
A Hybrid Evolutionary System for Automatic Software Repair
Yuan Yuan

Michigan State University
East Lansing, Michigan

yyuan@msu.edu

Wolfgang Banzhaf
Michigan State University
East Lansing, Michigan
banzhafw@msu.edu

ABSTRACT
This paper presents an automatic software repair system that com-
bines the characteristic components of several typical evolution-
ary computation based repair approaches into a unified repair
framework so as to take advantage of their respective component
strengths. We exploit both the redundancy assumption and re-
pair templates to create a search space of candidate repairs. Then
we employ a multi-objective evolutionary algorithm with a low-
granularity patch representation to explore this search space, in
order to find simple patches. In order to further reduce the search
space and alleviate patch overfitting we introduce replacement sim-
ilarity and insertion relevance to select more related statements as
promising fix ingredients, and we adopt anti-patterns to customize
the available operation types for each likely-buggy statement. We
evaluate our system on 224 real bugs from the Defects4J dataset in
comparison with the state-of-the-art repair approaches. The evalua-
tion results show that the proposed system can fix 111 out of those
224 bugs in terms of passing all test cases, achieving substantial
performance improvements over the state-of-the-art. Additionally,
we demonstrate the ability of ARJA-e to fix multi-location bugs that
are unlikely to be addressed by most of existing repair approaches.

CCS CONCEPTS
• Software and its engineering→Genetic programming; Search-
based software engineering;

KEYWORDS
Program repair, genetic programming, evolutionary multi-objective
optimization

ACM Reference Format:
Yuan Yuan and Wolfgang Banzhaf. 2019. A Hybrid Evolutionary System
for Automatic Software Repair. In Genetic and Evolutionary Computation
Conference (GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3321707.3321830

1 INTRODUCTION
Automatic software repair [9, 30, 38] aims to fix bugs in software
automatically, which generally relies on a specification. When a
test suite is considered as the specification, the paradigm is called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321830

test-suite based repair [30]. The test suite should contain at least one
negative (i.e., initially failing) test that triggers the bug to be fixed
and a number of positive (i.e., initially passing) tests that define the
expected program behavior. In terms of test-suite based repair, a
bug is regarded to be fixed or repaired, if a created patch makes the
entire test suite pass. Such a patch is referred to as a test-adequate
patch [23] or a plausible patch [34].

Evolutionary computation (EC) based repair approaches [38] are
a popular category of techniques for test-suite based repair. These
approaches determine a search space potentially containing correct
patches, then use the evolutionary algorithm (EA) to explore that
search space. GenProg [18, 19] is a pioneering approach of this
kind, which uses three types of statement-level edit operations (i.e.,
deletion, replacement and insertion) to rearrange the statements
already extant in the buggy program and uses genetic program-
ming [3, 14] to search for plausible patches. Although GenProg
exhibits promising performance [18], there are deficiencies in both
of its two key elements: search space and EA, which inspire further
examination of EC-based repair approaches.

In regard to the search space, GenProg exploits the redundancy
assumption [26] (also called plastic surgery hypothesis [2]) and only
uses existing statements in the buggy program for replacement or
insertion. The problem here is that the fix statements randomly
excerpted from somewhere in the current buggy program may
have little pertinence to the likely-buggy statement to be manip-
ulated. Due to this problem, GenProg usually generates patches
overfitting the test suite or even fails to fix the bug. To relieve
the issue, Kim et al. [13] proposed PAR, which exploits repair tem-
plates to produce program variants. Each template specifies one
type of program transformation and is derived from common fix
patterns (e.g., adding a null-pointer checker for an object refer-
ence) manually learned from human-written patches. Compared
to GenProg, PAR usually works in a more promising search space,
since the program transformations performed by PAR are more
targeted. Nevertheless, as can be inferred from the results in [44],
the redundancy-based approaches can really fix some bugs that
cannot be fixed by typical template-based approaches (e.g., PAR
and ELIXIR [36]) which implies that combining the redundancy
assumption and repair templates to generate fix statements could
further improve repair effectiveness.

As for the aspect of the EA, the genetic operators in GenProg are
only executed on high-granularity edits and the crossover therein
will not produce any new edits. A recent study [32] indicates that
evolving such high-level units will strongly limit the ability of
GenProg to effectively traverse the search space. This may partly
explain why GenProg usually cannot generate repairs beyond sim-
ple ones equivalent to a single functionality deletion [34]. Inspired
by [32], a very recent EC-based approach ARJA [44] incorporates a
three-part lower-granularity patch representation (i.e., decoupling

1417

https://doi.org/10.1145/3321707.3321830
https://doi.org/10.1145/3321707.3321830


GECCO ’19, July 13–17, 2019, Prague, Czech Republic Yuan Yuan and Wolfgang Banzhaf

the search subspaces of likely-buggy locations, operation types and
potential fix statements), where genetic operators act on each part
separately. Due to its improved search ability, an ARJA version
working over GenProg’s search space can fix many more real bugs
from Defects4J [11] than GenProg, and it can even handle several
multi-location bugs which cannot be fixed by most of the existing
repair approaches.

Another problem with GenProg lies in patch overfitting. That
is, GenProg usually produces patches that are incorrect beyond
passing the test suite. This problem has attracted a lot of attention
since the empirical work by Qi et al. [34]. Strictly speaking, a repair
approach itself is not responsible for patch overfitting but a weak
test suite is [29]. However it is common that the test suite for a bug
is not strong enough. So it is necessary to develop some strategies
to alleviate this practical problem so as to focus more search efforts
on finding correct patches. Tan et al. [37] propose to prohibit a set
of specified program transformations (called anti-patterns) in Gen-
Prog that can easily result in unreasonable changes to the program
behavior. Another strategy is from ARJA [44], which considers to
explicitly minimize patch size during the evolutionary process. Be-
sides having better comprehensibility and maintainability, smaller
patches generally have better generalization ability to unseen tests
according to Occam’s razor, so there is less risk of patch overfitting.

The above mentioned improvements over GenProg in regard to
search space, EA and patch overfitting can all to some extent result
in better repair performance. However, to our knowledge, there
is no single approach endowed with all of them. Our basic idea in
this paper is to combine the strengths from characteristic elements
that contribute to all of these improvements so as to construct a
new EC-based repair approach that represents the state of the art.
To this end, we propose a hybrid evolutionary repair system for
Java, namely ARJA-e (an enhanced version of ARJA [44]), which
incorporates the redundancy assumption, repair templates, lower-
granularity patches, anti-patterns and the minimization of patch
size into a unified repair framework. Overall, ARJA-e employs a
multi-objective evolutionary algorithm (MOEA) [45] with a lower-
granularity patch representation to search for smaller patches over
a promising search space determined by both the redundancy as-
sumption and repair templates, where anti-patterns are used to
assign available operation types for each likely buggy statement.
We evaluate ARJA-e on 224 real bugs from Defects4J [11], and com-
pare it with almost all the approaches ever tested on this database.
The results show that ARJA-e performs much better than state-
of-the-art repair approaches in terms of both the number of bugs
fixed and correctly fixed. Specifically, ARJA-e can fix 111 out of 224
bugs in terms of plausible repair. Furthermore, ARJA-e is able to
correctly fix several multi-location bugs that cannot be handled by
most of the existing repair approaches.

The overall contribution of this paper is the construction of a
new EC-based repair system that integrates the characteristic com-
ponents of several existing ones. The extension and enhancement
of each component along with how to seamlessly combine all the
components constitute the detailed technical contribution that can
be summarized as follows:

1) We use both the redundancy assumption and repair templates
as the source for potential fix statements, in order to leverage their
complementarity.

2) To reduce the search space and alleviate patch overfitting, we
present two metrics in order to select the most related statements
for consideration among those copied from the buggy program.

3) We extend the templates of PAR to make them more general
and accommodate more potentially useful fix patterns.

4) We convert various template-based repair actions (usually
occurring at the expression level) into two types of statement-level
edits so that all kinds of edits can be decomposed into the same
partial information, which makes it possible to encode patches with
a unified lower-granularity representation.

5) We introduce a new lower-granularity patch representation
specifically for crossover which is characterized by the decoupling
of statements for replacement and statements for insertion. This
insight has two reasons: (i) the potentially useful replacement or
insertion statement for a faulty statement usually have quite differ-
ent features and it would be better to evolve them separately; (ii)
any potential fix statement generated by templates is used either
for replacement or for insertion.

2 BACKGROUND AND MOTIVATION
2.1 Related Work
Our system belongs to the class of EC-based repair approaches
which explore a repair search space using evolutionary algorithms.
GenProg [18, 19], PAR [13], GenProg with anti-patterns [37] and
ARJA [44] all fall into this category. Their basic ideas have been
described in Section 1. ARJA-e organically combines the charac-
teristic components of all these approaches, making it distinctly
different from any of them. Several approaches employ other kinds
of search algorithms, instead of EAs, to traverse GenProg’s search
space (e.g., RSRepair [33] uses random search and AE [39] uses an
adaptive search strategy).

Inspired by the idea of using templates [13], some repair ap-
proaches (e.g., SPR [21] and ELIXIR [36]) employ a set of richer
templates (or code transformations) that are defined manually. Gen-
esis [20] aims to automatically infer such code transformations from
successful patches. Cardumen [25] mines repair templates from the
program under repair. Similar to these approaches, ARJA-e uses
templates extended and enhanced from those in PAR.

Beyond the current buggy program and its associated test suite,
some approaches exploit other information to help the repair pro-
cess. HDRepair [17] uses mined historical bug fixes to guide its
random search. ACS [42] uses the information of javadoc comments
to rank variables. SearchRepair [12] and ssFix [41] both use existing
code from an external code database to find potential repairs.

A number of existing approaches infer semantic specifications
from the test cases and then use program synthesis to generate a
repair that satisfies the inferred specifications. These are usually
categorized as semantics-based approaches. SemFix [31] is a pioneer
in this category. Other typical approaches of this kind include
DirectFix [27], QLOSE [5], Angelix [28], Nopol [43], JFix [15] and
S3 [16]. Recently, machine learning techniques have been used in
software repair. Prophet [22] uses a probabilistic model to rank the
candidate patches over the search space of SPR. DeepFix [10] uses
deep learning to fix common programming errors.

1418



A Hybrid Evolutionary System for Automatic Software Repair GECCO ’19, July 13–17, 2019, Prague, Czech Republic

2.2 Motivating Examples
In this subsection, we take real bugs as examples to illustrate the
key insights motivating the design of ARJA-e.

Fig. 1 show the human-written patch for bug Math85 from the
Defects4J [11] dataset. To correctly fix this bug, only a slight modifi-
cation is required (i.e., change >= to >), as shown in Fig. 1. However,
redundancy-based approaches (e.g., GenProg [18, 19], RSRepair [33]
and AE [39]) usually cannot find a correct patch for this bug since
the fix statement used for replacement (i.e., if (fa * fb > 0){...})
or semantically equivalent ones do not happen to appear elsewhere
in the buggy program. In contrast, some template-based approaches
(e.g., jMutRepair [7, 24] and ELIXIR [36]) are very likely to fix the
bug correctly since changing of infix boolean operators is a spec-
ified repair action in such approaches. In addition, GenProg can
easily overfit the given test suite [34] by deleting the whole buggy
if statement: if (fa * fb >= 0){...}), leading to a plausible but
incorrect patch.

1 public static double[] bracket (...) { ...
2 − if ( fa ∗ fb >= 0.0) {
3 + if ( fa ∗ fb > 0.0) {
4 throw new ConvergenceException (...) ; } ... }

Figure 1: The human-written patch for bug Math85.

Fig. 2 shows the human-written patch for bug Math39 from De-
fects4J. To correctly repair the bug, an if statement with relatively
complex control logic should be inserted before the buggy code,
as shown in Fig. 2. However, for approaches only based on repair
templates, the bug is hard to fix correctly, because this fix gener-
ally does not belong to a common fix pattern and is difficult to be
encoded with templates. In contrast, approaches that exploit the
redundancy assumption can potentially find a correct patch for the
bug, because the following if statement

if (( forward && ( stepStart + stepSize > t ) ) || ((! forward) && ( stepStart + stepSize <
t ) ) ) { stepSize = t − stepStart ; }

happens to be in the buggy program elsewhere, which is semanti-
cally equivalent to the one inserted by human developers.

1 public void integrate (...) throws ... { ...
2 + if (forward) {
3 + if ( stepStart + stepSize >= t ) { stepSize = t − stepStart ; }
4 + } else {
5 + if ( stepStart + stepSize <= t ) { stepSize = t − stepStart ; } }
6 ... }

Figure 2: The human-written patch for bug Math39.

From the above examples, it can be seen that redundancy- and
template-based approaches potentially have complementary strengths
in bug fixing. We aim to combine both statement-level redundancy
assumption and repair templates, to generate potential fix ingredi-
ents. Such a combination will lead to a much larger search space,
posing great challenge to the search algorithm. So we will also
introduce several strategies to properly reduce the search space

and enhance the search algorithm with a new lower-granularity
patch representation.

3 APPROACH
This section describes the details of our approach, which is imple-
mented as a tool called ARJA-e that repairs Java software.

3.1 Overview
The input of ARJA-e is a buggy program associated with a JUnit
test suite. The test suite should contain at least one negative test ex-
posing the bug to be fixed and a number of positive tests specifying
the required program behavior. ARJA-e basically aims to make the
code pass all these tests by modifying the buggy program, which
consists of the following main steps:

1) Fault Localization: Given an input, ARJA-e first uses a fault
localization technique called Ochiai [1] to locate a list of likely-
buggy statements (LBSs). Each LBS is assigned a suspiciousness
value suspj ∈ [0, 1] by Ochiai, indicating the likelihood of the
LBS containing the bug. To reduce the search space, not all LBSs
returned by Ochiai are considered. We select at most nmax LBSs
with the largest suspj values, and moreover the LBSs with suspj
smaller than a threshold γmin will be ignored. nmax and γmin are
parameters to be set.

2) Test Filtering: Suppose n LBSs are selected according to nmax
and γmin. We conduct coverage analysis to filter out positive tests
that are unrelated to the manipulation of these n LBSs.

3) Exploiting the Redundancy Assumption: Similar to Gen-
Prog [18], ARJA-e can use three types of statement-level edit op-
erations to manipulate a LBS (i.e., delete the LBS, replace the LBS
with another statement and insert another statement before the
LBS). For the latter two types, another statement is needed, one
source of which is the current buggy program, following the redun-
dancy assumption [2, 26]. Unlike existing approaches based on the
redundancy assumption[8, 18, 19, 33, 39, 40, 44], however, ARJA-e
separates the statements for replacement and those for insertion. So
each LBS corresponds to two different sets of statements denoted
by Rj (for replacement) and Ij (for insertion) respectively.

4) Exploiting Repair Templates: In ARJA-e, an additional
source of statements for replacement (in Rj ) and insertion (in Ij ) is a
generic set of repair templates. We extend the repair templates used
in PAR [13], making them more general and accommodate more
fix patterns. Unlike PAR that executes templates on-the-fly, ARJA-e
uses templates in an offline manner so that we can convert vari-
ous template-based edits (usually at the expression-level) into two
types of statement-level edits (i.e., replacement and insertion). The
benefit of this is that we can integrate redundancy-based statement-
level edits and template-based edits into a unified evolutionary
framework with a lower-granularity patch representation.

5) Initialization of Operation Types: As mentioned before,
ARJA-e uses three types of edit operations. However, for some LBSs,
not all operation types are desirable. In this phase, we use some
rules [44] and anti-patterns [37] to determine the set of available
operation types (denoted by O j ) for each LBS.

6) Multi-Objective Evolution of Patches: Now we have n
LBSs for consideration, each associated with two sets of statements
(i.e., Rj and Ij ) and a set of available operation types (i.e., O j ). The

1419



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Yuan Yuan and Wolfgang Banzhaf

goal of ARJA-e is to find a plausible patch that consists of a list of ed-
its (each edit is a statement-level deletion, replacement or insertion),
where smaller patches are preferred. We formulate this problem as
a multi-objective optimization/search problem and employ NSGA-II
[6] to explore the search space.

In the rest of this section, we detail how to exploit the redundancy
assumption and repair templates to obtain statements for replace-
ment and insertion, how to customize operation types for each LBS
and how to evolve patches using multi-objective optimization.

3.2 Exploiting the Redundancy Assumption
For each LBS selected, we first identify the Java package the LBS
resides in. Then we collect all the statements within this package.
We scan these statements one by one. For each of them (denoted by
s), we first examine whether the variables and method invocations
included in the statement s are in-scope at the destination of the
LBS. If s is out of the variable or method scope, we just ignore it,
otherwise we further check whether s follows the second type of
rules (6 rules in total, denoted by Fa ) introduced in ARJA [44]. The
motivation for the 6 rules is that although some statements can
pass a check of variable and method scope, they may violate other
Java language specifications. For example, a continue statement
does not include any variable or method invocation, but it can only
be used in a loop. If s follows Fa , we further use the third type of
rules defined in ARJA [44], among which 3 rules (denoted by Fb )
are related to the replacement operation and the other 3 (denoted
by Fc ) to the insertion operation. For example, to avoid disrupting
the program too much, one of the rules in Fb is to not replace
a variable declaration statement with other kinds of statements.
Even if s follows Fb /Fc , we do not put it into the set Rj /Ij right
away. Our insight is that if replacing the LBS with s is a promising
manipulation, s should generally exhibit a certain similarity to the
LBS; and if it is potentially useful to insert s before the LBS, s should
generally have a certain relevance to the context surrounding the
LBS. In the following, we describe how to quantify such similarity
and relevance in ARJA-e.

Suppose Vs and VLBS are the sets of variables (including local
variables and fields) used by the LBS and s respectively. We de-
fine the similarity between s and the LBS as the Jaccard similarity
coefficient between the sets Vs and VLBS

sim(s, LBS) =
|VLBS ∩Vs |

|VLBS ∪Vs |
(1)

In the method where the LBS resides, suppose Vbef and Vaft are
the sets of variables used by the statements before and after the
LBS, respectively. Here “after” includes the LBS itself. We define
the relevance of s to the context of LBS as follows

rel (s, LBS) =
1
2

(
|Vs ∩Vbef |

|Vs |
+
|Vs ∩Vaft |

|Vs |

)
(2)

This equation indeed averages the percentages of the variables in
Vs that are covered by Vbef and Vaft.

If |VLBS∪Vs | = 0, sim(s, LBS) is set to 1, and if |Vs | = 0, rel (s, LBS)
is set to 0. So sim(s, LBS) ∈ [0, 1] and rel (s, LBS) ∈ [0, 1]. Only
when sim(s, LBS) > βsim, can s be put into Rj , and only when
rel (s, LBS) > βrel, can s be put into Ij , where βsim and βrel are
predetermined threshold parameters.

For each LBS considered, Fig. 3 summarizes the procedure in
ARJA-e to check whether statement s can become a potentially
useful statement for replacement or insertion.

Yes

No

No

No

Yes

Yes

No

Yes Follow 

Fa?

Satisfy 

scope?

Statement (s)

Follow 

Fb?

Follow 

Fc?
Discarded

sim > βsim

?

rel > βrel 

?

No

Discarded

Yes

Rj ← Rj ∪ s 

Ij ←Ij ∪ s

Yes

Discarded

Discarded

Discarded

Discarded

No

Figure 3: The procedure in ARJA-e to check whether s is a
potentially useful statement for replacement and insertion.

3.3 Exploiting Repair Templates
In ARJA-e, we also use 7 repair templates to manipulate the LBS,
which are mainly extended from templates used in PAR.

1) Element Replacer (ER): This template replaces an abstract
syntax tree (AST) node element in a LBS with another compati-
ble one. Table 1 lists the elements that can be replaced and also
shows alternative replacers for each kind of elements. This tem-
plate generalizes the templates “Parameter Replacer” and “Method
Replacer” used in PAR. Several replacement rules are inspired by
recent template-based approaches (e.g., replacing a primitive type
with widened type follows ELIXIR [36] and replacing x with f(x)

follows the transformation schema in REFAZER [35]).

Table 1: List of Replacement Rules for Different Elements

Element Format Replacer

Variable x (i) The visible fields or local variables with
compatible type (ii) A compatible method
invocation in the form of f () or f (x)

Field access this . a or super .a The same as above

Qualified name a .b The same as above

Method name f (...) The name of another visible method with
compatible parameter and return types

Primitive type e.g., int or double A widened type, e.g., float to double

Boolean literal true or false The opposite boolean value

Number literal e.g., 1 or 0.5 Another number literal located in the same method

Infix operators e.g.,+ or > A compatible infix operator, e.g.,+ to −, > to >=

Prefix/Postfix operators e.g.,++ or −− The opposite prefix/postfix operator, e.g.,++ to −−

Assignment operators e.g.,+= or ∗= The opposite assignment operator
e.g.,+= to −=, ∗= to \=

Conditional expression a ? b : c b or c

2)Method Parameter Adjuster (MPA): This template changes
a method invocation in a LBS to another overloaded method. When
adding a parameter, we consider all the visible fields and local vari-
ables at the LBS’s location. Candidates are those type-compatible
with the corresponding parameter type in the overloaded method
declaration. When removing a parameter, we can choose any one
in the current parameter list.

3)BooleanExpressionAdder orRemover (BEAR):This tem-
plate applies to the LBS having a conditional branch (i.e., if or

1420



A Hybrid Evolutionary System for Automatic Software Repair GECCO ’19, July 13–17, 2019, Prague, Czech Republic

while statement). It adds a term to the predicate (with && ||) or
just removes a term. When adding a term, we collect all boolean
expressions that are in the file where the LBS resides.

4) Null Pointer Checker (NPC): This template assures that all
object references in a LBS cannot be null. Suppose a LBS includes
an object reference o, then we use 6 alternative transformation
schemata to manipulate the LBS:

( i ) if (o != null ) LBS; ( ii ) if (o == null ) return sth ;
( iii ) if (o == null ) throw sth ; ( iv ) if (o == null ) break;
(v) if (o == null ) continue ; ( vi ) if (o == null ) o = new Obj() ;

The if statement in the first schema is used to replace the LBS,
whereas each in the other five should be inserted before the LBS.

Compared to ARJA-e, PAR only uses the first schema, limiting its
ability to handle null pointer bugs. In the following, we introduce
another three repair templates similar to NPC. These templates
check different contexts but still use the above 6 transformation
schemata to edit the LBS.

5) Range Checker (RC): For a LBS, this template examines
whether all array or list element accesses are valid (i.e., an index
cannot exceed the low and upper bounds of the array/list size).
Unlike PAR, ARJA-e also considers to check the validity of the char
access (in the form of charAt or substring) for String objects, since
String is a list of characters and is commonly used in Java.

6) Cast Checker (CC): This template checks whether the vari-
able or expression to be converted is an instance of casting type
(using instanceof operator) in each class-casting expression.

7) Divide-by-Zero Checker (DC): This template ensures all
divisors in a LBS are different from 0. This is not used in PAR.

LBS

a.callX();

1. Element Replacer

2. Method Parameter Adder …

3. Boolean Expression Adder …

…

7. Dived-by-Zero Checker

Repair templates

1:

2:

b.callX();

c.callX();

For replacement

…

l: a.callY(); 

Rj

Ij
1:

2:

if (a == null)
return;

if (a == null)
break;

For insertion

…

m:
if (a == null)

continue;

Figure 4: Illustration of the offline execution of templates.

Unlike PAR which applies templates on-the-fly (i.e., during the
evolutionary process), ARJA-e executes the above 7 repair templates
in an offline manner. Specifically, we perform all the possible trans-
formations defined by the templates for each LBS before searching
for patches. Then each LBS can derive a number of new statements,
each of which can either replace the LBS or be inserted before it. So
various template-based edits (usually at the expression-level) are
abstracted into two types of statement-level edits (i.e., replacement
and insertion). These statements for replacement and insertion are
added into Rj and Ij respectively. For the LBS a.callX(), Fig. 4
illustrates the way to exploit the templates in ARJA-e. Note that we
do not consider similarity and relevance as in Section 3.2 since the
statements generated by templates are highly targeted. Moreover,
we only apply a template to a single AST node at a time to avoid

combinatorial explosion. For example, we do not simultaneously
modify a and callX in a.callX() using the template ER.

3.4 Initialization of Operation Types
The deletion operation should be executed carefully because it can
easily lead to the following two problems: It can (i) cause a compiler
error of the modified code; or (ii) generate overfitting patches [34].
To address the first problem, we use the two rules defined in [44],
that is, if a LBS is a variable declaration statement or a return/throw
statement which is the last statement of a method not declared
void, we disable the deletion operation for this LBS. To address
the second problem, we use the 5 anti-delete patterns defined in
[37]. If a LBS follows any of these patterns, we ignore the deletion
operation. For example, according to one of the anti-delete patterns,
if a LBS is a control statement (e.g., if statement or loops), deletion
of the LBS is disallowed.

3.5 Multi-Objective Evolution of Patches
In the previous steps, we have determined the repair search space
of ARJA-e. Specifically, we select n LBSs and each LBS corresponds
to three sets: Rj , Ij andO j . The statements in Rj /Ij are collected by
exploiting the redundancy assumption and repair templates (see
Sections 3.2 and 3.3). To find plausible patches, we use a classical
MOEA (i.e., NSGA-II) to explore the search space. The details are
given as follows.

3.5.1 Patch Representation. To encode a patch as a MOEA in-
dividual, we first number the LBSs and the elements in Rj , Ij
and O j , starting from 1, where j ∈ {1, 2, . . . ,n}, in random or-
der. All the IDs are fixed throughout the search. In ARJA-e, a
patch (or solution) is represented as a genome X = (x1, x2, . . . , xn )
with the fixed length n. xj , j ∈ {1, 2, . . . ,n}, encodes the infor-
mation of the edit on the j-th LBS, which consists of four parts:
xj = (x j1,x j2,x j3,x j4). x j1 ∈ {0, 1} indicates whether the j-th LBS
is to be edited or not. x j2 ∈ {1, 2, . . . , |O j |} indicates the x j2-th op-
eration type in O j is used. x j3 ∈ {1, 2, . . . , |Rj |} means if “Replace”
is used, the x j3-th statement in Rj is selected to replace the j-th LBS.
x j4 ∈ {1, 2, . . . , |Ij |} means if “Insert” is used, insert the x j4-th state-
ment in Ij before the j-th LBS. Suppose the j-th LBS is a.callX(),
Fig. 5 illustrates the patch representation in ARJA-e, where the edit
on the j-th LBS is: replace a.callX() with b.callX().

1 2 j n… …

1:

2:

3:

set(a);

fun(a, b);

b.callX();

Rj

.

.

.

|Rj|: a.callY(); 

1:

2:

3:

a = fun(b);

a = b;

if (a == null)
return;

Ij

.

.

.

|Ij|:
if (a == null) 

continue;

1:

2:

Delete

Replace

Oj

The j-th LBS is 
to be edited

1 1 5 2 …0 3 7 4 1 2 3 2 0 1 6 9…

3: Insert

Figure 5: Illustration of the patch representation in ARJA-e.

3.5.2 Fitness Function. We formulate automatic software repair
as a multi-objective optimization problem. To evaluate the fitness

1421



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Yuan Yuan and Wolfgang Banzhaf

of an individual X, we use a multi-objective function that simulta-
neously minimizes the patch size and the weighted failure rate. The
patch size is defined as f1 (X) =

∑n
j=1 x j1, which means the number

of edits in patch X. The weighted failure rate f2 (X) measures how
well the modified program functions in terms of passing tests:

f2 (X) =
|{t ∈ Tf | X fails t }|

|Tf |
+w ×

|{t ∈ Tc | X fails t }|
|Tc |

(3)

whereTf is the set of negative tests,Tc is the reduced set of positive
tests, and w ∈ (0, 1] is a global parameter which is used to put
more emphasis on the passing of negative tests. If f2 (X) = 0, X is a
plausible patch. By also minimizing f1 (X), we introduce a search
bias for simpler patches.

3.5.3 Genetic Operators. Crossover and mutation are conducted
to generate offspring individuals in MOEAs. In ARJA-e, each in-
dividual can be seen as a list of 4n integers. For crossover, the
non-matching integers between the two parents are swapped with
a fixed probability of 0.5. As for mutation, we first use roulette
wheel selection to choose a LBS, where the j-th LBS is chosen with
a probability of suspj/

∑n
j=1 suspj ; then we replace the information

of the whole edit (4 integers) corresponding to the chosen LBS with
a randomly generated one.

3.5.4 Computational Search. We employ NSGA-II [6] as the
multi-objective search framework. When the search is terminated,
non-dominated solutions with f2 = 0 in the final population are
output as plausible patches. If no such solutions exist, ARJA-e fails
to fix the bug.

3.6 Ranking Plausible Patches
ARJA-e can sometimes output more than one plausible patch (with
the same patch size) for a bug. As a post-processing step, we design a
heuristic procedure to rank these patches. For this ranking purpose,
we first define two metrics for a patch. The first metric, denoted by
Susp, represents the summation of the suspiciousness for the faulty
locations modified by the patch. Before defining the second metric,
we determine a preference relation of operation types in our system.
We prefer the operation type that is generally less likely to bring
in side effects, and the preference relation is: NPC/RC/CC/DC ≺
MPA ≺ ER ≺ BEAR ≺ SR/SI ≺ SD. Here SR and SI mean statement
replacement and insertion based on the redundancy assumption
respectively, and SI means statement deletion. The others are all
template-based operations that can be referred to in Section 3.3.
We assign a preference score for each operation type: NPC, RC, CC
and DC is scored 1, MPA is scored 2 and so on. With these scores,
the second metric for a patch, denoted by Pre f , is defined as the
sum of scores of operation types contained in the patch.

When comparing two patches in ranking, the patch with higher
Susp is ranked higher. If Susp values are equal, Pre f values are
further compared, and the patch with smaller Pre f is ranked higher.
If Susp and Pre f cannot distinguish two patches, the patch found
earlier is ranked higher.

4 EXPERIMENTAL DESIGN
4.1 Research Questions
We intend to answer the following research questions:

RQ1:How effective is ARJA-e compared to state-of-the-art repair
systems on real bugs?

RQ2: Can our repair approach fix multi-location bugs?
RQ3: To what extent do the redundancy assumption and repair

templates contribute to the overall performance of ARJA-e, and is
it beneficial to exploit both of them?

RQ4: Can the search space be reduced effectively based on the
similarity and relevance measures presented in Section 3.2?

Note that when we consider whether a bug is correctly fixed in
RQ1 and RQ2, we only select the plausible patch ranked first for
analysis. This practice can make the comparison fairer, since the
compared approaches in the literature usually choose a single patch
for verifying correctness. Whereas in RQ3 and RQ4, we regard a
bug as correctly fixed if at least one of the patches is identified as
correct, so all correct patches will be used for analysis.

4.2 Dataset of Bugs
We perform the empirical evaluation on a database of real bugs,
called Defects4J [11], which has been extensively used for evaluat-
ing Java repair systems [4, 23, 25, 36, 41, 42, 44]. We consider four
projects in Defects4J, namely Chart, Time, Lang and Math. Table 2
shows the descriptive statistics of the four projects. In total, there
are 224 real bugs: 26 from Chart (C1–C26), 27 from Time (T1–T27),
65 from Lang (L1–L65) and 106 from Math (M1–M106).

Table 2: The descriptive statistics of Defects4J dataset

Project ID #Bugs #JUnit Tests Source Test
KLoC KLoC

Chart C 26 2,205 96 50
Time T 27 4,043 28 53
Lang L 65 2,295 22 6
Math M 106 5,246 85 19
Total 224 13,789 231 128

4.3 Parameter Setting
Table 3 shows the parameter setting for ARJA-e in the experiments.
Note that crossover and mutation operators presented in Section
3.5.3 are always executed, so the probability (i.e., 1) is omitted in
this table. Given the stochastic nature of ARJA-e, we execute 5
random trials in parallel for each bug. Following the practice in
[23, 25], every trial is terminated after 3 hours. All experiments
are conducted in a high performance computing center and use
machines with 2.4 GHz Intel Xeon E5 processor with 50 GBmemory.

Table 3: The parameter setting for ARJA-e

Parameter Description Value
N Population size 40
γmin Threshold for the suspiciousness 0.1
nmax Maximum number of LBSs considered 60
βsim Threshold for similarity 0.3
βrel Threshold for relevance 0.3
w Refer to Section 3.5.2 0.5

5 RESULTS AND DISCUSSIONS
This section presents empirical results to address the research ques-
tions (RQs 1–4) set out in Section 4.1.

1422



A Hybrid Evolutionary System for Automatic Software Repair GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Table 4: Comparison in terms of the number of bugs fixed and correctly fixed (Plausible/Correct).

Project ARJA-e jGenProg jKali xPAR Nopol HDRepair ACS ssFix JAID ELIXIR ARJA Cardumen

Chart 19/7 7/0 6/0 NA/0 6/1 NA/2 2/2 7/2 4/4 7/4 9/3 15/NA
Time 8/2 2/0 2/0 NA/0 1/0 NA/1 1/1 4/0 0/0 3/2 4/1 6/NA
Lang 29/8 0/0 0/0 NA/1 7/3 NA/7 4/3 12/5 8/5 12/8 17/4 7/NA
Math 55/21 18/5 14/1 NA/2 21/1 NA/6 16/12 26/7 8/7 19/12 29/10 37/NA

Total 111/38 27/5 22/1 NA/3 35/5 NA/16 23/18 49/14 20/16 41/26 59/18 65/NA

“NA” means the data is not available since it is not reported by the original authors.

5.1 Performance Evaluation (RQ1)
To show the advantage of ARJA-e over state-of-the-art tools, we
compare ARJA-e with 11 existing tools in terms of the number of
bugs fixed and correctly fixed. The 11 tools are jGenProg [23] (an
implementation of GenProg for Java), jKali [23] (an implementation
of Kali [34] for Java), xPAR (a reimplementation of PAR by Le et
al. [17]), Nopol [23, 43], HDRepair [17], ACS [42], ssFix [41], JAID
[4], ELIXIR [36], ARJA [44] and Cardumen [25], which include
almost all approaches that have ever been tested on Defects4J. We
manually examined the correctness of patches found by ARJA-e
and identified a patch as correct if it is exactly the same as or
semantically equivalent to the human-written patch. Table 4 shows
the comparison results.

ARJA-e outperforms all other approaches by a large margin.
Specifically, by comparison with the best results, ARJA-e can find
plausible patches for 70.8% more bugs than Cardumen (from 65 to
111) and can generate correct patches for 46.2% more bugs than
ELIXIR (from 26 to 38).

ssFix

ACS

ARJA

4

ARJA-e

0

1 6

0

5

22

2

23

114

6

6 1

36

(a) Plausible fixing

ssFix

ACS

ARJA

0

ARJA-e

0

0 2

0

3

3

1

10

13

12

7 1

17

(b) Correct fixing

Figure 6: Venn diagram of repaired bugs.

Fig. 6 shows the intersection of fixed bugs (in Fig. 6(a)) and cor-
rectly fixed bugs (in Fig. 6(b)) between ARJA-e, ACS, ssFix and
ARJA, using the Venn diagram. ACS, ssFix and ARJA are selected
here since they show prominent performance among the 11 ap-
proaches of the comparison. The overwhelming majority of bugs
(correctly) fixed by ARJA can also be (correctly) fixed by ARJA-e.
Since ARJA-e incorporates core ideas of ARJA, this implies that the
incorporation is very effective, making ARJA-e inherit almost all
repair power from ARJA. Compared to ARJA, ACS and ssFix show
better complementarity to ARJA-e. For example, ACS and ssFix can
correctly fix 12 and 7 bugs that cannot by ARJA-e, respectively. This
may be the case because ACS and ssFix are quite different from
ARJA-e in technique. ACS aims at performing precise condition
synthesis while ssFix uses existing code from a code database. It
seems possible to further enhance the performance of ARJA-e by
borrowing ideas from ACS and ssFix. For example, we can use a
method similar to ACS to generate more accurate conditions for
instantiating the template BEAR, or we can reuse the existing code
outside the buggy program like ssFix.

5.2 Results from Multi-Location Bugs (RQ2)
Among the 111 bugs fixed by ARJA-e, the plausible patch for 19 bugs
contains at least two edits that manipulate multiple buggy locations.
By using delta debugging, we have verified that none of these
patches can be reduced to a single edit. So the 19 bugs should be
regarded as multi-location bugs. Furthermore, 7 out of the 19 bugs
(i.e., T15, L20, L34, L61, M4, M22 and M98) are classified as being
correctly fixed. For M22 and M98, ARJA-e can generate a correct
patch that is exactly the same as the human-written patch. As for
the other 6 bugs, ARJA-e can synthesize semantically equivalent
ones. The results on multi-location bugs demonstrate the strong
search ability of the customized MOEA in ARJA-e.

1 static Map<Object, Object> getRegistry () {
2 − return REGISTRY.get() != null ? REGISTRY.get() :
3 − Collections .<Object , Object>emptyMap();
4 + return REGISTRY.get();
5 }
6 static boolean isRegistered (Object value) {
7 Map<Object, Object> m = getRegistry () ;
8 + if (!( m != null ) ) return false ;
9 return m.containsKey(value) ;
10 }

Figure 7: Correct patch generated by ARJA-e for bug L34.

To further understand the strength of ARJA-e in this respect,
Fig. 7 shows a correct patch found by ARJA-e for bug L34. As can
be seen, ARJA-e simultaneously uses two types of templates to
generate the patch, ER for lines 3–4 and NPC for line 10.

Note that for T15 and L61, the human-written patch contains
only a single statement-level edit. But these two patches are not
within the search space of ARJA-e. ARJA-e fixes them correctly in a
creative way. Take L61 for example, Fig. 8 shows the correct patch
generated by ARJA-e. A human developer fixes this bug just by
replacing line 5 with int len = size - strLen + 1;, where size is
the number of characters in the array buffer. Instead, the patch by
ARJA-e first replaces buffer in line 3 with toCharArray() that copies
all characters in buffer into a new array with length exactly equal
to size. Now thisBuff.length is equivalent to size. However, the
value of len is still one less than the value it should be, according to
the human-written patch. To address this, ARJA-e further changes
i < len to i <= len, achieving semantic equivalence.

5.3 Redundancy Assumption vs. Repair
Templates (RQ3)

Table 5 shows the contribution of the redundancy assumption (in-
cluding two types of repair actions) and repair templates (corre-
sponding to 7 types of repair actions) to the number of bugs fixed

1423



GECCO ’19, July 13–17, 2019, Prague, Czech Republic Yuan Yuan and Wolfgang Banzhaf

1 public int indexOf(String str , int startIndex ) { ...
2 − char[] thisBuf = buffer ;
3 + char[] thisBuf = toCharArray() ;
4 int len = thisBuf . length − strLen ;
5 − outer : for ( int i = startIndex ; i < len ; i++) {
6 + outer : for ( int i = startIndex ; i <= len ; i++) {
7 ... } ... }

Figure 8: Correct patch generated by ARJA-e for bug L61.

(i.e., test-adequate) and correctly fixed by ARJA-e. From Table 5,
both make substantial contributions. SR and SI contribute to the
fixing of 19 and 27 bugs respectively, and both contribute to the
correct fixing of 7 bugs. ER has the most contribution among the
repair templates. In total, the redundancy assumption contributes
to the fixing of 46 bugs and to the correct fixing of 14 bugs, versus 72
and 37 by the repair templates. Although there are small overlaps in
these numbers since the repair of several bugs (e.g., L34) uses more
than one type of repair action, they basically reflect the overall
contribution of the two components to the results of ARJA-e.

Table 5: Contribution of each operation type

Redundancy Assumption Plausible Correct

Statement-Level Replacement (SR) 19 7
Statement-Level Insertion (SI) 27 7

Repair Template Plausible Correct

Element Replacer (ER) 45 24
Method Parameter Adjuster (MPA) 4 3
Boolean Expression Adder/Remover (BEAR) 12 1
Null Pointer Checker (NPC) 7 6
Range Checker (RC) 2 1
Cast Checker (CC) 1 1
Divide-By-Zero Checker (DC) 1 1

To further show the benefits of exploiting both the redundancy
assumption and repair templates, we compare ARJA-e with two
ARJA-e variants referred to as ARJA-e-R and ARJA-e-T. With the
same search algorithm as ARJA-e, ARJA-e-R only uses the redun-
dancy assumption as a source for potential fixes while ARJA-e-T
only uses the repair templates. Note that to completely understand
the expressive power of the redundancy assumption, in ARJA-e-R
we do not use the replacement similarity and insertion relevance to
filter statements. Fig. 9 shows the comparison results. ARJA-e can
fix almost all the bugs that are fixed by ARJA-e-R and ARJA-e-T,
in terms of both plausible and correct bug fixing. Also, given that
ARJA-e-R and ARJA-e-T show good performance complementarity,
we conclude that ARJA-e successfully leverages the complementary
strength of the redundancy assumption and repair templates.

5.4 Effect of Search Space Reduction (RQ4)
As described in Section 3.2, we use parameters βsim and βrel to
restrict the number of statements considered for replacement and
insertion, respectively. Table 6 shows the percentage reduction of
statements for replacement/insertion at different βsim/βrel values.
From Table 6, just a small βsim value can lead to a large reduc-
tion of replacement statements (e.g., 65% when βsim = 0.1). When
βrel ∈ [0.1, 0.5], the percentage reduction of insertion statements is
between 30% and 40%. In our experiments, βsim and βrel are both

ARJA-e ARJA-e

-R

2

52

19

1

29

31

ARJA-e-T

(a) Plausible fixing

ARJA-e ARJA-e

-R

7

10

0

04

30

ARJA-e-T

2

(b) Correct fixing

Figure 9: Venn diagram of repaired bugs.

set to 0.3, so we can discard 78% among those statements that are
originally used for replacement and discard 38% for insertion.

Table 6: Percentage reduction of statements

Percentage
Reduction

βsim
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Replacement (%) 65 71 78 84 85 91 92 93 93

Percentage
Reduction

βrel
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Insertion (%) 31 33 38 42 43 91 92 94 95

The above results only illustrate that the search space can be
largely reduced by leveraging similarity and relevance. But it is
unclear whether this strategy can still keep most of the useful state-
ments that may constitute correct fixes. To investigate this question,
we analyze the 17 correct patches found by ARJA-e-R, which in total
contain 12 replacement edits and 8 insertion edits. We find that 11
out of the 12 replacements have a similarity larger than 0.3 and all
8 insertions have a relevance of no less than 0.5. This indicates that
with a properly small βsim and βrel, our strategy usually does not
ignore fix ingredients of correct repairs, while reducing the search
space significantly, as shown in Table 6. Moreover, we analyze the
57 plausible but incorrect patches by ARJA-e-R that contain 66
replacement/insertion edits in total, and we find that 45.5% of them
have a similarity/relevance of less than 0.3. So with βsim and βrel
not too small, we can avoid a large portion of overfitting patches,
thereby alleviating patch overfitting.

6 CONCLUSION
In this paper, we described ARJA-e, a new EC-based repair system,
which incorporates the characteristic ideas of GenProg, PAR, ARJA
and anti-patterns into a single repair framework, in order to take
advantage of their respective component strengths. The evaluation
on 224 real bugs fromDefects4J shows that, compared to the current
state of the art, ARJA-e can fix 70.8% more bugs, raising the number
from 65 (achieved by Cardumen) to 111. It can correctly repair 46.2%
more bugs from 26 (achieved by ELIXIR) up to 38. The results also
show that ARJA-e can correctly fix several multi-location bugs,
which is impossible for most existing repair approaches. Moreover,
we experimentally show the benefits of combining the redundancy
assumption and repair templates, and verify the effectiveness of a
strategy for search space reduction. Our work indicates that the
hybridization of existing repair techniques is very promising and
might continue to produce further progress.

1424



A Hybrid Evolutionary System for Automatic Software Repair GECCO ’19, July 13–17, 2019, Prague, Czech Republic

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2006. An evaluation of

similarity coefficients for software fault localization. In Proceedings of the 12th
Pacific Rim International Symposium on Dependable Computing. IEEE, 39–46.

[2] Earl T Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The plastic surgery hypothesis. In Proceedings of the 22nd International
Symposium on Foundations of Software Engineering. ACM, 306–317.

[3] Markus F Brameier and Wolfgang Banzhaf. 2007. Linear genetic programming.
Springer Science & Business Media.

[4] Liushan Chen, Yu Pei, and Carlo A Furia. 2017. Contract-based program re-
pair without the contracts. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 637–647.

[5] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
repair with quantitative objectives. In Proceedings of International Conference on
Computer Aided Verification. Springer, 383–401.

[6] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation 6, 2 (2002), 182–197.

[7] Vidroha Debroy andW EricWong. 2010. Using mutation to automatically suggest
fixes for faulty programs. In Proceedings of the Third International Conference on
Software Testing, Verification and Validation. IEEE, 65–74.

[8] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009.
A genetic programming approach to automated software repair. In Proceedings
of the 11th Annual conference on Genetic and Evolutionary Computation. ACM,
947–954.

[9] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic software
repair: A survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.

[10] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning.. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence. 1345–1351.

[11] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 2014 International Symposium on Software Testing and Analysis. ACM,
437–440.

[12] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repair-
ing programs with semantic code search. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 295–306.

[13] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 35th
International Conference on Software Engineering. IEEE, 802–811.

[14] John R Koza and John R Koza. 1992. Genetic programming: on the programming
of computers by means of natural selection. Vol. 1. MIT press.

[15] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. JFix: Semantics-based repair of Java programs via symbolic PathFinder. In
Proceedings of the 26th International Symposium on Software Testing and Analysis.
ACM, 376–379.

[16] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering. ACM, 593–604.

[17] Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 213–224.

[18] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In Proceedings of the 34th International Conference on Software
Engineering. IEEE, 3–13.

[19] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A generic method for automatic software repair. IEEE Transactions on
Software Engineering 38, 1 (2012), 54–72.

[20] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering. ACM, 727–739.

[21] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthe-
sis. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering.
ACM, 166–178.

[22] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning
correct code. ACM SIGPLAN Notices 51, 1 (2016), 298–312.

[23] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in Java: A large-scale experiment
on the Defects4J dataset. Empirical Software Engineering 22, 4 (2017), 1936–1964.

[24] Matias Martinez and Martin Monperrus. 2016. Astor: A program repair library
for java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis. ACM, 441–444.

[25] Matias Martinez and Martin Monperrus. 2017. Open-ended Exploration of the
Program Repair Search Space with Mined Templates: the Next 8935 Patches for
Defects4J. arXiv preprint arXiv:1712.03854 (2017).

[26] Matias Martinez, Westley Weimer, and Martin Monperrus. 2014. Do the fix
ingredients already exist? an empirical inquiry into the redundancy assumptions
of program repair approaches. In Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, 492–495.

[27] SergeyMechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. DirectFix: Looking
for simple program repairs. In Proceedings of the 37th International Conference on
Software Engineering. IEEE Press, 448–458.

[28] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering. ACM, 691–701.

[29] Martin Monperrus. 2014. A critical review of automatic patch generation learned
from human-written patches: essay on the problem statement and the evaluation
of automatic software repair. In Proceedings of the 36th International Conference
on Software Engineering. ACM, 234–242.

[30] Martin Monperrus. 2018. Automatic software repair: A bibliography. Comput.
Surveys 51, 1 (2018), 17.

[31] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. SemFix: Program repair via semantic analysis. In Proceedings of the
35th International Conference on Software Engineering. IEEE, 772–781.

[32] Vinicius Paulo L Oliveira, Eduardo Faria de Souza, Claire Le Goues, and Celso G
Camilo-Junior. 2018. Improved representation and genetic operators for linear ge-
netic programming for automated program repair. Empirical Software Engineering
23, 5 (2018), 2980–3006.

[33] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering. ACM, 254–265.

[34] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis. ACM, 24–36.

[35] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. 2017. Learning syntactic
program transformations from examples. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 404–415.

[36] Ripon K Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R Prasad. 2017. ELIXIR:
Effective object-oriented program repair. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 648–659.

[37] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury.
2016. Anti-patterns in search-based program repair. In Proceedings of the 24th
International Symposium on Foundations of Software Engineering. ACM, 727–738.

[38] Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. 2010.
Automatic program repair with evolutionary computation. Commun. ACM 53, 5
(2010), 109–116.

[39] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In Proceedings
of the 28th International Conference on Automated Software Engineering. IEEE,
356–366.

[40] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering. IEEE, 364–374.

[41] Qi Xin and Steven P Reiss. 2017. Leveraging syntax-related code for automated
program repair. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Press, 660–670.

[42] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings of
the 39th International Conference on Software Engineering. IEEE Press, 416–426.

[43] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic repair of conditional statement bugs in Java programs. IEEE
Transactions on Software Engineering 43, 1 (2017), 34–55.

[44] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated repair of Java pro-
grams via multi-objective genetic programming. IEEE Transactions on Software
Engineering (2018). https://doi.org/10.1109/TSE.2018.2874648

[45] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam
Suganthan, and Qingfu Zhang. 2011. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary Computation 1, 1 (2011),
32–49.

1425

https://doi.org/10.1109/TSE.2018.2874648

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Related Work
	2.2 Motivating Examples

	3 Approach
	3.1 Overview
	3.2 Exploiting the Redundancy Assumption
	3.3 Exploiting Repair Templates
	3.4 Initialization of Operation Types
	3.5 Multi-Objective Evolution of Patches
	3.6 Ranking Plausible Patches

	4 Experimental Design
	4.1 Research Questions
	4.2 Dataset of Bugs
	4.3 Parameter Setting

	5 Results and Discussions
	5.1 Performance Evaluation (RQ1)
	5.2 Results from Multi-Location Bugs (RQ2)
	5.3 Redundancy Assumption vs. Repair Templates (RQ3)
	5.4 Effect of Search Space Reduction (RQ4)

	6 Conclusion
	References

