. Its modular implementation allows for solving optimization
problems, like the one in this study, and easily incorporates new
methods. The library is open-source and can be found by following
this link. The implementation of the proposed approach can be
found there.

4.3 Experimental findings
This section demonstrates the effects of the GPM on the population
dynamics across five perspectives: size, diversity, fitness, deviation

872

https://gitlab.com/ibakurov/general-purpose-optimization-library
https://gitlab.com/ibakurov/general-purpose-optimization-library

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Banzhaf and Bakurov.

Figure 3: Growing average population length of genotypes,
exact and approximate phenotypes, except for first genera-
tions (inset). Left: low mutation/high crossover; Right: high
mutation/low crossover.

between the genotype and phenotype semantics, and variation
of the proportion of terminals. Each perspective is studied with
two different mutation/crossover rates (low/high and high/low),
provided as sub-figures. Standard TGP normally only reports what
we call the genotype and is used as a baseline. In the plots, it is
represented as a gray line. The exact phenotype is represented
with a black dashed line, whereas the approximate phenotype is
shown in green, red, blue and black solid lines, referring to different
degrees of approximation (2.5%, 5%, 10%, 20%, respectively).

4.3.1 Size. Figure 3 shows the average population length over 100
generations. The subplot on the left shows the low mutation/high
crossover. On the right, a high mutation/low crossover can be found.
The inception plots provide a closer look at the first 5 generations.
From the figure:

• Trees in S-TGP (here, the genotype) grow quickly, except for the
first 1-2 generations.

• Phenotypes also grow after some generations, but much slower,
with approximate phenotypes ordered according to approxima-
tion accuracy 𝑡 .

• The average length of the individuals is larger when a higher
mutation rate is used.

• The latter observation suggests that mutation, unlike what was
expected, is more destructive than crossover for the applications
considered. This makes the evolutionary process foster bloat as
a protective measure. Similar results were found by [66] where
higher mutation provoked larger growth.

• Monitoring the exact phenotype shows a reduction in the average
length of individuals by a factor of 2-3, compared to the genotype.

• Approximate phenotypes show a 10 to 20-fold reduction in the
average length of individuals.

• The sudden drop in the size of individuals in the first generation
is an indication that selection prefers small and fitter individuals
out of the randomly composed trees by RHH. Phenotypes stay
close or drop even further in subsequent generations.

4.3.2 Semantics of Approximate Phenotypes. Figure 4 depicts the
semantics mean absolute deviation (SMAD) between the geno-
type (𝑇) and the respective phenotype approximations (𝑇𝑡 , 𝑡 ∈
{2.5, 5, 10, 20}). Specifically, given the training dataset 𝑋 with

0 20 40 60 80 100
Generation

0.5

1.0

1.5

2.0

2.5

3.0

SM
AD

P(M) = 0.2

0 20 40 60 80 100
Generation

10

20

30

40

50 P(M) = 0.8

Ph. t=2.5% Ph. t=5% Ph. t=10% Ph. t=20%

Figure 4: Mean absolute deviation between the semantics of
the exact and approximated phenotypes. Note difference in
scale.

𝑛 training instances, and the respective outputs of 𝑇 and 𝑇𝑡 , rep-
resented as 𝑦𝑇 and 𝑦𝑇𝑡 , 𝑀𝐴𝐷 (𝑦𝑇 , ˆ𝑦𝑇𝑡) =

∑ | �̂�𝑇 −�̂�𝑇𝑡 |
𝑛 . To enhance

the patterns, we applied a higher of transparency to those lines
representing the intermediate approximations (𝑡 = 5% and 𝑡 = 10%).
On the left, the low mutation/high crossover HP setting is shown,
whereas the high mutation/low crossover setting can be found on
the right. From the figure:
• There is a notable decrease in SMAD in the first generations for
all the cases, likely associated with the fact that trees are still
more random combinations of program elements rather than
refined input-output mappings. Thus, even mild modification
of their structure results in substantial semantic perturbations
when compared to those in later stages of the evolution.

• In general terms, SMAD exhibits an exponential decay. For
𝑃 (𝑀) = 0.2, it is more pronounced whereas for 𝑃 (𝑀) = 0.8
the decay is slower.

• For both mutation rates, one can conclude that the larger the
degree of phenotypic approximation, the larger the SMAD.

• The difference between 𝑡 = 2.5% and 𝑡 = 20% is particularly
notable: a higher degree of approximation results in bolder sim-
plification and, thus larger SMAD.

• When 𝑃 (𝑀) = 0.8, the SMAD tends to exhibit significantly larger
values, see the scale of the subfigure is different by an order of
magnitude.

• This fact might unveil the nature of redundancies between dif-
ferent HPs. Recall that when 𝑃 (𝑀) = 0.2, one expects less ex-
ploration diversity, while with 𝑃 (𝑀) = 0.8, a larger diversity is
expected.

• More disruptive changes in behavior happen when the search is
more explorative.

4.3.3 Diversity. Population diversity has been long considered an
important characteristic of the evolutionary process. Losing diver-
sity, especially at the beginning, frequently translates into prema-
ture convergence. We here examine genotypic diversity defined
as the number of unique trees per generation. Figure 5 depicts
the mean of genotypic diversity in the two HP settings: low muta-
tion/high crossover on the left, and high mutation/low crossover
on the right. Analysis of the figure suggests that:
• During the first few generations we find a strong decrease in
genotypic diversity. The decrease is more dramatic, however, for
𝑃 (𝑀) = 0.2 as less exploration takes place.

873

On the Nature of the Phenotype in Tree Genetic Programming GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

0 20 40 60 80 100
Generation

0

20

40

60

80

100

U
ni
qu

e
tr
ee

s

P(M) = 0.2

0 20 40 60 80 100
Generation

0

20

40

60

80

100
P(M) = 0.8

Gen. Ph. Ph. t=2.5% Ph. t=5% Ph. t=10% Ph. t=20%

Figure 5: Diversity across evolutionary runs. Genotyic diver-
sity stays high for high mutation scenario.

• Different lines seem to stack one upon the other and the order
is a function of the approximation degree. In other words, the
rougher the phenotype approximation, the smaller the diversity
of the resulting population.

• In general terms, the diversity exhibits an exponential decay. For
the highmutation setting, the decay is slower as more exploration
takes place.

• There is an exception to the trend lines, however, when looking
at the genotypic diversity for 𝑃 (𝑀) = 0.8. Individual genotypes
tend to remain different in terms of their genomes across the
evolutionary run.

• After 40-50 generations of the evolutionary process, the number
of unique trees for the approximated phenotypes varies in a
small range, around 15-25. This is observed for both 𝑃 (𝑀) = 0.2
and 𝑃 (𝑀) = 0.8. In other words, the genotypic diversity of the
populations consisting of the approximated phenotype converges
to the same level, regardless of the crossover/mutation rates.

• We can observe a growing trend for the exact phenotype (black
dashed line) after 20 generations. This can be an indication that
even the phenotype is not protected against bloat. Note that this
phenomenon is more pronounced in the high-mutation setup,
which was found to be associated with higher bloat in Figure 3
(possibly caused by destructive effects of the mutation operator).

4.3.4 Fitness. For each generation, we record the average popula-
tion fitness, for both training and test data. Fitness here is error, so
smaller is better. Figure 6 depicts median values for the two different
mutation/crossover rates, represented here in distinct rows. Train-
ing data are depicted on the left, test data on the right. A higher
line transparency was used for intermediate levels of phenotype
approximations to enhance the main patterns. In the figure we can
observe:
• There is a dramatic improvement in population fitness in the first
few generations, which can be related to diversity loss.

• Globally, fitness/error exhibits an exponential reduction. For a
higher mutation setting, the decay is slower as more exploration
takes place.

• The rougher the phenotype approximation (and the smaller the
phenotype), the better the fitness of the resulting individuals.

• This can be attributed to the presence of noise in the data that
notably affects the population. Approximation seems to reduce
these effects, leading to predictions that are closer to the overall
trend.

0 20 40 60 80 100
Generation

0

2

4

6

8

10

12

̃
RM

SE

P(M) = 0.20 | Training

0 20 40 60 80 100
Generation

0

2

4

6

8

10

12
P(M) = 0.20 | Test

Gen. Ph. Ph. t= 2.5% Ph. t= 5% Ph. t= 10% Ph. t= 20%

0 20 40 60 80 100
Generation

0

20

40

60

80

100

120

̃
RM

SE

P(M) = 0.80 | Training

0 20 40 60 80 100
Generation

0

20

40

60

80

100

120
P(M) = 0.80 | Test

Figure 6: Median fitness in the population. Approximate phe-
notypes exhibit better fitness.

• Fitness progress achieved with 𝑃 (𝑀) = 0.8 are notably larger
than those observed for 𝑃 (𝑀) = 0.2, particularly in the first half
of runs.

• The conclusions hold for both training and test data.

Figure 7 shows the median fitness of the best/elite individuals (se-
lected on the training data). The structure of the figure conforms to
that of Figure 6. Unlike what was observed with population fitness,
larger phenotypic approximation results in virtually no progress
in elite fitness and we see two reasons for this. The first is the
objective of the search - minimizing RMSE - a global measure that
benefits individuals who are generally good, potentially neglecting
training cases that are not widely well fit. The second is the fact
that elites can be seen as a reflection of the exploitative nature of
the search. Approximate simplification might remove components
of elite individuals that contribute to their success, pushing towards
the exploration side of the search. In these conditions, there will be
cases where the final best individual in the run cannot be simplified
at all. To remedy this, we plan to employ Lexicase selection [31, 40]
and a more careful simplification for the elite solutions in the future
works.

The overlap between the lines representing the exact phenotype
(𝑝 (𝑡) = 0) and the genotype tree is because semantics are the same.
Some infrequent mismatches, however, can be observed due to
minor floating-point rounding errors that sometimes occur in large
trees, percolating through the tree. From all the generated results,
these correspond to 1% of cases and mostly in one of the problems.

4.3.5 Structure. Figure 8 shows the proportion of terminals (input
features and constants) in trees during evolutionary runs. The rest
of the nodes are operators. We can observe that:

• Genotypes exhibit a notable reduction of terminal proportion in
the first few generations. This is associated with a growth in tree
depth (consequently more function nodes).

874

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Banzhaf and Bakurov.

0 20 40 60 80 100
Generation

0.85

0.90

0.95

1.00

1.05

̃
RM

SE

P(M) = 0.20 | Training

0 20 40 60 80 100
Generation

0.85

0.90

0.95

1.00

1.05

P(M) = 0.20 | Test

Gen. Ph. Ph. t= 2.5% Ph. t= 5% Ph. t= 10% Ph. t= 20%

0 20 40 60 80 100
Generation

0.85

0.90

0.95

1.00

1.05

̃
RM

SE

P(M) = 0.80 | Training

0 20 40 60 80 100
Generation

0.85

0.90

0.95

1.00

1.05

P(M) = 0.80 | Test

Figure 7: Median fitness of elite individuals. The fitness of
phenotypes deteriorates with approximation.

0 20 40 60 80 100
Generation

35

40

45

50

55

60

65

70

Te
rm

in
al
s
%

P(M) = 0.2

0 20 40 60 80 100
Generation

35

40

45

50

55

60

65

70 P(M) = 0.8

Gen. Ph. Ph. t=2.5% Ph. t=5% Ph. t=10% Ph. t=20%

Figure 8: Terminal nodes percentage in the elite trees. Being
smaller, phenotypes have a higher percentage of terminals.

• Later in the search, the proportion of terminals stabilizes around
35-40%.

• As was previously observed in other figures, lines tend to follow
an order as a function of the approximation degree.

• The rougher the approximation, the larger the proportion of
terminals to functions. This is expected since rougher approxima-
tion results in smaller phenotypic trees, with a smaller number
of levels and fewer function nodes.

• A larger proportion of terminals can be observed with a higher
mutation rate (subplot on the right).We consider this to be related
to a larger simplification observed for this setting (see Figure 3).
Figure 9 provides an example of the exact (𝑡 = 0) and approx-

imated (𝑡 = {2.5, 5, 10, 20}) phenotype(s) automatically extracted
using our approach for the elite observed at generation 95 of run 2
for the Slump problem. The genotype (𝐺) is represented in the gray
box. The exact phenotype is represented in the upper right box
(𝑃{0, 2.5}), obtained by removing the red subtree, due to zero con-
stant multiplication (nodes circled red). This happens to be the same
phenotype as for the approximate phenotype with 𝑡 = 2.5% which

+

+

𝟎. 𝟒

*

+

𝑿𝟏

*

+

*

𝑿𝟑 𝑿𝟔

𝑿𝟑 𝑿𝟔 + *

-

𝑿𝟐 𝑿𝟒

+

𝑿𝟓 𝑿𝟓

-

𝑿𝟒 𝑿𝟐

*

𝑿𝟒 𝟎

𝑮

+

+

𝟎. 𝟒

*

+

𝑿𝟏

*

𝑿𝟑 𝑿𝟔

𝑿𝟑 𝑿𝟔

𝟎 𝑿𝟔

𝟎. 𝟒

𝑷𝒕= 𝟎, 𝟐.𝟓

𝑷𝒕=𝟓 𝑷𝒕=𝟏𝟎

𝑷𝒕=𝟐𝟎

Figure 9: Genotype and exact/approximated phenotypes with
our approach on the Slump problem. See text for details.

did not produce a smaller tree. The rougher approximations consist
of single-node trees, which are of small utility for this application.

5 CONCLUSIONS
Traditionally, only the genotype has been considered in Tree Ge-
netic Programming (TGP). Here we study the notion of pheno-
type and its relationship to the genotype in TGP to clarify what
evolved solutions truly predict. We developed a unique simplifica-
tion method that maps a genotype to its phenotype by removing
semantically ineffective code from the genotype. This mapping
shows that smaller phenotypes are hidden within larger genotypic
trees but can be extracted via simplification, achieving a size re-
duction of up to 20 folds, which facilitates understanding. We also
study how simplification affects population dynamics on a set of five
real-world problems, averaging over effects of individual problems.
Particularly, analysis of the diversity suggests that the genotype
population is normally based on a small number of unique pheno-
types, even when evolution is more explorative.

When we extract approximate phenotypes, defined by behavior
that is in the statistical neighborhood of the target behavior, we ob-
serve larger semantic perturbations in the early stages of evolution.
In the end, however, approximated phenotypes allow for better
population fitness and smaller phenotypes, although elite solutions
show deterioration when approximated. Phenotypes have not been
explore in Tree GP to date but can provide valuable insights into
evolutionary dynamics and hopefully help in the development of
new bloat control methods. It might also lead to more efficient sim-
plification algorithm and just generally lead the way to improved
evolutionary search algorithms.

ACKNOWLEDGEMENTS
We gratefully ackowledge funding from the John R. Koza endow-
ment to Michigan State University. MSU’s High Performance Com-
puting Center provided the compute power for this research.

875

On the Nature of the Phenotype in Tree Genetic Programming GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

REFERENCES
[1] Qurrat Ul Ain, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang. 2022. Genetic

programming for automatic skin cancer image classification. Expert Systems with
Applications 197 (2022), 116680. https://doi.org/10.1016/j.eswa.2022.116680

[2] Eva Alfaro-Cid, JJ Merelo, F Fernández de Vega, Anna Isabel Esparcia-Alcázar, and
Ken Sharman. 2010. Bloat control operators and diversity in genetic programming:
A comparative study. Evolutionary Computation 18, 2 (2010), 305–332.

[3] Lee Altenberg. 1994. The Evolution of Evolvability in Genetic Programming. In
Advances in Genetic Programming, Volume 1. The MIT Press, 47–74. https://doi.
org/10.7551/mitpress/1108.003.0008 arXiv:https://direct.mit.edu/book/chapter-
pdf/1962544/9780262277181_c000300.pdf

[4] Peter J. Angeline. 1994. Genetic Programming and Emergent Intelligence. MIT
Press, Cambridge, MA, USA, 75–97.

[5] Francesco Archetti, Stefano Lanzeni, Enza Messina, and Leonardo Vanneschi.
2006. Genetic Programming for Human Oral Bioavailability of Drugs (GECCO
’06). Association for Computing Machinery, New York, NY, USA, 255–262. https:
//doi.org/10.1145/1143997.1144042

[6] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.
2019. DENSER: deep evolutionary network structured representation. Genetic
Programming and Evolvable Machines 20, 1 (March 1 2019), 5–35. https://doi.
org/10.1007/s10710-018-9339-y

[7] Illya Bakurov,Marco Buzzelli, Mauro Castelli, Leonardo Vanneschi, and Raimondo
Schettini. 2021. General Purpose Optimization Library (GPOL): A Flexible and
Efficient Multi-Purpose Optimization Library in Python. Applied Sciences 11, 11
(2021). https://doi.org/10.3390/app11114774

[8] Illya Bakurov, Marco Buzzelli, Raimondo Schettini, Mauro Castelli, and Leonardo
Vanneschi. 2023. Full-Reference Image Quality Expression via Genetic Pro-
gramming. IEEE Transactions on Image Processing 32 (2023), 1458–1473. https:
//doi.org/10.1109/TIP.2023.3244662

[9] Illya Bakurov, Marco Buzzelli, Raimondo Schettini, Mauro Castelli, and Leonardo
Vanneschi. 2023. Semantic segmentation network stacking with genetic program-
ming. Genetic Programming and Evolvable Machines 24, 2 (Dec. 2023), Article
number: 15. https://doi.org/doi:10.1007/s10710-023-09464-0 Special Issue on
Highlights of Genetic Programming 2022 Events.

[10] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. 1998.
Genetic Programming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

[11] Wolfgang Banzhaf, Ting Hu, and Gabriela Ochoa. 2024. How the Combinatorics
of Neutral Spaces Leads Genetic Programming to Discover Simple Solutions.
Genetic Programming Theory and Practice XX (2024), 1–22.

[12] Wolfgang Banzhaf and William B. Langdon. 2002. Some considerations on the
reason for bloat. Genetic Programming and Evolvable Machines 3 (2002), 81–91.

[13] Tobias Blickle and Lothar Thiele. 1994. Genetic Programming and Redundancy. In
Genetic Algorithms within the Framework of Evolutionary Computation (Workshop
at KI-94, Saarbrücken), J. Hopf (Ed.). Max-Planck-Institut für Informatik (MPI-
I-94-241), Im Stadtwald, Building 44, D-66123 Saarbrücken, Germany, 33–38.
http://www.tik.ee.ethz.ch/~tec/publications/bt94/GPandRedundancy.ps.gz

[14] M.F. Brameier and W. Banzhaf. 2007. Linear Genetic Programming. Springer US.
https://books.google.com/books?id=AhZJ9SIChnQC

[15] Mauro Castelli and Luca Manzoni. 2019. GSGP-C++ 2.0: A geometric semantic
genetic programming framework. SoftwareX 10 (2019), 100313. https://doi.org/
10.1016/j.softx.2019.100313

[16] João Correia, Leonardo Vieira, Nereida Rodriguez-Fernandez, Juan Romero, and
Penousal Machado. 2021. Evolving Image Enhancement Pipelines. In Artificial
Intelligence in Music, Sound, Art and Design, Juan Romero, Tiago Martins, and
Nereida Rodríguez-Fernández (Eds.). Springer International Publishing, Cham,
82–97.

[17] João Correia, Daniel Lopes, Leonardo Vieira, Nereida Rodriguez-Fernandez,
Adrian Carballal, Juan Romero, and Penousal Machado. 2022. Experiments in Evo-
lutionary Image Enhancement with ELAINE. Genetic Programming and Evolvable
Machines 23, 4 (dec 2022), 557–579. https://doi.org/10.1007/s10710-022-09445-9

[18] Kévin Cortacero, Brienne McKenzie, Sabina Müller, Roxana Khazen, Fanny
Lafouresse, Gaëlle Corsaut, Nathalie Van Acker, François-Xavier Frenois, Lau-
rence Lamant, Nicolas Meyer, Béatrice Vergier, Dennis G. Wilson, Hervé Luga,
Oskar Staufer, Michael L. Dustin, Salvatore Valitutti, and Sylvain Cussat-Blanc.
2023. Evolutionary design of explainable algorithms for biomedical image segmen-
tation. Nature Communications 14, 1 (2023), 7112. https://doi.org/10.1038/s41467-
023-42664-x

[19] Sylvain Cussat-Blanc, Kyle Harrington, and Wolfgang Banzhaf. 2019. Artificial
gene regulatory networks—a review. Artificial life 24, 4 (2019), 296–328.

[20] Francisco Fernández de Vega, Gustavo Olague, Francisco Chávez, Daniel Lanza,
Wolfgang Banzhaf, and Erik Goodman. 2020. It is time for new perspectives on
how to fight bloat in GP. Genetic Programming Theory and Practice XVII (2020),
25–38.

[21] Francisco Fernández de Vega, Gustavo Olague, Daniel Lanza, Wolfgang Banzhaf,
Erik Goodman, Jose Menendez-Clavijo, Axel Martinez, et al. 2020. Time and

individual duration in genetic programming. IEEE Access 8 (2020), 38692–38713.
[22] Dominique de Vienne. 2022. What is a phenotype? History and new developments

of the concept. Genetica 150, 3 (2022), 153–158.
[23] Stephen Dignum and Riccardo Poli. 2007. Generalisation of the Limiting Dis-

tribution of Program Sizes in Tree-Based Genetic Programming and Analy-
sis of Its Effects on Bloat. In Proceedings of the 9th Annual Conference on Ge-
netic and Evolutionary Computation (London, England) (GECCO ’07). Asso-
ciation for Computing Machinery, New York, NY, USA, 1588–1595. https:
//doi.org/10.1145/1276958.1277277

[24] Stephen Dignum and Riccardo Poli. 2008. Crossover, Sampling, Bloat and the
Harmful Effects of Size Limits. InGenetic Programming, Michael O’Neill, Leonardo
Vanneschi, Steven Gustafson, Anna Isabel Esparcia Alcázar, Ivanoe De Falco,
Antonio Della Cioppa, and Ernesto Tarantino (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 158–169.

[25] Stephen Dignum and Riccardo Poli. 2008. Operator Equalisation and Bloat Free
GP. In European Conference on Genetic Programming. https://api.semanticscholar.
org/CorpusID:1863814

[26] Benjamin P. Evans, Bing Xue, and Mengjie Zhang. 2019. What’s inside the
Black-Box? A Genetic Programming Method for Interpreting Complex Machine
Learning Models (GECCO ’19). Association for Computing Machinery, New York,
NY, USA, 1012–1020. https://doi.org/10.1145/3321707.3321726

[27] Ivo Goncalves, Sara Silva, and Carlos M. Fonseca. 2015. Semantic Learning
Machine: A Feedforward Neural Network Construction Algorithm Inspired by
Geometric Semantic Genetic Programming. In Progress in Artificial Intelligence -
17th Portuguese Conference on Artificial Intelligence, EPIA 2015 (Lecture Notes in
Computer Science, Vol. 9273), Francisco C. Pereira, Penousal Machado, Ernesto
Costa, and Amilcar Cardoso (Eds.). Springer, Coimbra, Portugal, 280–285. https:
//doi.org/doi:10.1007/978-3-319-23485-4_28

[28] David Harrison and Daniel L Rubinfeld. 1978. Hedonic housing prices and the
demand for clean air. Journal of Environmental Economics and Management 5, 1
(1978), 81–102. https://doi.org/10.1016/0095-0696(78)90006-2

[29] Nathan Haut, Bill Punch, and Wolfgang Banzhaf. 2023. Active Learning Informs
Symbolic RegressionModel Development in Genetic Programming. In Proceedings
of the Companion Conference on Genetic and Evolutionary Computation (Lisbon,
Portugal) (GECCO ’23 Companion). Association for Computing Machinery, New
York, NY, USA, 587–590. https://doi.org/10.1145/3583133.3590577

[30] Thomas Helmuth, Nicholas Freitag McPhee, Edward Pantridge, and Lee Spector.
2017. Improving generalization of evolved programs through automatic simplifi-
cation. In Proceedings of the Genetic and Evolutionary Computation Conference
(Berlin, Germany) (GECCO ’17). Association for Computing Machinery, New
York, NY, USA, 937–944. https://doi.org/10.1145/3071178.3071330

[31] Thomas Helmuth, Lee Spector, and James Matheson. 2015. Solving Uncompro-
mising Problems With Lexicase Selection. IEEE Transactions on Evolutionary
Computation 19, 5 (2015), 630–643. https://doi.org/10.1109/TEVC.2014.2362729

[32] Vijay Ingalalli, Sara Silva, Mauro Castelli, and Leonardo Vanneschi. 2014. A
Multi-dimensional Genetic Programming Approach for Multi-class Classification
Problems. In Genetic Programming, Miguel Nicolau, Krzysztof Krawiec, Malcolm I.
Heywood, Mauro Castelli, Pablo García-Sánchez, Juan J. Merelo, Victor M. Ri-
vas Santos, and Kevin Sim (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
48–60.

[33] Muhammad Iqbal, Bing Xue, Harith Al-Sahaf, and Mengjie Zhang. 2017. Cross-
Domain Reuse of Extracted Knowledge in Genetic Programming for Image Clas-
sification. IEEE Transactions on Evolutionary Computation 21, 4 (2017), 569–587.
https://doi.org/10.1109/TEVC.2017.2657556

[34] David Jackson. 2010. The Identification and Exploitation of Dormancy in Genetic
Programming. Genetic Programming and Evolvable Machines 11, 1 (mar 2010),
89–121. https://doi.org/10.1007/s10710-009-9086-1

[35] Noman Javed, Fernand Gobet, and Peter Lane. 2022. Simplification of genetic
programs: a literature survey. Data Mining and Knowledge Discovery 36, 4 (07
2022), 1279–1300. https://doi.org/10.1007/s10618-022-00830-7

[36] David Kinzett, Mark Johnston, and Mengjie Zhang. 2009. Numerical simplifica-
tion for bloat control and analysis of building blocks in genetic programming.
Evolutionary Intelligence 2 (2009), 151–168.

[37] Marc W Kirschner and John C Gerhart. 2005. The plausibility of life: Resolving
Darwin’s dilemma. Yale University Press.

[38] J.R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press.

[39] William La Cava, Sara Silva, Kourosh Danai, Lee Spector, Leonardo Vanneschi,
and Jason H. Moore. 2019. Multidimensional genetic programming for multiclass
classification. Swarm and Evolutionary Computation 44 (2019), 260–272. https:
//doi.org/10.1016/j.swevo.2018.03.015

[40] William La Cava, Lee Spector, and Kourosh Danai. 2016. Epsilon-Lexicase Selec-
tion for Regression. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016 (Denver, Colorado, USA) (GECCO ’16). Association for Comput-
ing Machinery, New York, NY, USA, 741–748. https://doi.org/10.1145/2908812.
2908898

[41] W. B. Langdon and R. Poli. 1998. Fitness Causes Bloat. In Soft Computing in
Engineering Design and Manufacturing, P. K. Chawdhry, R. Roy, and R. K. Pant

876

https://doi.org/10.1016/j.eswa.2022.116680
https://doi.org/10.7551/mitpress/1108.003.0008
https://doi.org/10.7551/mitpress/1108.003.0008
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/1962544/9780262277181_c000300.pdf
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/1962544/9780262277181_c000300.pdf
https://doi.org/10.1145/1143997.1144042
https://doi.org/10.1145/1143997.1144042
https://doi.org/10.1007/s10710-018-9339-y
https://doi.org/10.1007/s10710-018-9339-y
https://doi.org/10.3390/app11114774
https://doi.org/10.1109/TIP.2023.3244662
https://doi.org/10.1109/TIP.2023.3244662
https://doi.org/doi:10.1007/s10710-023-09464-0
http://www.tik.ee.ethz.ch/~tec/publications/bt94/GPandRedundancy.ps.gz
https://books.google.com/books?id=AhZJ9SIChnQC
https://doi.org/10.1016/j.softx.2019.100313
https://doi.org/10.1016/j.softx.2019.100313
https://doi.org/10.1007/s10710-022-09445-9
https://doi.org/10.1038/s41467-023-42664-x
https://doi.org/10.1038/s41467-023-42664-x
https://doi.org/10.1145/1276958.1277277
https://doi.org/10.1145/1276958.1277277
https://api.semanticscholar.org/CorpusID:1863814
https://api.semanticscholar.org/CorpusID:1863814
https://doi.org/10.1145/3321707.3321726
https://doi.org/doi:10.1007/978-3-319-23485-4_28
https://doi.org/doi:10.1007/978-3-319-23485-4_28
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1145/3583133.3590577
https://doi.org/10.1145/3071178.3071330
https://doi.org/10.1109/TEVC.2014.2362729
https://doi.org/10.1109/TEVC.2017.2657556
https://doi.org/10.1007/s10710-009-9086-1
https://doi.org/10.1007/s10618-022-00830-7
https://doi.org/10.1016/j.swevo.2018.03.015
https://doi.org/10.1016/j.swevo.2018.03.015
https://doi.org/10.1145/2908812.2908898
https://doi.org/10.1145/2908812.2908898

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Banzhaf and Bakurov.

(Eds.). Springer London, London, 13–22.
[42] W. B. Langdon and R. Poli. 1998. Fitness causes bloat: Mutation. In Genetic

Programming, Wolfgang Banzhaf, Riccardo Poli, Marc Schoenauer, and Terence C.
Fogarty (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 37–48.

[43] William B. Langdon and Riccardo Poli. 2002. Foundations of Genetic Programming.
https://api.semanticscholar.org/CorpusID:13348347

[44] W. B. Langdon, T. Soule, R. Poli, and J. A . Foster. 1999. The Evolution of Size and
Shape. InAdvances in Genetic Programming, Volume 3. TheMIT Press. https://doi.
org/10.7551/mitpress/1110.003.0012 arXiv:https://direct.mit.edu/book/chapter-
pdf/2183015/9780262284127_cah.pdf

[45] Andrew Lensen, Bing Xue, and Mengjie Zhang. 2022. Genetic Programming for
Manifold Learning: Preserving Local Topology. IEEE Transactions on Evolutionary
Computation 26, 4 (2022), 661–675. https://doi.org/10.1109/TEVC.2021.3106672

[46] Sean Luke and Liviu Panait. 2002. Fighting Bloat with Nonparametric Parsimony
Pressure. In Parallel Problem Solving from Nature — PPSN VII, Juan Julián Merelo
Guervós, Panagiotis Adamidis, Hans-Georg Beyer, Hans-Paul Schwefel, and José-
Luis Fernández-Villacañas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
411–421.

[47] Aniek F. Markus, Jan A. Kors, and Peter R. Rijnbeek. 2021. The role of explainabil-
ity in creating trustworthy artificial intelligence for health care: A comprehensive
survey of the terminology, design choices, and evaluation strategies. Journal
of Biomedical Informatics 113 (2021), 103655. https://doi.org/10.1016/j.jbi.2020.
103655

[48] James McDermott, Edgar Galván-Lopéz, and Michael O’Neill. 2011. A Fine-
Grained View of Phenotypes and Locality in Genetic Programming. Springer New
York, New York, NY, 57–76. https://doi.org/10.1007/978-1-4614-1770-5_4

[49] Nicholas Freitag McPhee and Justin Darwin Miller. 1995. Accurate Replication
in Genetic Programming. In Proceedings of the 6th International Conference on
Genetic Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
303–309.

[50] Melanie Mitchell, John Holland, and Stephanie Forrest. 1993. When will a
Genetic Algorithm Outperform Hill Climbing. In Advances in Neural Informa-
tion Processing Systems, J. Cowan, G. Tesauro, and J. Alspector (Eds.), Vol. 6.
Morgan-Kaufmann. https://proceedings.neurips.cc/paper_files/paper/1993/file/
ab88b15733f543179858600245108dd8-Paper.pdf

[51] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. 2012. Geometric
Semantic Genetic Programming. In Parallel Problem Solving from Nature - PPSN
XII, Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy Deb, Stephanie Forrest,
Giuseppe Nicosia, and Mario Pavone (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 21–31.

[52] Naoki Mori, Bob McKay, Nguyen Xuan Hoai, Daryl Essam, and Saori Takeuchi.
2008. A new method for simplifying algebraic expressions in genetic program-
ming called equivalent decision simplification. In SCIS & ISIS SCIS & ISIS 2008.
Japan Society for Fuzzy Theory and Intelligent Informatics, 1671–1676.

[53] Luis Muñoz, Sara Silva, and Leonardo Trujillo. 2015. M3GP –Multiclass Classifica-
tion with GP. In Genetic Programming, Penousal Machado, Malcolm I. Heywood,
James McDermott, Mauro Castelli, Pablo García-Sánchez, Paolo Burelli, Sebastian
Risi, and Kevin Sim (Eds.). Springer International Publishing, Cham, 78–91.

[54] Kourosh Neshatian, Mengjie Zhang, and Peter Andreae. 2012. A Filter Approach
to Multiple Feature Construction for Symbolic Learning Classifiers Using Genetic
Programming. IEEE Transactions on Evolutionary Computation 16, 5 (2012), 645–
661. https://doi.org/10.1109/TEVC.2011.2166158

[55] Quang Uy Nguyen and Thi Huong Chu. 2020. Semantic approximation for reduc-
ing code bloat in genetic programming. Swarm and Evolutionary Computation 58
(2020), 100729.

[56] Peter Nordin and W. Banzhaf. 1995. Complexity Compression and Evolu-
tion. In International Conference on Genetic Algorithms. 310–317. https://api.
semanticscholar.org/CorpusID:16415863

[57] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. 1996. Explicitly De-
fined Introns and Destructive Crossover in Genetic Programming. In Ad-
vances in Genetic Programming, Volume 2. The MIT Press. https://doi.
org/10.7551/mitpress/1109.003.0010 arXiv:https://direct.mit.edu/book/chapter-
pdf/2186519/9780262290791_caf.pdf

[58] Randal S. Olson and Jason H. Moore. 2019. TPOT: A Tree-Based Pipeline Optimiza-
tion Tool for Automating Machine Learning. Springer International Publishing,
Cham, 151–160. https://doi.org/10.1007/978-3-030-05318-5_8

[59] Riccardo Poli. 2003. A simple but theoretically-motivated method to control
bloat in genetic programming. In European Conference on Genetic Programming.
Springer, 204–217.

[60] Riccardo Poli, Nicholas Freitag McPhee, and Leonardo Vanneschi. 2008. Elitism
Reduces Bloat in Genetic Programming. In Proceedings of the 10th Annual Con-
ference on Genetic and Evolutionary Computation (Atlanta, GA, USA) (GECCO
’08). Association for Computing Machinery, New York, NY, USA, 1343–1344.
https://doi.org/10.1145/1389095.1389355

[61] Peter Rockett. 2020. Pruning of genetic programming trees using permutation
tests. Evolutionary Intelligence 13, 4 (2020), 649–661. https://doi.org/doi:10.1007/
s12065-020-00379-8

[62] Sara Silva. 2011. Reassembling Operator Equalisation: A Secret Revealed. In Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
(Dublin, Ireland) (GECCO ’11). Association for Computing Machinery, New York,
NY, USA, 1395–1402. https://doi.org/10.1145/2001576.2001764

[63] Sara Silva and Ernesto Costa. 2009. Dynamic limits for bloat control in genetic
programming and a review of past and current bloat theories. Genetic Program-
ming and Evolvable Machines 10 (2009), 141–179. https://api.semanticscholar.
org/CorpusID:10925054

[64] Sara Silva and Leonardo Vanneschi. 2009. Operator Equalisation, Bloat and
Overfitting: A Study on Human Oral Bioavailability Prediction. In Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation (Montreal,
Québec, Canada) (GECCO ’09). Association for Computing Machinery, New York,
NY, USA, 1115–1122. https://doi.org/10.1145/1569901.1570051

[65] Sara Silva and Leonardo Vanneschi. 2012. Bloat Free Genetic Programming: Appli-
cation to Human Oral Bioavailability Prediction. Int. J. Data Min. Bioinformatics
6, 6 (nov 2012), 585–601. https://doi.org/10.1504/IJDMB.2012.050266

[66] Terence Soule and Robert B. Heckendorn. 2002. An Analysis of the Causes of
Code Growth in Genetic Programming. Genetic Programming and Evolvable
Machines 3, 3 (Sept. 2002), 283–309. https://doi.org/doi:10.1023/A:1020115409250

[67] Lee Spector and Thomas Helmuth. 2014. Effective simplification of evolved
push programs using a simple, stochastic hill-climber. In Proceedings of the Com-
panion Publication of the 2014 Annual Conference on Genetic and Evolutionary
Computation. 147–148.

[68] Walter Alden Tackett. 1994. Recombination, Selection, and the Genetic Construction
of Computer Programs. Ph. D. Dissertation. USA.

[69] Binh Tran, Bing Xue, and Mengjie Zhang. 2019. Genetic programming for
multiple-feature construction on high-dimensional classification. Pattern Recog-
nition 93 (2019), 404–417. https://doi.org/10.1016/j.patcog.2019.05.006

[70] Athanasios Tsanas and Angeliki Xifara. 2012. Accurate quantitative estimation
of energy performance of residential buildings using statistical machine learning
tools. Energy and Buildings 49 (2012), 560–567. https://doi.org/10.1016/j.enbuild.
2012.03.003

[71] Qurrat Ul Ain, Bing Xue, Harith Al-Sahaf, and Mengjie Zhang. 2017. Genetic
programming for skin cancer detection in dermoscopic images. In 2017 IEEE
Congress on Evolutionary Computation (CEC) (Donostia, San Sebastián, Spain).
IEEE Press, 2420–2427. https://doi.org/10.1109/CEC.2017.7969598

[72] Heidi Vainio-Pekka, Mamia Ori-Otse Agbese, Marianna Jantunen, Ville Vakkuri,
Tommi Mikkonen, Rebekah Rousi, and Pekka Abrahamsson. 2023. The Role of
Explainable AI in the Research Field of AI Ethics. ACM Trans. Interact. Intell. Syst.
13, 4, Article 26 (dec 2023), 39 pages. https://doi.org/10.1145/3599974

[73] Peter A Whigham and Grant Dick. 2009. Implicitly controlling bloat in genetic
programming. IEEE Transactions on Evolutionary Computation 14, 2 (2009), 173–
190.

[74] Phillip Wong and Mengjie Zhang. 2006. Algebraic simplification of GP programs
during evolution. In Proc. 8th Annual Conference on Genetic and Evolutionary
Computation (GECCO-2006). ACM Press, New York, 927–934.

[75] I-Cheng Yeh. 2007. Concrete Compressive Strength. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C5PK67.

[76] I-Cheng Yeh. 2009. Concrete Slump Test. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5FG7D.

[77] Mengjie Zhang and Will Smart. 2004. Multiclass Object Classification Using Ge-
netic Programming. In Applications of Evolutionary Computing, Günther R. Raidl,
Stefano Cagnoni, Jürgen Branke, David Wolfe Corne, Rolf Drechsler, Yaochu Jin,
Colin G. Johnson, Penousal Machado, Elena Marchiori, Franz Rothlauf, George D.
Smith, and Giovanni Squillero (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 369–378.

877

https://api.semanticscholar.org/CorpusID:13348347
https://doi.org/10.7551/mitpress/1110.003.0012
https://doi.org/10.7551/mitpress/1110.003.0012
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2183015/9780262284127_cah.pdf
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2183015/9780262284127_cah.pdf
https://doi.org/10.1109/TEVC.2021.3106672
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1007/978-1-4614-1770-5_4
https://proceedings.neurips.cc/paper_files/paper/1993/file/ab88b15733f543179858600245108dd8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1993/file/ab88b15733f543179858600245108dd8-Paper.pdf
https://doi.org/10.1109/TEVC.2011.2166158
https://api.semanticscholar.org/CorpusID:16415863
https://api.semanticscholar.org/CorpusID:16415863
https://doi.org/10.7551/mitpress/1109.003.0010
https://doi.org/10.7551/mitpress/1109.003.0010
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2186519/9780262290791_caf.pdf
https://arxiv.org/abs/https://direct.mit.edu/book/chapter-pdf/2186519/9780262290791_caf.pdf
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1145/1389095.1389355
https://doi.org/doi:10.1007/s12065-020-00379-8
https://doi.org/doi:10.1007/s12065-020-00379-8
https://doi.org/10.1145/2001576.2001764
https://api.semanticscholar.org/CorpusID:10925054
https://api.semanticscholar.org/CorpusID:10925054
https://doi.org/10.1145/1569901.1570051
https://doi.org/10.1504/IJDMB.2012.050266
https://doi.org/doi:10.1023/A:1020115409250
https://doi.org/10.1016/j.patcog.2019.05.006
https://doi.org/10.1016/j.enbuild.2012.03.003
https://doi.org/10.1016/j.enbuild.2012.03.003
https://doi.org/10.1109/CEC.2017.7969598
https://doi.org/10.1145/3599974

	Abstract
	1 Introduction
	2 Background
	2.1 Bloat
	2.2 Simplification
	2.3 Genotype and Phenotype - Definitions and Relations

	3 The Phenotype in Tree Genetic Programming
	3.1 Approximate simplification accuracy

	4 Experiments
	4.1 Datasets
	4.2 Experimental settings
	4.3 Experimental findings

	5 Conclusions
	References

