
A Modular Memory Framework for Time Series Prediction
Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro

BEACON Center for the Study of Evolution in Action
Michigan State University

{kellys27,newsted1,banzhafw,gondroce}@msu.edu

ABSTRACT
Tangled Program Graphs (TPG) is a framework for genetic pro-
gramming which has shown promise in challenging reinforcement
learning problems with discrete action spaces. The approach has re-
cently been extended to incorporate temporal memory mechanisms
that enable operation in environments with partial-observability at
multiple timescales. Here we propose a highly-modular memory
structure that manages temporal properties of a task and enables
operation in problems with continuous action spaces. This signifi-
cantly broadens the scope of real-world applications for TPGs, from
continuous-action reinforcement learning to time series forecasting.
We begin by testing the new algorithm on a suite of symbolic regres-
sion benchmarks. Next, we evaluate the method in 3 challenging
time series forecasting problems. Results generally match the qual-
ity of state-of-the-art solutions in both domains. In the case of time
series prediction, we show that temporal memory eliminates the
need to pre-specify a fixed-size sliding window of previous values,
or autoregressive state, which is used by all compared methods.
This is significant because it implies that no prior model for a time
series is necessary, and the forecaster may adapt more easily if the
properties of a series change significantly over time.

CCS CONCEPTS
• Computing methodologies → Machine learning; Genetic
programming; Bio-inspired approaches;

KEYWORDS
Genetic Programming, Modularity, Memory, Time Series Prediction
ACM Reference Format:
Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro. 2020.
A Modular Memory Framework for Time Series Prediction. In Genetic and
Evolutionary Computation Conference (GECCO ’20), July 8–12, 2020, Cancun,
Mexico. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3377930.
3390216

1 INTRODUCTION
Time Series Forecasting, or predicting future values based on previ-
ously observed values, is an important aspect of many real-world
problems. For example, forecasting the demand on a server each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20, July 8–12, 2019, Cancun, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3390216

hour, forecasting the number of passengers on public transit each
day, or forecasting an EEG trace to predict changes in patient health
are applications of extreme practical importance. Current methods
typically rely on prior inspection of the time series and human in-
tuition, or heuristics, in order to parameterize the prediction model
[1, 29]. However, this can be problematic when the characteristics
of the data stream are not well understood. Furthermore, apply-
ing a static model and parameters assumes that the underlying
process generating the time series is stationary. However, many
real-world forecasting environments change significantly over time.
In this work, we introduce a highly modular approach to time series
forecasting which builds the prediction model entirely through in-
teraction with that environment. A temporal memory mechanism
eliminates the need to hard-code any recursive structure into the
model or to pre-specify a fixed window of historical values to ana-
lyze at any point in time. This represents a very general framework
for time series forecasting that may have broader applications in
memory-intensive tasks with non-stationary properties, e.g [6, 31].

1.1 Emergent Modularity
Tangled Program Graphs (TPG) is a Genetic Programming (GP)
framework which incrementally builds computational organisms
from multiple subsystems which were initially developed inde-
pendently akin to compositional evolution [32]. In doing so, TPG
automates two critical properties of such a system: 1) The identifica-
tion of stable building blocks, or subsystems; and 2) Establishing the
nature of the interaction among subsystems within a hierarchical
organism, or module interdependence.

Relative to the first property to be automated, i.e. discovery
of stable building blocks, Herbert Simon [25] suggested that the
presence of stable intermediate structures speeds up evolution by
providing building blocks from which increasingly complex hier-
archies may be constructed. Put simply, Simon points out that if a
complex system is built from structurally modular building blocks,
its development is less likely to require a restart from scratch should
an error be introduced during construction (see Simon’s famous
Watchmaker’s Parable for an illustrative example of this concept).
In other words, modularity helps promote stability in an evolving
organism, preventing a particular genome from being a “House
of Cards” [15] in which a single variation might bring it tumbling
down. Ultimately, Simon’s suggestion is that modular systems are
more evolvable, that is, more capable of continuously discovering
new organisms with higher fitness than their parents. This the-
ory has been investigated widely among evolutionary biologists
[21, 30, 34].

As for the second property to be automated, module interde-
pendence, Watson et al. [32] emphasize that structural modularity
(i.e. structural complexity encapsulated such that dependencies

949

https://doi.org/10.1145/3377930.3390216
https://doi.org/10.1145/3377930.3390216
https://doi.org/10.1145/3377930.3390216

GECCO ’20, July 8–12, 2019, Cancun, Mexico Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro

between subsystems are weaker than dependencies within sub-
systems) does not imply independence of subsystems. Specifically,
functional interdependence among subsystems is critical for hier-
archies in which all levels of organization are meaningful. Simply
accumulating multiple building blocks into an aggregate system
does not capture the full potential of modularity. Module interde-
pendence is essential for emergence because without meaningful
interdependence, a hierarchy of subsystems is nothing more than
the sum of its parts. Watson argues that systems with strong mod-
ule interdependence are evolvable under certain conditions, namely
compositional evolution.

TPG has leveraged emergent modularity to make a variety of
contributions in the context of visual Reinforcement Learning (RL).
In the Atari video game testbed, TPG evolved game-playing agents
that match the quality of solutions from a variety of deep learning
methods [13]. More importantly, TPG agents were less computa-
tionally demanding and required fewer calculations per decision
than any of the other methods. This efficiency is possible because
1) the hierarchical complexity of each organism is a property that
emerges through interaction with the problem environment, rather
than being fixed a priori, as was the case for deep learning, e.g. [20];
and 2) subsystems within a TPG organism typically specialize on
different parts of the visual input space, thus only subsets of the
overall organism require execution at any given point in time.

Modularity and specialization also allow TPG to support transfer
learning in challenging RL problems [12]. In this case, solutions ini-
tially evolved for simple subtasks can be reused within hierarchical
organisms in order to improve learning in a more complex task. The
resulting agents achieve state-of-the-art levels of play in RoboCup
Half-Field Offense and surpass scores previously reported in the
Ms. Pac-Man literature while employing less domain knowledge
during training. Again, the highly modular organisms are shown
to be significantly more efficient than state-of-the-art solutions in
both domains.

Finally, modularity and specialization are also useful in dynamic
environments where the distribution in sensory inputs may change
drastically over time. When forced to switch randomly between
multiple Atari game titles throughout evolution, TPG can evolve
solutions to multiple titles simultaneously with no additional com-
putational cost [13]. In this case, modularity was critical to avoid
unlearning or “catastrophic forgetting” [16] of behaviours that are
intermittently important over time.

1.2 Modular Memory Models
All the work outlined in Section 1.1 was conducted using an early
version of TPG in which organisms were stateless. That is, even
though agents operated in episodic, sequential decision-making
environments involving hundreds or thousands of timesteps, the
agents were purely reactive. They had no temporal memory mech-
anism to enable the integration of experience over time. This is a
serious limitation in partially-observable tasks in which it is im-
possible to retrieve complete information about the state of the
environment from a single observation. More recently, multiple
models have been proposed which support temporal memory shar-
ing among subsystems within TPG organisms, allowing agents to
operate in sequential decision-making environments with partial

observability at multiple time scales [11, 26, 27]. Examples from the
deep learning community have also demonstrated that modularity
and specialization lead to improved generalization in dynamic tasks
that require temporal reasoning [3, 6].

1.3 Research Objectives
Section 1.1 established the capabilities of TPG for evolving hierar-
chical/modular organisms in high-dimensional (e.g. visual) RL en-
vironments with discrete action spaces. However, many real-world
RL problems involve continuous action spaces, which introduce
non-trivial design choices for the RL practitioner [17, 23, 24]. For
example, continuous control problems cannot be solved by simply
discretizing the action space due to the exponentially large number
of bins over which policies would have to be learned [19]. The first
research objective of this work is therefore to test the hypothe-
sis that TPG’s shared memory framework [11] can be extended
to support continuous action spaces and temporal memory man-
agement simultaneously. This significantly broadens the scope of
real-world applications for TPG, from continuous-action reinforce-
ment learning to time series forecasting. For our initial study here,
we evaluate the proposed method in well known supervised learn-
ing tasks, namely symbolic regression and time series forecasting.

TPG’s success in high-dimensional RL was due in part to its ca-
pacity to adaptively decompose the input space such that individual
subsystems within an organism could specialize their role relative
to small subsets of the input space, or spatial decomposition [13].
The second objective of this work is now to examine how the mod-
ular memory mechanism allows organisms to achieve a temporal
problem decomposition. This is significant because temporal prob-
lem decomposition is likely beneficial in dynamic, non-stationary
environments. An example of this is time series forecasting or
streaming data classification tasks when the underlying process
generating the data stream changes significantly over time [1, 7].

The remainder of this paper is organized as follows: Section
2 provides a detailed description of our proposed algorithm. An
empirical evaluation is provided in Section 3. A suite of symbolic
regression benchmarks [22] are used for an initial proof-of-concept
evaluation of continuous-output TPG, which is shown to gener-
ally match the solution quality of 3 modern GP frameworks. Next,
we evaluate continuous-output TPG in 3 challenging time series
forecasting benchmarks. Here we show that the proposed method
matches the prediction accuracy of a recently proposed approach
to neuroevolution based on Cartesian Genetic Programming [29].
Furthermore, temporal memory eliminates the need to pre-specify
a fixed-size sliding window of previous values, or autoregressive
state, which is used by all compared methods. Section 4 concludes
the paper and provides an outlook to future work.

2 ALGORITHM DESCRIPTION
The algorithm investigated in this work is an extension of Tangled
Program Graphs [13]. TPG was initially designed for RL tasks in
which solutions map sensor inputs to a set of discrete actions. This
work represents the first time the method has been used to build
solutions that map inputs to a continuous (real-valued) output. This
is achieved through an extension of the shared memory mechanism
introduced in [11]. This section outlines the extended algorithm,

950

A Modular Memory Framework for Time Series Prediction GECCO ’20, July 8–12, 2019, Cancun, Mexico

paying specific attention to two critical components: 1) How mem-
ory is shared among individual programs in a team-based model;
and 2) How multiple independent teams are adaptively combined
into a hierarchical organism, or program graph, through composi-
tional evolution. All source code is publicly available [10].

2.1 Coevolving Independent Teams
A team of programs is the basic representation for a complete solu-
tion in TPG. Each team defines a group of programs that collectively
map input state at time t , ®s(t) to a single output value. Teams can be
thought of as the root vertex in a computational graph where the
edges are programs that process ®s(t) and produce output, see Figure
1(a). In this work, all programs are linear register machines [4], see
Algorithm 1. For the purposes of this study, it is important to note
that programs contain internal register memory that is stateless,
that is, reset prior to each execution. Programs also have a pointer
to one shared stateful memory bank that is only reset at the start of
each evaluation. In the case of sequential decision-making or time
series tasks where the program is executed multiple times per eval-
uation, shared stateful memory allows programs to communicate
and integrate information across multiple timesteps.

Two types of program are supported within a team:
(1) Memory-programs manage the content of stateful mem-

ory. They read from current environmental state, ®s(t), and/or
stateful memory, ®m(t), and write to ®m(t);

(2) Path-programs define potential solution outputs. They are
directed graph edges that dynamically set their weight at
time t as a function of ®s(t) and ®m(t). Each team maintains
at least two path-programs. The team maps ®s(t) to a single
output by executing all programs in order and then following
the path with the largest weight. If the path-program is a
leaf, then its output value is the content of its shared stateful
memory register Rs [0], i.e., a real value (See Algorithm 1).

Algorithm 1 Example linear register machine. Each program con-
tains one private stateless register bank, Rpr ivate , and a pointer to
one shareable stateful register bank, Rshared . Rpr ivate is reset prior
to each execution, while Rshared is reset (by an external process) at
the start of each evaluation. Let Rx and Ry represent generic regis-
ter banks. In the proposed instruction format, Ry can be an index to
a state variable (input) or may refer to either Rpr ivate or Rshared .
The rules governing the target register Rx differ depending on pro-
gram type. For path-programs, shared memory is read-only, thus
Rx will always refer to Rpr ivate . In memory-programs, Rx may
refer to either memory bank. Note that path-programs have two
return values (line 7). Memory-programs have no return value as
their purpose is only to manipulate the content of shared memory.
A complete list of operations and instruction formats appears in
Table 1.
1: Rpr ivate ← 0 ▷ reset private memory bank
2: Rx [0] ← Rx [0] ÷ Ry [3]
3: Rx [2] ← cosRy [1]
4: if Rx [0] < Ry [2] then
5: Rx [0] ← −Rx [0]
6: if Path then
7: return (Rpr ivate [0], Rshared [0]) ▷ (weight, solution value)

Team Population

Program Population

Memory-Program : ()
Path-Program : { }

()

{ }

()
{

}

Stateful
Memory
Population

Output

t
2

t
1

m(t)

s (t)Input

(a) Initial Populations

()
{

}

{ } {

}

{ }

t
3

Output

t
3 t

1

t
2

()

s (t)Input

m(t)

(b) Emergence of Program Graphs

Figure 1: Illustration of the relationship between teams, pro-
grams, and shared memory in TPG

Note that memory-programs have read/write access to ®m(t),
while path-programs have read-only access. This enforces a divi-
sion of labour in which memory-programs manage stateful memory
content, while path-programs define the appropriate context (rela-
tive to ®s(t) and ®m(t)) in which their shared memory register Rs [0]
should be selected as the output1. Note that this is the critical ex-
tension that allows TPG to provide continuous-valued output. In
all previous studies, path-programs defined the context for a single
discrete action. Here, path-programs define the context for a single
shared memory register, the content of which is determined by its
associated memory-program.

Teams, programs, and shared memory registers are each stored
in separate populations and coevolved. Since a team of programs
represents a stand-alone solution, the team as whole is evaluated

1In preliminary experiments, this was found to work significantly better than allowing
all programs read/write access to ®m(t), as is the case in [11].

951

GECCO ’20, July 8–12, 2019, Cancun, Mexico Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro

Table 1: Operations and instruction formats. Path-programs
encode 8 operations in a 3-bit op-code. Memory-programs
use a 4-bit op-code to include 7 extra operations (high-
lighted). In addition, memory-programs have access to 18
constants: {−0.9,−0.8, ...,−0.1, 0.1, 0.2, ..., 0.9}, included as read-
only registers at the end of their private register bank
Rpr ivate (See Algorithm 1).

Instruction Operations

Rx [i] ← Rx [i] ◦ Ry [j] ◦ ∈ {+, −, x, ÷, xy }

Rx [i] ← ◦(Ry [j])
◦ ∈ {cos, ln, exp, √, sin }

◦ ∈ { tanh, x 2, |x | , x 3 }

IF (Rx [i] ◦ Ry [j]) THEN Rx [i] ← −Rx [i] ◦ ∈ {<, > }

on the task and assigned a fitness score. Evolution is driven by a
generational GA such that the worst performing teams are deleted
in each generation and replaced by offspring of the surviving teams.
Programs have no individual concept of fitness. After team deletion,
programs that are not part of any team are also deleted. As such,
selection is driven by a symbiotic relationship between programs
and teams: teams will survive as long as they define a complemen-
tary group of programs, while individual programs will survive as
long as they collaborate successfully within a team. The process
for generating team offspring uniformly samples and clones a root
team, then applies mutation-based variation operators to the cloned
team, as listed in Table 2. Team variation operators may add, re-
move, or modify programs in the team. In short, team compliment,
program length and content, and the degree of memory sharing
are all adapted properties. Complete details on TPG’s variation
operators are available in [13] and [9].

2.2 Evolving Team Hierarchies
Evolution begins with a population of Rsize teams, each contain-
ing at least 2 path-programs and 2 memory-programs which share
stateful memory banks, Figure 1(a). Path-programs are initially all
leaf nodes, immediately outputting a result. However, when a path-
program is modified by variation operators, it will remain a leaf
with probability patomic , and will otherwise connect to one team
from the set of teams present from any previous generation, cho-
sen with uniform probability. These connection mutations are the
mechanism by which TPG supports compositional evolution, adap-
tively recombining multiple (previously independent) teams into
variably deep/wide directed graph structures, or program graphs,
Figure 1(b).

Execution of a program graph begins at the root team (t3 in
Figure 1(b)), where all programs in the team will execute. Graph
traversal then follows the path-program with the largest weight,
repeating the execution process at every team along the path until
a leaf node is reached. Thus, the program graph computes one path
from root to leaf for each input sample ®s(t), where only a subset
of programs in the graph (those in teams along the path) require
execution. Note that cycles may appear in the graph structure but
are ignored during execution. That is, no team is visited more than
once per traversal. If the edge with the largest weight leads to a

team that has already been visited, the edge is simply ignored. Team
variation operators are constrained such that each team maintains
at least one path-program that is a leaf node, ensuring an output
can always be found.

As hierarchical structures emerge, only root teams (i.e. teams
with indegree of 0) define independent solutions, and only these
root teams are subject to deletion, cloning, and variation. As such,
program graphs incrementally grow and break apart at their root
node, i.e. from the top up/down. While the team and program
population sizes vary throughout evolution, the number of root
teams to maintain in the population (Rsize) is pre-specified as a
learning parameter and remains constant. Thus, whenever a root
team is subsumed within a program graph, it will be replaced by
a new root team which is sampled with uniform probability from
the team population and modified by mutation operators (Table 2).
Non-root teams are protected from deletion as long as they are a
component of a graph that performs well collectively. This property
helps TPGs avoid catastrophic forgetting in sequential problems in
which specialized team behaviours may be intermittently important
over time, e.g. multi-task learning [13].

In summary, the hierarchical complexity and interdependency
between teams in program graphs emerges entirely through inter-
action with the task environment. As a program graph operates,
the subset of teams/programs that require execution is dynamically
selected at runtime based on the current input sample and the con-
tent of stateful memory. This has two important implications: 1)
Teams are free to specialize on particular aspects of the problem
and may be switched in and out of the model as needed; and 2)
Program graphs can dynamically select inputs and stateful mem-
ory registers that are relevant to the current state observation (i.e.
inputs and memory registers indexed by programs along the active
path) while ignoring inputs/memories that are not important at the
current point in time. This is conceptually similar to the modular
structures and attention mechanisms explored by Goyal at. al. [6],
in which these properties were shown to improve generalization
and in dynamic memory problems. However, in that case the total
number of “modules” per solution required prior specification, as
did the number of “active” modules at any point in time. In this work
we are specifically interested in how these model characteristics
emerge through compositional evolution.

3 EXPERIMENTS
This section details our experimental analysis of the extended TPG
algorithm, which is abbreviated as TPG-CM to note the inclusion
of (C)ontinuous output and temporal (M)emory. First, in Section
3.1 we confirm the effectiveness of continuous-outputs in TPG-CM
using a suite of symbolic regression problems specifically designed
to evaluate GP systems [22]. Next, in Section 3.2 we test our pro-
posed temporal memory mechanism by evaluating TPG-CM in 3
challenging time series forecasting benchmarks. In all experiments,
TPG-CM is parameterized as per Table 2.

3.1 Symbolic Regression
Our experimental methodology under symbolic regression closely
follows the work in [2]. We experiment with 14 unique functions.

952

A Modular Memory Framework for Time Series Prediction GECCO ’20, July 8–12, 2019, Cancun, Mexico

Table 2: Parameterization of TeamandProgrampopulations.
Rsize is the number of root teams to maintain at any point
in time. Rдap is the proportion of root teams to delete and
replace in each generation. For the team population, pmx de-
notes amutation operator in which: x ∈ {d,a} are the probal-
ity of deleting or adding a program respectively; x ∈ {m,n, s}
are the probality of creating a new program, changing a
path-program’s action pointer (leaf or team), and changing a
program’s sharedmemory pointer respectively.ω is themax
initial team size. For the program population, px denotes a
mutation operator in which x ∈ {delete,add,mutate, swap}
are the probality for deleting, adding, mutating, or reorder-
ing instructions within a program. patomic is the probability
that a modified action-pointer for a path-program will be
atomic (leaf).

Team population
Parameter Value Parameter Value
Rsize 360 Rдap 50%
pmd ,pma 0.7 ω 10
pmm 0.2 pmn ,pms 0.1

Program population
Parameter Value Parameter Value
Size of Rpr ivate 8 maxProgSize 100
Size of Rshared 8 patomic 0.5
pdelete ,padd 0.5 pmutate ,pswap 1.0

Complete details on these functions and their suitability for evalu-
ating GP system can be found in [22]. One example problem is:

F1(x1,x2) =
e−(x1−1)

2

1.2 + (x2 − 2.5)2

The functions used in this work have between 2 and 10 input vari-
ables. All input values are sampled randomly from the interval
[−5, 5]. We use 1000 training samples, 10,000 validation samples,
and 40,000 test samples. Training data is used to measure fitness
during evolution. The fitness function used is Mean Square Error
(MSE). At intervals of 10 generations, the entire population is eval-
uated on the validation data. Evolution proceeds until the single
best individual from the validation phase matches or exceeds the
best test score reported for any algorithm in [2], up to a wall-clock
computational budget of 4 hours. The validation champion is then
evaluated on the test data to produce a final test performance score.
For each of the 14 problems, we perform 100 independent runs with
identical input datasets. Table 3 reports test results for TPG-CM
alongside 3 GP frameworks evaluated in [2].

Of the four algorithms compared in Table 3, TPG-CM achieved
the best test score in 9 out of 14 symbolic regression benchmarks.
EGGPHGT [2] achieved the best score in 4 benchmarks, while GP
[22] was the best in 1 benchmark. This evaluation represents a
positive proof-of-concept for the continuous-output component
in TPG-CM. A detailed comparative analysis of TPG-CM under
symbolic regression is left to future work. For example, in the most
general sense, the complexity of a GP system can be characterized
by counting the number of program instructions that are executed

Table 3: Results for symbolic regression problems. Values
indicate median fitness (MSE) on test data. Results for
EGGPHGT ,GP , andCGP are from [2]. The lowest (best) result
across all algorithms is highlighted in bold.

F EGGPHGT GP CGP TPG-CM

F1 2.47E-3 5.77E-3 6.74E-3 2.20E-3
F2 5.94E6 1.28E7 1.73E7 3.81E6
F3 7.22E-3 1.04E-2 1.48E-2 5.10E-3
F4 2.58E13 3.55E13 2.58E13 8.72E15
F5 6.90E-1 5.13E0 7.17E0 4.12E0
F6 4.46E0 2.61E0 9.28E0 9.02E1
F7 1.51E2 4.20E2 5.76E2 1.35E2
F8 2.19E-2 1.09E-1 4.49E-2 1.74E-2
F9 1.57E2 1.46E2 1.71E2 1.19E1
F10 7.69E-2 3.22E-1 1.66E-1 4.13E-2
F11 1.59E1 3.88E1 4.96E1 1.49E1
F12 6.83E2 1.25E3 7.08E2 1.06E3
F18 3.69E-1 4.13E4 1.20E2 3.38E4
F21 1.07E0 1.07E0 1.07E0 1.06E+0

per prediction by a model under test. It is possible that the model
complexity of TPG-CM is significantly greater than the compared
methods, however, this data was not reported for the algorithms
listed in Table 3. As such, we provide a detailed discussion of the
complexity of TPG-CM in the context of time series forecasting in
Section 3.2.

3.2 Time Series Forecasting
Here we evaluate TPG-CM in 3 challenging time series forecasting
benchmarks; Sunspots [28], Mackey-Glass [18], and Laser [8]. The
Sunspots and Laser datasets are obtained from real-world record-
ings, while Mackey-Glass is a chaotic series generated from a pa-
rameterized equation. Our methodology and dataset preparation
matches that in [29]. All 3 time series datasets are univariate and
contain 1100 samples normalized to the interval [0, 1].

3.2.1 Methodology. The goal of time series forecasting is to
predict (unseen) future values based on previously observed values.
To do so, the model is fed individual samples in order from series
x() and, given sample x(t), must predict the value of x(t + 1). Note
that unlike many times series forecasting methods, we do not pack
a sequence of previous values into a single autoregressive state
representation to present to the prediction model. For example, it is
common to define an embedding dimension D and a time delay T in
order to pre-define a slidingwindow of prior observations to present
to the model at each timestep. If D = 4 and T = 3, input to the
model at time t would be [x(t),x(t −3),x(t −6),x(t −9)]. Assuming
the nature of a time series is known a priori, then D and T can be
estimated such that models with no temporal memory or recursive
structure can still make accurate predictions. In this work, program
graphs observe one sample at a time and therefore rely entirely on
temporal memory to store previously observed values, which are
retained in memory as long as necessary and selectively recalled
to extrapolate future values. Due to the fact that models may only

953

GECCO ’20, July 8–12, 2019, Cancun, Mexico Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro

observe one sample at a time with no autoregressive state, they
must be primed with a series of samples before future predictions
can be made. In this work, models are primed with 50 samples. Thus,
before predictions begin at x(t), the model is executed for each input
sample in series x(t − 50),x(t − 49), ...,x(t − 1) and output values
from the model are ignored. When priming is complete, recursive
forecasting is used to predict future values. That is, after x(t − 1),
samples from x() are no longer used as input. Instead, the model’s
output values, or predictions, are fed back as input to predict future
values. For example, the model’s output for x(t) becomes its input
at t + 1, and so on. Recursive forecasting allows predictions to
any horizon. In this work, program graphs will be evaluated on
forecasting up to a horizon of 100 samples.

The fitness function measures how well solutions recursively
predict the next fifty samples from t50, t100, ..., t950. Thus, solution
fitness is the MSE over 950 predictions in total. A validation proce-
dure measures how well each solution recursively forecasts beyond
the horizon used during training. Specifically, models are used to
predict the next 100 samples starting from t100, t200, ...t900. MSE
over the last 50 predictions from each validation set (a total of 450
predictions) is used as the validation score. To obtain a final test
score, the program graph with the best validation score is used to
predict the next 100 samples from t1000 (i.e, themodel is primedwith
samples x(t950, ..., t999). 50 independent runs are performed in par-
allel. As with the symbolic regression study in Section 3.1, our first
research objective is to check if TPG-CM can match state-of-the-art
approaches to time series forecasting. Thus, each evolutionary run
continues until either 1) the median validation MSE over all 50 runs
matches or exceeds the best test MSE reported in [29]; or 2) the run
reaches a wall-clock compute budget of 12 hours.

3.2.2 Test Results. Table 4 reports mean test scores for TPG-CM
along with 3 algorithms from [29]. The compared algorithms are
Autoregressive Integrated Moving Average (ARIMA), Recurrent
Cartesian Genetic Programming (RCGP) and Recurrent Cartesian
Genetic Programming of Artificial Neural Networks (RCGPANN).
ARIMA is a standard forecasting algorithm based on statistical
methods, while RCGP and RCGPANN both use GP to build pre-
diction models with recurrent structure, making them suitable for
tasks with partial observability or explicitly temporal properties
such as time series forecasting. TPG-CM was able to match or ex-
ceed the performance of all compared methods in each of the 3
time series benchmarks. The single best program graph for each
benchmark (max score in Table 4) was discovered by generation
9280 (Laser) , 3820 (Mackey-Glass), and 7740 (Sunspots). As in the
symbolic regression study, this comparison represents a positive
proof-of-concept for the continuous-output and temporal memory
mechanisms of TPG-CM, and no further comparative analysis is
made in this study.

Figures 2, 3, and 4 show the behaviour of TPG-CM program
graphs during the test phase for each times series benchmark. Note
that recursive forecasting implies that all test forecasts (“Prediction”
in Figures 2(a), 3(a), and 4(a)) are produced without observing any
of the 100 test points (“Target” in Figures 2(a), 3(a), and 4(a)). That
is, once the model is primed (Section 3.2.1), all 100 predictions are
generated entirely by feeding the model’s output at ti back to its
input at ti+1. This feedback signal, along with the content of stateful

Table 4: Results for time series forecasting benchmarks. Val-
ues indicate mean fitness (MSE) on test data. Results for
ARIMA, RCGP, and RCGPANN are from [29]. The lowest
(best) result across all algorithms is highlighted in bold.

Method Laser Mackey-Glass Sunspots
mean, best mean, best mean, best

ARIMA 0.0341 0.0715 0.0350
RCGP 0.0258, 0.0044 0.0645, 0.0257 1.20e+30, 0.012
RCGPANN 0.0215, 0.0164 0.0476, 0.0332 0.025, 0.0049
TPG-CM 0.0181, 0.0127 0.0459, 0.0144 0.0182, 0.0038

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
a

lu
e

Target

Prediction

(a) Forecast

0 20 40 60 80 100

0

20

40

60

80

100

T
im

e

(b) Dynamic Memory Window

0 20 40 60 80 100

1

2

3

4

T
e
a
m

s

(c) Teams per Prediction

0 20 40 60 80 100

0

1000

2000

3000

4000

In
s
tr

u
c
ti
o
n
s

(d) Instructions per Prediction

Figure 2: TPG-CM test behaviour for the Laser benchmark.
X-axis in all plots indicates timesteps. See Sections 3.2.2 and
3.2.3 for details.

memory registers at ti+1, is used to generate a prediction for ti+2,
and so on.

Since program graphs are not provided with an autoregressive
state, each program graph must define a mechanism for encod-
ing previous observations within stateful memory registers, and
recalling or resetting/overwriting these memories as required. Es-
sentially, each program graph defines an embedding dimension

954

A Modular Memory Framework for Time Series Prediction GECCO ’20, July 8–12, 2019, Cancun, Mexico

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

V
a
lu

e

Target

Prediction

(a) Forecast

0 20 40 60 80 100

0

20

40

60

80

100

T
im

e

(b) Dynamic Memory Window

0 20 40 60 80 100

2

4

6

T
e
a
m

s

(c) Teams per Prediction

0 20 40 60 80 100

0

2000

4000

6000

In
s
tr

u
c
ti
o
n
s

(d) Instructions per Prediction

Figure 3: TPG-CM test behaviour for the Mackey-Glass
benchmark. X-axis in all plots indicates timesteps. See Sec-
tions 3.2.2 and 3.2.3 for details.

that is adapted to the characteristics of the particular time series
observed during training. Recall from Section 2 that each execution
requires traversing one path through the program graph, where
each team along the path will read/write to a unique set of stateful
memory registers. As the active path changes over time, the solu-
tion’s embedding dimension also becomes dynamic. In particular,
the “age” of memories accessed at any point in time effectively
defines a memory window that fluctuates in width over time. The
time point at which stateful memory registers are reset or left to
accumulate is selected based on the current input as well as the
content of stateful memory. Figures 2(b), 3(b), and 4(b) depict the
width of these dynamic memory windows at each timestep during
test. The memory windows for time t1 to t100 are stacked vertically
along the Y-axis. Each horizontal line depicts the window width
from the newest memory accessed at time t (right-hand-side) to the
oldest memory accessed at time t (left-hand-side). Notice how the
TPG-CM champion for each time series exhibits a unique pattern of
dynamic memory access. For example, the program graph for the
Laser benchmark accumulates and overwrites memory registers at
a frequency that clearly reflects the frequency of the target data
(compare Figure 2(b) and 2(a)). A similar correlation between the

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
a
lu

e

Target

Prediction

(a) Forecast

0 20 40 60 80 100

0

20

40

60

80

100

T
im

e

(b) Dynamic Memory Window

0 20 40 60 80 100

1

2

3

4

5

T
e
a
m

s

(c) Teams per Prediction

0 20 40 60 80 100

0

2000

4000

In
s
tr

u
c
ti
o
n
s

(d) Instructions per Prediction

Figure 4: TPG-CM test behaviour for the Sunspots bench-
mark. X-axis in all plots indicates timesteps. See Sections
3.2.2 and 3.2.3 for details.

● ●

●

●

● ●

●

(a) Laser

●

● ●

●

●

●

●

●

(b) Mackey-Glass

●

●

● ● ● ● ●

●

●●

(c) Sunspots

Figure 5: Champion program graphs evolved for each time
series benchmark. Each node represents one team of pro-
grams. See Section 2 for details.

frequency of dynamic memory access and the frequency of target
data can be seen for the other benchmarks. Related studies have
evolved “observation windows” in time series forecasting, but still
required human intuition in order to parameterize the window
behaviour [31]. By contrast, our approach is entirely emergent.

3.2.3 Model Complexity. Figure 5 shows the champion program
graphs for each time series benchmark. Each node in the graph

955

GECCO ’20, July 8–12, 2019, Cancun, Mexico Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro

represents one team of programs. Every execution of the program
graph begins at the root node and follows one path, which may
terminate at any node. Furthermore, each team executes a unique
subset of programs, each with a variable length list of instructions.
Since the path of execution is dynamically selected, the computa-
tional complexity of program graph execution is also a dynamic
property. Subplots (c) and (d) in Figures 2, 3, and 4 show the runtime
complexity for the champion program graph from each time series
benchmark. For example, Figure 2(c) indicates that the champion
program graph for the Laser benchmark switches between execut-
ing 4, 2, and 1 team per prediction at a frequency that correlates
with the target data and dynamic memory window in Figures 2(a)
and 2(b). The rate of path switching is also evident in the number
of instructions executed. For example, the predictions that involve
4 teams result in the execution of roughly 4000 instructions (See
Figure 2(d)). This can be correlated with the program graph for
the Laser benchmark, Figure 5(a), which has two paths that would
result in executing 4 teams. Note that there is a slight difference in
the number of instructions executed for some of the 4-team graph
traversals during test (Compare Figures 2(c) and 2(d)). This implies
that both 4-team paths are used during test.

Dynamic runtime complexity improves the efficiency of model
deployment when averaged over many timesteps. This is especially
significant as complex (temporal) problems call for increasingly
complex models. Note, for example, that the maximum runtime
complexity of these program graphs is significantly greater than
the complexity of program graphs evolved in visual RL benchmarks,
which typically required fewer than 2000 instructions per execu-
tion, eg. [13, 14]. However, the policies evolved for visual RL had
no temporal memory capability. The shared memory mechanism
proposed in this work (Section 2) introduces memory-programs,
which come with added computational cost. In particular, an effec-
tive instruction in a path-program is any instruction that effects
the final value in the edge weight output register, or Rp [0] (See
Algorithm 1). However, in memory-programs, instructions that
effect the final value of any shared register position in Rs are effec-
tive. Thus, memory-programs typically have a larger proportion
of effective code. As a result, memory sharing incurs a significant
computational cost relative to programs without shared memory,
since fewer ineffective instructions, or introns, can be removed
prior to program execution.

4 CONCLUSIONS AND FUTUREWORK
TPG has been extended to support continuous output and a modu-
lar temporal memory mechanism. We validate the new algorithm,
TPG-CM, in a suite of symbolic regression and time series fore-
casting benchmarks, which represent a broad class of problems for
which previous versions of TPG were not applicable. We show that
TPG-CM can match the solution quality of current state-of-the-art
methods in both domains. In the case of time series forecasting, we
emphasize that no prior models of a data stream are necessary since
solutions are adapted entirely through environmental interaction.

Future work will provide a more detailed comparative analysis
of TPG-CM with state-of-the-art methods in regression and time
series prediction benchmarks, and address real-world applications

of function regression with large input spaces (e.g. genomic pre-
diction [33]). We are also interested to know how the dynamic
properties of TPG-CM will behave in explicitly non-stationary time
series environments [1, 31] and dynamic memory tasks in which
the input distribution changes significantly from training to test
environments [6]. Another open question is how TPG-CM will
operate in continuous-action RL (e.g. [24]). Furthermore, it might
be possible to support discrete actions and continuous actions si-
multaneously, as is required in challenging RL benchmarks such
as RoboCup Soccer [5]. Finally, given that compositional evolution
of program graphs has previously shown promise in multi-task
reinforcement learning scenarios [13], the added temporal memory
mechanism in TPG-CM might provide further benefit under multi-
task time series prediction, where the goal is to build a single model
capable of forecasting multiple independent data streams [35]. In
short, this work significantly broadens the scope of our existing
methods and opens a breadth of future research opportunities.

ACKNOWLEDGEMENTS
S.K. gratefully acknowledges support through the NSERC Postdoc-
toral Scholarship program. This material is based in part upon work
supported by the National Science Foundation under Cooperative
Agreement No. DBI-0939454 to the BEACON Center for Evolution
in Action at Michigan State University. W.B. acknowledges support
from the John R. Koza Endowment fund for part of this work. Michi-
gan State University provided computational resources through
the Institute for Cyber-Enabled Research. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon. 2012. Genetic

Programming for the Induction of Seasonal Forecasts: A Study onWeather Deriva-
tives. In Financial Decision Making Using Computational Intelligence, Michael
Doumpos, Constantin Zopounidis, and Panos M. Pardalos (Eds.). Springer US,
Boston, MA, 159–188.

[2] Timothy Atkinson, Detlef Plump, and Susan Stepney. 2019. Evolving Graphs
with Horizontal Gene Transfer. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’19). Association for Computing Machinery,
New York, NY, USA, 968–976.

[3] Andrea Banino, Adria Puigdomenech Badia, Raphael Koster, Martin J. Chadwick,
Vinicius Zambaldi, Demis Hassabis, Caswell Barry, Matthew Botvinick, Dharshan
Kumaran, and Charles Blundell. 2020. MEMO: A Deep Network for Flexible
Combination of Episodic Memories. (2020). arXiv:cs.LG/2001.10913

[4] Markus Brameier and Wolfgang Banzhaf. 2007. Linear Genetic Programming.
Springer.

[5] Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, and Changjie
Fan. 2019. Deep Multi-Agent Reinforcement Learning with Discrete-Continuous
Hybrid Action Spaces. (2019). arXiv:cs.LG/1903.04959

[6] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine,
Yoshua Bengio, and Bernhard Schölkopf. 2019. Recurrent Independent Mecha-
nisms. (2019). arXiv:cs.LG/1909.10893

[7] Malcolm I. Heywood. 2015. Evolutionary model building under streaming data
for classification tasks: opportunities and challenges. Genetic Programming and
Evolvable Machines 16, 3 (2015), 283–326.

[8] U. Hübner, N. B. Abraham, and C. O. Weiss. 1989. Dimensions and entropies of
chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev.
A 40 (1989), 6354–6365.

[9] Stephen Kelly. 2018. Scaling Genetic Programming to Challenging Reinforcement
Tasks through Emergent Modularity. Ph.D. Dissertation. Faculty of Computer
Science, Dalhousie University.

[10] Stephen Kelly. 2020. TPG Source Code. http://stephenkelly.ca/?q=research.

956

http://arxiv.org/abs/cs.LG/2001.10913
http://arxiv.org/abs/cs.LG/1903.04959
http://arxiv.org/abs/cs.LG/1909.10893
http://stephenkelly.ca/?q=research

A Modular Memory Framework for Time Series Prediction GECCO ’20, July 8–12, 2019, Cancun, Mexico

[11] Stephen Kelly and Wolfgang Banzhaf. 2020. Temporal Memory Sharing in Visual
Reinforcement Learning. In Genetic Programming Theory and Practice XVII, Wolf-
gang Banzhaf, Lee Spector, and Leigh Sheneman (Eds.). Springer International
Publishing, Cham, 101–119.

[12] Stephen Kelly and Malcolm I. Heywood. 2018. Discovering Agent Behaviors
Through Code Reuse: Examples From Half-Field Offense and Ms. Pac-Man. IEEE
Transactions on Games 10, 2 (June 2018), 195–208.

[13] Stephen Kelly and Malcolm I. Heywood. 2018. Emergent Solutions to High-
Dimensional Multitask Reinforcement Learning. Evolutionary Computation 26, 3
(2018), 347–380.

[14] Stephen Kelly, Robert J. Smith, and Malcolm I. Heywood. 2019. Emergent Policy
Discovery for Visual Reinforcement Learning Through Tangled Program Graphs:
A Tutorial. In Genetic Programming Theory and Practice XVI, Wolfgang Banzhaf,
Lee Spector, and Leigh Sheneman (Eds.). Springer International Publishing, Cham,
37–57.

[15] John F. C. Kingman. 1978. A simple model for the balance between selection and
mutation. Journal of Applied Probability 15, 1 (1978), 1–12.

[16] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and
Raia Hadsell. 2017. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences 114, 13 (2017), 3521–3526.

[17] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control
with deep reinforcement learning. (2015). arXiv:cs.LG/1509.02971

[18] Michael C. Mackey and Leon Glass. 1977. Oscillation and chaos in physiological
control systems. Science 197, 4300 (1977), 287–289.

[19] Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. 2017. Dis-
crete Sequential Prediction of Continuous Actions for Deep RL. (2017).
arXiv:cs.LG/1705.05035

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[21] Aurora M. Nedelcu and Richard E. Michod. 2002. Evolvability, modularity, and
individuality during the transition to multicellularity in volvocalean green algae.
In In Modularity in development and evolution, Wagner G. Schlosser G. (Ed.).
Chicago Press, 470–489.

[22] Miguel Nicolau, Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon.
2015. Guidelines for defining benchmark problems in Genetic Programming. In
2015 IEEE Congress on Evolutionary Computation (CEC). 1152–1159.

[23] Richard J. Preen and Larry Bull. 2013. Dynamical Genetic Programming in Xcsf.
Evolutionary Computation 21, 3 (Sept. 2013), 361–387.

[24] Benjamin Recht. 2019. A Tour of Reinforcement Learning: The View from
Continuous Control. Annual Review of Control, Robotics, and Autonomous Systems
2, 1 (2019), 253–279.

[25] Herbert A. Simon. 1962. The Architecture of Complexity. Proceedings of the
American Philosophical Society 106 (01 1962), 467–482.

[26] Robert J. Smith and Malcolm I. Heywood. 2019. Evolving Dota 2 Shadow Fiend
Bots Using Genetic Programming with External Memory. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’19). Association for
Computing Machinery, New York, NY, USA, 179–187.

[27] Robert J. Smith and Malcolm I. Heywood. 2019. A Model of External Memory
for Navigation in Partially Observable Visual Reinforcement Learning Tasks. In
Genetic Programming, Lukas Sekanina, Ting Hu, Nuno Lourenço, Hendrik Richter,
and Pablo García-Sánchez (Eds.). Springer International Publishing, Cham, 162–
177.

[28] SIDC Team. 2020 (accessed December, 2019). World Data Center for the production,
preservation and dissemination of the international sunspot number. http://sidc.
be/silso/home.

[29] Andrew James Turner and Julian Francis Miller. 2017. Recurrent Cartesian
Genetic Programming of Artificial Neural Networks. Genetic Programming and
Evolvable Machines 18, 2 (June 2017), 185–212.

[30] Günter P. Wagner and Lee Altenberg. 1996. Perspective: Complex Adaptations
and the Evolution of Evolvability. Evolution 50, 3 (1996), 967–976.

[31] Neal Wagner, Zbigniew Michalewicz, Moutaz Khouja, and Rob R. McGregor.
2007. Time Series Forecasting for Dynamic Environments: The DyFor Genetic
Program Model. IEEE Transactions on Evolutionary Computation 11, 4 (Aug 2007),
433–452.

[32] Richard A. Watson and Jordan B. Pollack. 2005. Modular interdependency in
complex dynamical systems. Artificial Life 11, 4 (2005), 445–457.

[33] Ian Whalen, Wolfgang Banzhaf, Hawlader Abdullah, and Cedric Gondro. 2020.
Evolving SNP Panels for Genomic Prediction. In Evolution in Action: Past, Present
and Future - A Festschrift in Honor of Erik D. Goodman, Wolfgang Banzhaf,
Betty H.C. Cheng, Kalyanmoy Deb, Kay E. Holekamp, Richard E. Lenski, Charles
Ofria, Robert T. Pennock, William F. Punch, and Danielle J. Whittaker (Eds.).

Springer, Cham, Switzerland, 465–485.
[34] Andrew S. Yang. 2001. Modularity, evolvability, and adaptive radiations: a com-

parison of the hemi- and holometabolous insects. Evolution and Development 3,
2 (2001), 59–72.

[35] Maoxin Yang, Qinghua Hu, and YunWang. 2019. Multi-task Learning Method for
Hierarchical Time Series Forecasting. In Artificial Neural Networks and Machine
Learning – ICANN 2019: Text and Time Series, Igor V. Tetko, Věra Kůrková, Pavel
Karpov, and Fabian Theis (Eds.). Springer International Publishing, Cham, 474–
485.

957

http://arxiv.org/abs/cs.LG/1509.02971
http://arxiv.org/abs/cs.LG/1705.05035
http://sidc.be/silso/home
http://sidc.be/silso/home

	Abstract
	1 Introduction
	1.1 Emergent Modularity
	1.2 Modular Memory Models
	1.3 Research Objectives

	2 Algorithm Description
	2.1 Coevolving Independent Teams
	2.2 Evolving Team Hierarchies

	3 Experiments
	3.1 Symbolic Regression
	3.2 Time Series Forecasting

	4 Conclusions and Future Work
	References

