
NSGA-Net: Neural Architecture Search using Multi-Objective
Genetic Algorithm

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,
Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

Michigan State University

East Lansing, Michigan

{luzhicha,whalenia,vishnu,dhebarya,kdeb,goodman,banzhafw}@msu.edu

ABSTRACT
This paper introduces NSGA-Net – an evolutionary approach for

neural architecture search (NAS). NSGA-Net is designed with three

goals in mind: (1) a procedure considering multiple and conflict-

ing objectives, (2) an efficient procedure balancing exploration and

exploitation of the space of potential neural network architectures,

and (3) a procedure finding a diverse set of trade-off network archi-

tectures achieved in a single run. NSGA-Net is a population-based

search algorithm that explores a space of potential neural network

architectures in three steps, namely, a population initialization step

that is based on prior-knowledge from hand-crafted architectures,

an exploration step comprising crossover and mutation of architec-

tures, and finally an exploitation step that utilizes the hidden useful

knowledge stored in the entire history of evaluated neural archi-

tectures in the form of a Bayesian Network. Experimental results

suggest that combining the dual objectives of minimizing an error

metric and computational complexity, as measured by FLOPs, al-

lows NSGA-Net to find competitive neural architectures. Moreover,

NSGA-Net achieves error rate on the CIFAR-10 dataset on par with

other state-of-the-art NAS methods while using orders of magni-

tude less computational resources. These results are encouraging

and shows the promise to further use of EC methods in various

deep-learning paradigms.

CCS CONCEPTS
• Computing methodologies → Supervised learning by classifi-
cation;

KEYWORDS
Deep Learning, Image classification, Neural Architecture Search,

multi objective, Bayesian Optimization

ACM Reference Format:
Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb,

Erik Goodman and Wolfgang Banzhaf. 2019. NSGA-Net: Neural Archi-

tecture Search using Multi-Objective Genetic Algorithm. In Proceedings
of the Genetic and Evolutionary Computation Conference 2019 (GECCO

’19). ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3321707.

3321729

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321729

1 INTRODUCTION
Deep convolutional neural networks have been overwhelmingly suc-

cessful in a variety of image analysis tasks. One of the key driving

forces behind this success is the introduction of many CNN archi-

tectures, such as AlexNet [23], VGG [37], GoogLeNet [39], ResNet

[12], DenseNet [17] etc. in the context of image classification. Con-

currently, network designs such as MobileNet [14], XNOR-Net [34],

BinaryNets [4], LBCNN [19] etc. have been developed with the goal

of enabling real-world deployment of high performance models on

resource constrained devices. These developments are the fruits of

years of painstaking efforts and human ingenuity.

Neural architecture search (NAS) methods, on the other hand,

seek to automate the process of designing network architectures.

State-of-the-art reinforcement learning (RL) methods like [36] and

[47] are inefficient in their use of their search space and require

3,150 and 2,000 GPU days, respectively. Gradient-based methods

like [27] focus on the single objective of minimizing an error metric

on a task and cannot be easily adapted to handle multiple conflicting

objectives. Furthermore, most state-of-the-art approaches search

over a single computation block, similar to an Inception block [39],

and repeat it as many times as necessary to form a complete network.

In this paper, we present NSGA-Net, a multi-objective genetic

algorithm for NAS to address the aforementioned limitations of cur-

rent approaches. A pictorial overview of NSGA-Net is provided in

Figure 1. The salient features of NSGA-Net are, (1) multi-objective
optimization: Real-world deployment of NAS models demands

small-sized networks, in addition the models being accurate. For

instance, we seek to maximize performance on compute devices

that are often constrained by hardware resources in terms of power

consumption, available memory, available FLOPs, and latency con-

straints, to name a few. NSGA-Net is explicitly designed to optimize

such competing objectives. (2) Flexible architecture search space:

The search space for most existing methods is restricted to a block

that is repeated as many times as desired. In contrast, NSGA-Net

searches over the entire structure of the network. This scheme over-

comes the limitations inherent in repeating the same computation

block throughout an entire network, namely, that a single block may

not be optimal for every application and it is desirable to allow NAS

to discover architectures with different blocks in different parts of

the network. (3) Non-dominated sorting: The core component of

NSGA-Net is the Non-Dominated Sorting Genetic Algorithm II

(NSGA-II) [5], a multi-objective optimization algorithm that has

been successfully employed for solving a variety of multi-objective

problems [31, 40]. Here, we leverage its ability to maintain a diverse

trade-off frontier between multiple conflicting objectives, thereby

419

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

[0-00-111-0111-00000-0]

[1-01-001]

Figure 1: Overview of the stages of NSGA-Net. Networks are represented as bit strings, trained through gradient descent, ranking
and selection by NSGA-II, search history exploitation through BOA. Output is a set of networks that span a range of complexity and
error objectives.

resulting in a more effective and efficient exploration of the search

space. (4) Efficient recombination: In contrast to state-of-the-art

evolution-based NAS methods [35, 36] in which only mutation is

used, we employ crossover (in addition to mutation) to combine

networks with desirable qualities across multiple objectives from

the diverse frontier of solutions, and finally (5) Bayesian learn-
ing: We construct and employ a Bayesian Network inspired by the

Bayesian Optimization Algorithm (BOA) [32] to fully utilize the

promising solutions present in our search history archive and the

inherent correlations between the layers of the network architecture.

We demonstrate the efficacy of NSGA-Net on the CIFAR10 [22]

image classification task by minimizing two objectives: classification

error and computational complexity. Here, computational complex-

ity is defined by the number of floating-point operations (FLOPs)

that a network carries out during a forward pass. Experimentally,

we observe that NSGA-Net can find a set of network architectures

containing solutions that are significantly better than hand-crafted

methods in both objectives, while being competitive with single

objective state-of-the-art NAS approaches. Furthermore, by fully

utilizing a population of networks through recombination and uti-

lization of the search history, NSGA-Net explores the search space

efficiently and requires less computational time for search than other

competing methods.

The implementation of NSGA-Net is available here*.

2 RELATED WORK
Recent research efforts in NAS have produced a plethora of methods

to automate the design of networks. Broadly speaking, these methods

can be divided into evolutionary algorithm (EA) and reinforcement

learning (RL) based approaches – with a few methods falling outside

these two categories. The main motivation of EA methods is to treat

structuring a network as a combinatorial optimization problem. EAs

operate with a population that makes small changes (mutation) and

mixes parts (crossover) of solutions selected by consideration of

multiple objectives to guide its search toward the optimal solutions.

RL, on the other hand, views the construction of a network as a

decision process. Usually, an agent is trained to optimally choose

the pieces of a network in a particular order. We briefly review a few

existing methods here.

Reinforcement Learning: Q-learning [41] is a widely popular

value iteration method used for RL. The MetaQNN method [1] em-

ploys an ϵ-greedy Q-learning strategy with experience replay to

*https://github.com/ianwhale/nsga-net

search connections between convolution, pooling, and fully con-

nected layers, and the operations carried out inside the layers. Zhong

et al. [45] extended this idea with the BlockQNN method. Block-

QNN searches the design of a computational block with the same

Q-learning approach. The block is then repeated to construct a net-

work. This method allows for a much more general network and

achieves better results than its predecessor on CIFAR-10 [22].

A policy gradient method seeks to approximate some not differ-

entiable reward function to train a model that requires parameter

gradients, like a neural network architecture. Zoph and Le [46] first

applied this method in architecture search to train a recurrent neural

network controller that constructs networks. The original method in

[46] uses the controller to generate the entire network at once. This

contrasts from its successor, NASNet [47], which designs a convo-

lutional and pooling block that is repeated to construct a network.

NASNet outperforms its predecessor and produces a network achiev-

ing state-of-the-art error rate on CIFAR-10. NSGA-Net differs from

RL methods by using more than one selection criteria. More specifi-

cally, networks are selected for their accuracy on a task, rather than

an approximation of accuracy, along with computational complexity.

Furthermore, the most successful RL methods search only a compu-

tational block that is repeated to create a network, NSGA-Net allows

for search across computational blocks and combinations of blocks.

Hsu et al. [15] extends the NASNet approach to multi-objective

domain to optimize multiple linear combinations of accuracy and

energy consumption criteria for different scalarization parameters.

However, multiple generative applications of a scalarized objectives

was shown to be not as efficient as simultaneous approaches [5].

Evolutionary Algorithms: Designing neural networks through

evolution, or neuroevolution, has been a topic of interest for some

time, first showing popular success in 2002 with the advent of the

neuroevolution of augmenting topologies (NEAT) algorithm [38]. In

its original form, NEAT only performs well on comparatively small

networks. Miikkulainen et al. [29] attempted to extend NEAT to deep

networks with CoDeepNEAT using a co-evolutionary approach that

achieved limited results on the CIFAR-10 dataset. CoDeepNEAT

does, however, produce state-of-the-art results in the Omniglot multi-

task learning domain [24].

Real et al. [36] introduced perhaps the first truly large scale ap-

plication of a simple evolutionary algorithm. The extension of this

method presented in [35], called AmoebaNet, provided the first large

scale comparison of EC and RL methods. Their simple EA searches

over the same space as NASNet [47] and has shown to have a faster

420

NSGA-Net: Neural Architecture Search using EMO GECCO ’19, July 13–17, 2019, Prague, Czech Republic

convergence to an accurate network when compared to RL and ran-

dom search. Furthermore, AmoebaNet produced one of the best

state-of-the-art results on CIFAR-10 data-set.

Conceptually, NSGA-Net is closest to the Genetic CNN [43]

algorithm. It uses a binary encoding that corresponds to connections

in convolutional blocks. In NSGA-Net, we augment the original

encoding and genetic operations by (1) adding an extra bit for a

residual connection, and (2) introducing phase-wise crossover. We

also introduce a multi-objective based selection scheme. Moreover,

we also diverge from Genetic CNN by incorporating a Bayesian

network in our search to fully utilize past population history as

learned knowledge.

Evolutionary multi-objective optimization (EMO) approaches

have been scarcely used for NAS. Kim et al. [21] presents an algo-

rithm utilizing NSGA-II [5], however their method only searches

over hyper-parameters and a small fixed set of architectures. The

evolutionary method shown in [8] uses weight sharing through net-

work morphisms [42] and approximate morphisms as mutations and

uses a biased sampling to select for novelty from the objective space

rather than a principled selection scheme, like NSGA-II [5]. Net-

work morphisms allow for a network to be “widened" or “deepened"

in a manner that maintains functional equivalence. For architecture

search, this allows for easy parameter sharing after a perturbation in

a network’s architecture.

Other Methods: Methods that do not subscribe to either an EA

or RL paradigm have also shown success in architecture search. Liu

et al. [25] presents a method that progressively expands networks

from simple cells and only trains the best K networks that are pre-

dicted to be promising by a RNN meta-model of the encoding space.

Dong et al. [7] extended this method to use a multi-objective ap-

proach, selected the K networks based on their Pareto-optimality

when compared to other networks. Hsu et al. [16] also presents a

meta-modeling approach that generates models with state-of-the-art

accuracy. This approach may be ad-hoc as no analysis is presented

on how the progressive search affects the trade-off frontier. Elsken

et al. [9] use a simple hill climbing method along with a network

morphism [42] approach to optimize network architectures quickly

on limited resources. Chen et al. [3] combine the ideas of RL and

EA. A population of networks is maintained and are selected for mu-

tation with tournament selection [11]. A recurrent network is used as

a controller to learn an effective strategy to apply mutations to net-

works. Networks are then trained and the worst performing network

in the population is replaced. This approach generates state of the art

results for the ImageNet classification task. Chen et al. [2] presented

an augmented random search approach to optimize networks for a

semantic segmentation application. Kandasamy et al. [20] presents a

Gaussian process based approach to optimize network architectures,

viewing the process through a Bayesian optimization lens.

3 PROPOSED APPROACH
Compute devices are often constrained by hardware resources in

terms of their power consumption, available memory, available

FLOPs, and latency constraints. Hence, real-world design of DNNs

are required to balance these multiple objectives (e.g., predictive

performance and computational complexity). Often, when multiple

design criteria are considered simultaneously, there may not exist

a single solution that performs optimally in all desired criteria, es-

pecially with competing objectives. Under such circumstances, a

set of solutions that provide representative trade-off information

between the objectives is more desirable. This enables a practitioner

to analyze the importance of each criterion, depending on the appli-

cation, and to choose an appropriate solution on the trade-off frontier

for implementation. We propose NSGA-Net, a genetic algorithm

based architecture search method to automatically generate a set of

DNN architectures that approximate the Pareto-front between per-

formance and complexity on an image classification task. The rest of

this section describes the encoding scheme, and main components

of NSGA-Net in detail.

3.1 Encoding
Genetic algorithms, like any other biologically inspired search meth-

ods, often do not directly operate on phenotypes. From the biological

perspective, we may view the DNN architecture as a phenotype, and

the representation it is mapped from as its genotype. As in the natural

world, genetic operations like crossover and mutation are only car-

ried out in the genotype space; such is the case in NSGA-Net as well.

We refer to the interface between the genotype and the phenotype as

encoding in this paper.

Most existing CNN architectures can be viewed as a composition

of computational blocks that define the layer-wise computation (e.g.

ResNet blocks [12], DenseNet block [17], and Inception block [39],

etc.) and a scheme that specifies the spatial resolution changes. For

example, down-sampling is often used after computational blocks

to reduce the spatial resolution of information going into the next

computational blocks in image classification DNNs. In NSGA-Net,

each computational block, referred to as a phase, is encoded using

the method presented by Xie and Yuille [43], with the small change

of adding a bit to represent a skip connection that forwards the input

information directly to the output bypassing the entire block. And

we name it as the Operation Encoding xo in this study.

Operation Encoding xo: Unlike most of the hand-crafted and

NAS generated architectures, we do not repeat the same phase (com-

putational block) to construct a network. Instead, the operations of

a network are encoded by xo =
(
x
(1)
o , x

(2)
o , . . . , x

(np)
o

)
where np is

the number of phases. Each x
(i)
o encodes a directed acyclic graph

consisting of no number of nodes that describes the operation within

a phase using a binary string. Here, a node is a basic computational

unit, which can be a single operation like convolution, pooling,

batch-normalization [18] or a sequence of operations. This encoding

scheme offers a compact representation of the network architectures

in genotype space, yet is flexible enough that many of the computa-

tional blocks in hand-crafted networks can be encoded, e.g. VGG

[37], ResNet [12] and DenseNet [17]. Figure 2 and Figure 3 shows

examples of the operation encoding.

Search Space: With a pre-determined scheme of spatial resolu-

tion reduction (similarly in [27, 35, 47]), the total search space in

the genotype space is governed by our operation encoding xo:

Ωx = Ωxo = np × 2
no (no−1)/2+1

where np is the number of phases (computational blocks), and no
is the number of nodes (basic computational units) in each phase.

However, for computationally tractability, we constrain the search

421

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

In
p
u
t

2 3 6

5 P
o
o
li
n
g 2

4

5

1

3

6

P
o
o
li
n
g

1

2

3

4 5

A
v
g
P
o
ol
in
g

L
in
ea
r

x
(1)
o =0-01-000-0010-00101-0 x

(2)
o =0-00-000-0101-10101-0 x

(3)
o =0-00-111-0111-00000-1

Figure 2: Encoding: Illustration of a classification network encoded by x = xo, where xo is the operations at a phase (gray boxes, each
with a possible maximum of 6 nodes). In this example the spatial resolution changes (orange boxes that connect the phases) are fixed
based on prior knowledge of successful approaches. The phases are described by the bit string xo which is formatted for readability
above. The bits are grouped by dashes to describe what node they control. See Section 3.1 for detailed description of the encoding
schemes.

Parent 1

1

2 3

4

⊗

Parent 2

1

2 3

4

=

Child

1

2 3

4

(Parent 2) DenseNet: 1-11-111-0

(Parent 1) VGG: 1-01-001-0

——————————————
(Child) ResNet: 1-01-101-0

: common

: VGG

: DenseNet

Figure 3: Crossover Example: A crossover (denoted by ⊗) of a VGG-like structure with a DenseNet-like structure may result in a
ResNet-like network. In the figure, red and blue denotes connections that are unique to VGG and DenseNet respectively, and black
shows the connections that are common to both parents. All black bits are retained in the final child encoding, and only the bits that
are not common between the parents can potentially be selected at random from one of the parent.

space such that each node in a phase carries the same sequence of

operations, i.e. a 3 × 3 convolution followed by batch-normalization

[18] and ReLU.

It is worth noting that, as a result of nodes in each phase having

identical operations, the encoding between genotype and pheno-

type is a many-to-one mapping. Given the prohibitive computational

expense required to train each network architecture before its perfor-

mance can be assessed, it is essential to avoid evaluating genomes

that decode to the same architecture. We develop an algorithm to

quickly and approximately identify these duplicate genomes (see

Supplementary Materials for details).

3.2 Search Procedure
NSGA-Net is an iterative process in which initial solutions are made

gradually better as a group, called a population. In every iteration, the

same number of offspring (new network architectures) are generated

from parents selected from the population. Each population member

(including both parents and offspring) compete for both survival

and reproduction (becoming a parent) in the next iteration. The

initial population may be generated randomly or guided by prior-

knowledge (e.g. seeding the hand-crafted network architectures into

the initial population). Following initialization, the overall NSGA-

Net search proceeds in two sequential stages, an exploration and

exploitation.

Exploration: The goal of this stage is to discover diverse ways of

connecting nodes to form a phase (computational block). Genetic

operations, crossover and mutation, offer an effective mean to realize

this goal.

Crossover: The implicit parallelism of population-based search

approaches can be unlocked when the population members can

effectively share (through crossover) building-blocks [13]. In the

context of NAS, a phase or the sub-structure of a phase can be

viewed as a building-block. We design a homogeneous crossover

operator, which takes two selected population members as parents,

to create offspring (new network architectures) by inheriting and

recombining the building-blocks from parents. The main idea of this

crossover operator is to 1) preserve the common building-blocks

shared between both parents by inheriting the common bits from

both parents’ binary bit-strings; 2) maintain, relatively, the same

complexity between the parents and their offspring by restricting

the number of “1" bits in the offspring’s bit-string to lie between the

number of “1" bits in both parents. The proposed crossover allows

selected architectures (parents) to effectively exchange phases or

sub-structures within a phase. An example of the crossover operator

is provided in Figure 3.

Mutation: To enhance the diversity (having different network

architectures) of the population and the ability to escape from local

optima, we use a bit-flipping mutation operator, which is commonly

422

NSGA-Net: Neural Architecture Search using EMO GECCO ’19, July 13–17, 2019, Prague, Czech Republic

p
(
x
(1)
o

)
p
(
x
(3)
o

∣∣∣x(2)
o

)
p
(
x
(2)
o

∣∣∣x(1)
o

)

x̂
(1)
o =0-01-000-0010-00101-0 x̂

(3)
o =0-00-111-0111-00000-1x̂

(2)
o =0-00-000-0101-10101-0

Figure 4: Exploitation: Sampling from the Bayesian Network (BN) constructed by NSGA-Net. The histograms represent estimates
of the conditional distributions between the network structure between the phases explored during the exploration step and updated
during the exploitation step (i.e., using the population archive). During exploitation, networks are constructed by sampling phases
from the BN. Fig. 2 shows the architectures that the sampled bit strings, {x̂ (1)o , x̂

(2)
o , x̂

(3)
o } decode to.

used in binary-coded genetic algorithms. Due to the nature of our

encoding, a one bit flip in the genotype space could potentially

create a completely different architecture in the phenotype space.

Hence, we restrict the number of bits that can be flipped to be at

most one for each mutation operation. As a result, only one of the

phase architectures can be mutated at one time.

Exploitation: The exploitation stage follows the exploration stage

in NSGA-Net. The goal of this stage is to exploit and reinforce the

patterns commonly shared among the past successful architectures

explored in the previous stage. The exploitation step in NSGA-Net

is heavily inspired by the Bayesian Optimization Algorithm (BOA)

[32] which is explicitly designed for problems with inherent cor-

relations between the optimization variables. In the context of our

NAS encoding, this translates to correlations in the blocks and paths

across the different phases. Exploitation uses past information across

all networks evaluated to guide the final part of the search. More

specifically, say we have a network with three phases, namely x
(1)
o ,

x
(2)
o , and x

(3)
o . We would like to know the relationship of the three

phases. For this purpose, we construct a Bayesian Network (BN)

relating these variables, modeling the probability of networks be-

ginning with a particular phase x
(1)
o , the probability that x

(2)
o follows

x
(1)
o , and the probability that x

(3)
o follows x

(2)
o . In other words, we

estimate the distributions p
(
x
(1)
o

)
, p

(
x
(2)
o |x

(1)
o

)
, and p

(
x
(3)
o |x

(2)
o

)
by

using the population history, and update these estimates during the

exploitation process. New offspring solutions are created by sam-

pling from this BN. Figure 4 shows a pictorial depiction of this

process.

4 EXPERIMENTS
In this section, we explain the experimental setup and implemen-

tation details of NSGA-Net, followed by the empirical results to

demonstrate the efficacy of NSGA-Net to automate the NAS process

on image classification task.

4.1 Performance Metrics
We consider two objectives to guide NSGA-Net based NAS, namely,

classification error and computational complexity. A number of

metrics can serve as proxies for computational complexity: number

of active nodes, number of active connections between the nodes,

number of parameters, inference time and number of floating-point

operations (FLOPs) needed to execute the forward pass of a given

network. Our initial experiments considered each of these different

metrics. We concluded from extensive experimentation that inference

time cannot be estimated reliably due differences and inconsistencies

in computing environment, GPU manufacturer, temperature, etc.

Similarly, the number of parameters, active connections or active

nodes only relate to one aspect of computational complexity. In

contrast, we found an estimate of FLOPs to be a more accurate and

reliable proxy for network complexity. See Supplementary Materials

for more details. Therefore, classification error and FLOPs serve as

the twin objectives for selecting networks.

For the purpose of quantitatively comparing different multi - ob-

jective search methods or different configuration setups of NSGA-

Net, we use the hypervolume (HV) performance metric, which calcu-

lates the dominated area (hypervolume in the general case) from the

a set of solutions (network architectures) to a reference point which

is usually an estimate of the nadir point—a vector concatenating

worst objective values of the Pareto-frontier. It has been proven that

the maximum HV can only be achieved when all solutions are on the

Pareto-frontier [10]. Hence, the higher the HV measures, the better

solutions that are being found in terms of both objectives.

4.2 Implementation Details
Dataset: We consider the CIFAR-10 [22] dataset for our classifi-

cation task. We split the original training set (80%-20%) to create

our training and validation sets for architecture search. The original

CIFAR-10 testing set is only utilized at the conclusion of the search

to obtain the test accuracy for the models on the final trade-off front.

NSGA-Net hyper-parameters: We set the number of phases np to

three and the number of nodes in each phase no to six. We also fix

the spatial resolution changes scheme similarly as in [47], in which

a max-pooling with stride 2 is placed after the first and the second

phase, and a global average pooling layer after the last phase. The

initial population is generated by uniform random sampling. The

probabilities of crossover and mutation operations are set at 0.9

and 0.02 respectively. The population size is 40 and the number of

generations is 20 for the exploration stage. And another ten genera-

tions for exploitation. Hence, a total of 1,200 network architectures

are searched by NSGA-Net. Network training during searching:
During architecture search, we limit the number of filters (channels)

423

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

in any node to 16 for each one of the generated network architecture.

We then train them on our training set using standard stochastic

gradient descent (SGD) back-propagation algorithm and a cosine

annealing learning rate schedule [28]. Our initial learning rate is

0.025 and we train for 25 epochs, which takes about 9 minutes on

a NVIDIA 1080Ti GPU implementation in PyTorch [30]. Then the

classification error is measured on our validation set.

4.3 Architecture Validation
For comparing with other single-objective NAS methods, we adopt

the training procedure used in [27] and a quick summary is given as

follows.

we extend the number of epochs to 600 with a batch-size of 96 to

train the final selected models (could be the entire trade-off frontier

architectures or a particular one chosen by the decision-maker). We

also incorporate a data pre-processing technique cutout [6], and a

regularization technique scheduled path dropout introduced in [47].

In addition, to further improve the training process, an auxiliary

head classifier is appended to the architecture at approximately 2/3

depth (right after the second resolution-reduction operation). The

loss from this auxiliary head classifier, scaled by a constant factor

0.4, is aggregated with the loss from the original architecture before

back-propagation during training. Other hyper-parameters related

to the back-propagation training remain the same as during the

architecture search.

For the fairness of the comparison among various NAS methods,

we incorporate the NASNet-A cell [47], the AmoebaNet-A cell [35]

and the DARTS(second order) cell [27] into our training procedures

and report their results under the same settings as NSGA-Net found

architectures.

4.4 Results Analysis
We first present the overall search progression of NSGA-Net in

the objective-space. Figure 5 shows the bi-objective frontiers ob-

tained by NSGA-Net through the various stages of the search, clearly

showcasing a gradual improvement of the whole population. Fig-

ure 6 shows two metrics: normalized HV and offspring survival rate,

through the different generations of the population. The monotonic

increase in the former suggests that a better set of trade-off network

architectures have been found over the generations. The monotonic

decrease in the latter metric suggests that, not surprisingly, it is

increasingly difficult to create better offspring (than their parents).

We can use a threshold on the offspring survival rate as a potential

criterion to terminate the current stage of the search process and

switch between the exploration and exploitation.

To compare the network architecture obtained from NSGA-Net

to other hand-crafted and search-generated architectures, we pick

the network architectures with the lowest classification error from

the final frontier (the dot in the lower right corner on the green curve

in Figure 5) and extrapolate (by following the setup as explained

in Section 4.3) the network by increasing the number of filters of

each node in the phases, and train with the entire official CIFAR-10

training set. The chosen network architecture, shown in Figure 2,

results in 3.85% classification error on the CIFAR-10 testing set with

3.34 Millions of parameters and 1290 MFLOPs. Table 1 provides a

summary that compares NSGA-Net with other multi-objective NAS

Figure 5: Progression of trade-off frontiers after each stage of
NSGA-Net.

Figure 6: Generational normalized hypervolume and survival
rate of the offspring network architectures.

Table 1: Multi-objective methods for CIFAR-10 (best accuracy
for each method)

Method Error (%) Other Objective Compute

PPP-Net [7] 4.36
FLOPs or

Params or Inference Time
Nvidia Titan X

MONAS [15] 4.34 Power Nvidia 1080Ti

NSGA-Net 3.85 FLOPs
Nvidia 1080Ti

8 GPU Days

methods. Unfortunately, hypervolume comparisons between these

multi-objective NAS methods are not feasible due to the following

two reasons: 1) The entire trade-off frontiers obtained by the other

multi-objective NAS methods are not reported and 2) different objec-

tives were used to estimate the complexity of the architectures. Due

to space limitation, the other architectures on the trade-off frontier

found by NSGA-Net are reported in Supplementary Materials.

The CIFAR-10 results comparing state-of-the-art CNN architec-

tures from both human-designed and search-generated are presented

in Table 2. NSGA-Net achieves comparable results with state-of-the-

art architectures designed by human experts [17] while having order

of magnitude less parameters in the obtained network architecture.

424

NSGA-Net: Neural Architecture Search using EMO GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Figure 7: Normal and reduction convolutional cell architectures found by NSGA-Net applied to NASNet micro search space. The
inputs (green) are from previous cells’ output (or input image). The output (yellow) is the results of a concatenation operation across
all resulting branches. Each edge (line with arrow) indicates an operation with operation name annotated above the line.

Table 2: Comparison of NSGA-Net with baselines on CIFAR-10 image classification. In this table, the first block presents state-of-the-
art architectures designed by human experts. The second block presents NAS methods that design the entire network. The last block
presents NAS methods that design modular blocks which are repeatedly combined to form the final architecture. We use (N @ F) to
indicate the configuration of each model, where N is the number of repetition and F is the number of filters right before classification.
Results marked with † are obtained by training the corresponding architectures with our setup (refers to Section 4.3 for details).

Architectures Params Test Error × + Search Cost Search

(M) (%) (M) (GPU-days) Method

Wide ResNet [44] 36.5 4.17 - - human experts

DenseNet-BC (k = 40) [17] 25.6 3.47 - - human experts

NAS [46] 7.1 4.47 - 3150 RL

NAS + more filters[46] 37.4 3.65 - 3150 RL

ENAS + macro search space [33] 21.3 4.23 - 0.5 RL + weight sharing

ENAS + macro search space + more channels [33] 38.0 3.87 - 0.5 RL + weight sharing

NSGA-Net + macro search space 3.3 3.85 1290 8 evolution

DARTS second order + cutout [27] 3.3 2.76 - 4 gradient-based

DARTS second order (6 @ 576) + cutout [27] † 3.3 2.76 547 4 gradient-based

NASNet-A + cutout [47] 3.3 2.65 - 2,000 RL

NASNet-A (6 @ 660) + cutout [47] † 3.2 2.91 532 2,000 RL

ENAS + cutout [33] 4.6 2.89 - 0.5 RL + weight sharing

ENAS (6 @ 660) + cutout [33] † 3.3 2.75 533 0.5 RL + weight sharing

AmoebaNet-A [35] 3.2 3.34 - 3,150 evolution

AmoebaNet-A (6 @ 444) + cutout [35] † 3.3 2.77 533 3,150 evolution

NSGA-Net (6 @ 560) + cutout 3.3 2.75 535 4 evolution
NSGA-Net (7 @ 1536) + cutout 26.8 2.50 4147 4 evolution

When compared with other state-of-the-art RL- and evolution-based

NAS methods [35, 47], NSGA-Net achieves similar performance by

using two and half orders of magnitude less computation resources

(GPU-days). Even though NSGA-Net falls short in search efficiency

when compared to the gradient-based NAS method DARTS [27]

despite a slight advantage in test error, it’s worth noting that NSGA-

Net inherently delivers many other architectures from the trade-off

frontier at no extra cost. The corresponding architectures found by

NSGA-Net are provided in Figure 2 and Figure 7 for macro search

space and NASNet micro search space respectively.

4.5 Transferability
We consider CIFAR-100 dataset [22] for evaluating the tranferability

of the found architecture by NSGA-Net. We use the same training

setup as explained in Section 4.3 on CIFAR-10 dataset. The training

takes about 1.5 days on a single 1080Ti GPU. Results shown in

Table 3 suggest that the learned architecture from searching on

CIFAR-10 is transferable to CIFAR-100. The architecture found by

425

GECCO ’19, July 13–17, 2019, Prague, Czech Republic
Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman and Wolfgang Banzhaf

(a) (b) (c)

Figure 8: (a) Trade-off frontier comparison between random search and NSGA-Net. (b) Trade-off frontier comparison with and
without crossover. (c) Comparison between sampling from uniformly from the encoding space and the Bayesian Network constructed
from NSGA-Net exploration population archive.

NSGA-Net achieves comparable performance to both the human-

designed and RL-search generated architectures [44, 45] with 10x

and 2x less number of parameters respectively.

Table 3: Comparison with different classifiers on CIFAR-100.

Architectures Params Test Error GPU Search

(M) (%) Days Method

Wide ResNet [44] 36.5 20.50 - manual

Block-QNN-S [45] 6.1 20.65 96 RL

Block-QNN-S* [45] 39.8 18.06 96 RL

NSGA-Net 3.3 20.74 8 evolution

NSGA-Net* 11.6 19.83 8 evolution

*denotes architectures with extended number of filters

4.6 Ablation Studies
Here, we first present results comparing NSGA-Net with uniform

random sampling (RSearch) from our encoding as a sanity check.

It’s clear from Figure 8a that much better set of network architec-

tures are obtained using NSGA-Net. Then we present additional

results to showcase the benefits of the two main components of

our approach: crossover and Bayesian network based offspring cre-

ation. Crossover Operator: Current state-of-the-art NAS search

results [26, 35] using evolutionary algorithms use mutation alone

with enormous computation resources. We quantify the importance

of crossover operation in an EA by conducting the following small-

scale experiments on CIFAR-10. From Figure 8b, we observe that

crossover helps achieve a better trade-off frontier. Bayesian Net-
work (BN) based Offspring Creation: Here we quantify the ben-

efits of the exploitation stage i.e., off-spring creation by sampling

from BN. We uniformly sampled 120 network architectures each

from our encoding and from the BN constructed on the population

archive generated by NSGA-Net at the end of exploration. The ar-

chitectures sampled from the BN dominate (see Fig.8c) all network

architectures created through uniform sampling.

4.7 Discussion
We analyze the intermediate solutions of our search and the trade-off

frontiers and make some observations. Upon visualizing networks,

like the one in Figure 2, we observe that as network complexity

decreases along the front, the search process gravitates towards re-

ducing the complexity by minimizing the amount of processing at

higher image resolutions i.e., remove nodes from the phases that are

closest to the input to the network. As such, NSGA-Net outputs a set

of network architectures that are optimized for wide range of com-

plexity constraints. On the other hand, approaches that search over a

single repeated computational block can only control the complexity

of the network by manually tuning the number of repeated blocks

used. Therefore, NSGA-Net provides a more fine-grained control

over the two objectives as opposed to the control afforded by arbi-

trary repetition of blocks. Moreover, some objectives, for instance

susceptibility to adversarial attacks, may not be easily controllable

by simple repetition of blocks. A subset of networks discovered on

the trade-off frontier for CIFAR-10 is provided in Supplementary

Materials.

5 CONCLUSIONS
This paper presented NSGA-Net, a multi-objective evolutionary ap-

proach for neural architecture search. NSGA-Net affords a number of

practical benefits: (1) the design of neural network architectures that

can effectively optimize and trade-off multiple competing objectives,

(2) advantages afforded by population-based methods being more

effective than optimizing weighted linear combination of objectives,

(3) more efficient exploration and exploitation of the search space

through a customized crossover scheme and leveraging the entire

search history through BOA, and finally (4) output a set of solutions

spanning a trade-off front in a single run. Experimentally, by opti-

mizing both prediction performance and computational complexity

NSGA-Net finds networks that are significantly better than hand-

crafted networks on both objectives and is compares favorably to

other state-of-the-art single objective NAS methods for classification

on CIFAR-10.

ACKNOWLEDGEMENT
This material is based in part upon work supported by the Na-

tional Science Foundation under Cooperative Agreement No. DBI-

0939454. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

426

NSGA-Net: Neural Architecture Search using EMO GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. In ICLR.
[2] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H.

Adam, and J. Shlens. 2018. Searching for Efficient Multi-Scale Architectures
for Dense Image Prediction. arXiv preprint arXiv:1809.04184 (Sep 2018).
arXiv:cs.CV/1809.04184

[3] Y. Chen, Q. Zhang, C. Huang, L. Mu, G. Meng, and X. Wang. 2018. Rein-
forced Evolutionary Neural Architecture Search. ArXiv e-prints (Aug 2018).
arXiv:1808.00193

[4] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[5] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. 2000. A
fast elitist non-dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II. In International Conference on Parallel Problem Solving From
Nature. Springer, 849–858.

[6] Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552
(2017).

[7] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. 2018.
PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architec-
tures. In ICLR.

[8] T. Elsken, J. Hendrik Metzen, and F. Hutter. 2018. Efficient Multi-objective Neural
Architecture Search via Lamarckian Evolution. arXiv preprint arXiv:1804.09081
(April 2018). arXiv:stat.ML/1804.09081

[9] T. Elsken, J.H. Metzen, and F. Hutter. 2018. Simple and efficient architecture
search for Convolutional Neural Networks. In ICLR.

[10] M. Fleischer. 2003. The measure of Pareto optima: Applications to multi-objective
optimization. In EMO.

[11] David E. Goldberg and Kalyanmoy Deb. 1991. A Comparative Analysis of Selec-
tion Schemes Used in Genetic Algorithms. Foundations of Genetic Algorithms,
Vol. 1. Elsevier, 69 – 93. https://doi.org/10.1016/B978-0-08-050684-5.50008-2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

[13] J. H. Holland. 1975. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: MIT Press.

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[15] C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y.-T. Chen, W. Wei, and S.-
C. Chang. 2018. MONAS: Multi-Objective Neural Architecture Search us-
ing Reinforcement Learning. arXiv preprint arXiv:1806.10332 (June 2018).
arXiv:1806.10332

[16] C.-H. Hsu, S.-H. Chang, D.-C. Juan, J.-Y. Pan, Y.-T. Chen, W. Wei, and S.-C.
Chang. 2018. Neural Architecture Optimization. arXiv preprint arXiv:1808.07233
(Aug 2018). arXiv:1808.07233

[17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. 2017.
Densely connected convolutional networks. In CVPR.

[18] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[19] Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. 2017. Local binary
convolutional neural networks. In CVPR.

[20] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. Xing. 2018.
Neural Architecture Search with Bayesian Optimisation and Optimal Transport.
arXiv preprints arXiv:1802.07191 (Feb 2018). arXiv:1802.07191

[21] Y.H. Kim, B. Reddy, S. Yun, and C. Seo. 2017. NEMO: Neuro-evolution with
multiobjective optimization of deep neural network for speed and accuracy. In
JMLR: Workshop and Conference Proceedings, Vol. 1. 1–8.

[22] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n. d.]. CIFAR-10 (Canadian
Institute for Advanced Research). ([n. d.]). http://www.cs.toronto.edu/~kriz/cifar.
html

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In NIPS.

[24] J. Liang, E. Meyerson, and R. Miikkulainen. 2018. Evolutionary Architec-
ture Search For Deep Multitask Networks. ArXiv e-prints (March 2018).

arXiv:1803.03745
[25] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L.

Yuille, Jonathan Huang, and Kevin Murphy. 2017. Progressive Neural Architecture
Search. CoRR abs/1712.00559 (2017). arXiv:1712.00559 http://arxiv.org/abs/
1712.00559

[26] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Ko-
ray Kavukcuoglu. 2018. Hierarchical Representations for Efficient Architecture
Search. In ICLR. https://openreview.net/forum?id=BJQRKzbA-

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. arXiv preprint arXiv:1806.09055 (2018).

[28] I. Loshchilov and F. Hutter. 2016. SGDR: Stochastic Gradient Descent with Warm
Restarts. arXiv preprint arXiv:1608.03983 (August 2016). arXiv:1608.03983

[29] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat. 2017. Evolving Deep Neural
Networks. arXiv preprint arXiv:1703.00548 (March 2017). arXiv:1703.00548

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[31] Gerulf KM Pedersen and Zhenyu Yang. 2006. Multi-objective PID-controller
tuning for a magnetic levitation system using NSGA-II. In GECCO. ACM, 1737–
1744.

[32] Martin Pelikan, David E Goldberg, and Erick Cantú-Paz. 1999. BOA: The
Bayesian optimization algorithm. In GECCO. Morgan Kaufmann Publishers Inc.,
525–532.

[33] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Effi-
cient Neural Architecture Search via Parameters Sharing. In Proceedings of the
35th International Conference on Machine Learning (Proceedings of Machine
Learning Research), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR,
Stockholmsmässan, Stockholm Sweden, 4095–4104. http://proceedings.mlr.press/
v80/pham18a.html

[34] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
Xnor-net: Imagenet classification using binary convolutional neural networks. In
ECCV.

[35] E. Real, A. Aggarwal, Y. Huang, and Q. V Le. 2018. Regularized Evolution
for Image Classifier Architecture Search. arXiv preprint arXiv:1802.01548 (Feb
2018). arXiv:1802.01548

[36] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A.
Kurakin. 2017. Large-Scale Evolution of Image Classifiers. arXiv preprint
arXiv:1703.01041 (March 2017). arXiv:1703.01041

[37] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-scale Image Recognition. In ICLR.

[38] Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
Through Augmenting Topologies. Evol. Comput. 10, 2 (June 2002), 99–127.
https://doi.org/10.1162/106365602320169811

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going Deeper with Convolutions. In CVPR.

[40] Ma Guadalupe Castillo Tapia and Carlos A Coello Coello. 2007. Applications of
multi-objective evolutionary algorithms in economics and finance: A survey. In
CEC. IEEE, 532–539.

[41] Christopher John Cornish Hellaby Watkins. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation. King’s College, Cambridge, UK. http://www.cs.rhul.ac.uk/
~chrisw/new_thesis.pdf

[42] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. 2016. Network
Morphism. In ICML.

[43] L. Xie and A. Yuille. 2017. Genetic CNN. In ICCV.
[44] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide Residual Networks. In

BMVC.
[45] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. 2017. Practical Network Blocks

Design with Q-Learning. CoRR abs/1708.05552 (2017). arXiv:1708.05552
http://arxiv.org/abs/1708.05552

[46] B. Zoph and Q. V. Le. 2016. Neural Architecture Search with Reinforcement
Learning. arXiv preprint arXiv:1611.01578 (Nov 2016). arXiv:cs.LG/1611.01578

[47] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

427

