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ABSTRACT

We present AutoMap, a pair of methods for automatic generation
of evolvable genotype-phenotype mappings. Both use an artificial
neural network autoencoder trained on phenotypes harvested from
fitness peaks as the basis for a genotype-phenotype mapping. In
the first, the decoder segment of a bottlenecked autoencoder serves
as the genotype-phenotype mapping. In the second, a denoising au-
toencoder serves as the genotype-phenotype mapping. Automatic
generation of evolvable genotype-phenotype mappings are demon-
strated on the n-legged table problem, a toy problem that defines
a simple rugged fitness landscape, and the Scrabble string prob-
lem, a more complicated problem that serves as a rough model for
linear genetic programming. For both problems, the automatically
generated genotype-phenotype mappings are found to enhance
evolvability.
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1 INTRODUCTION

Successful evolutionary search depends on the production of mean-
ingful phenotypic variation that can be inherited by offspring. With-
out useful heritable variation evolution stagnates. The capacity of
a population to generate useful heritable phenotypic variation is a
key component of evolvability [29]. Different evolving systems can
exhibit different degrees of evolvability. Natural systems, in partic-
ular, are argued to exhibit greater evolvability than computational
systems [31]. Understanding — and replicating — the evolvability
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of natural evolution is an open problem in computational evolution
research [18].

Evolvability is desirable in artificial evolution systems for prac-
tical ends — more evolvable systems will help evolutionary algo-
rithms to tackle sophisticated problems more effectively and ef-
ficiently [2, 23]. Understanding evolvability is of great scientific
interest for both evolutionary biologists and evolutionary comput-
ing researchers [18, 21], not only for optimization but also with
respect to questions related to the evolution of complexity and
open-ended evolution [11, 14].

Indeed, there has been great interest in studying evolvability
using computational systems and, in particular, developing tech-
niques to promote evolvability in digital evolution [3, 4, 12, 16, 18,
19, 24, 26, 27]. Inspired by recent theoretical advances applying
learning theory to the topic of evolvability [15, 32], we propose
a methodology based on autoencoder artificial neural networks
that allows evolvable genotype-phenotype encodings to be learned
by training on phenotypes harvested from local fitness peaks. We
call our approach AutoMap. One variant of AutoMap employs a
denoising autoencoder to learn a representation that buffers pheno-
types near local fitness peaks against mutation until a mutational
threshold is reached where the phenotype shifts to the vicinity of a
different local fitness peak. The second AutoMap variant employs
a bottlenecked autoencoder to learn a representation where small
steps in the genotype space yield significant phenotypic novelty
while protecting phenotypic viability. In principle, the AutoMap
methodology generalizes across a wide variety of computational
evolution domains.

2 BACKGROUND

In this section, we will review evolvability from a biological per-
spective before shifting to a computational evolution perspective to
discuss the relationship between the genotype-phenotype map and
evolvability. We will then touch on recently proposed equivalences
between evolvability and machine learning. Finally, we will put
together a high-level understanding of the artificial neural network
autoencoders AutoMap employs.

2.1 Evolvability

Although definitions of evolvable across the literature can be in-
consistent, most tie in to the notion of traits that facilitate the
generation of novel heritable phenotypic variation that is useful
[29]. Let us examine a pair of biological examples of non-arbitrary
phenotypic outcomes under mutation to build our intuition for
evolvability.

A developmental constraint against certain non-viable pheno-
typic variation in Drosophila melanogaster was discovered through
artificial selection experiments [7, 30]. In these experiments, re-
searchers were able to successfully select for bilaterally symmetric
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phenotypic criteria, such as uniform reduction of eye size, but were
unable to successfully select for bilaterally asymmetric phenotypic
traits, such as different-sized eyes. Tuinstra et al. hypothesize that
the very nature of the developmental process constrains the phe-
notypic variation that can be observed in offspring, in this case
curtailing offspring that lack bilateral symmetry. Specifically, they
hypothesize that a lack of bilateral symmetry-breaking information
during the embryological development of Drosophila explains the
negative result of artificial selection for bilaterally asymmetric phe-
notypic traits. In this way, the distribution of phenotypic diversity
in offspring is biased away from (likely not useful) asymmetric
variation.

In addition to qualities that constrain against non-viable muta-
tional outcomes, biological organisms can possess qualities that
facilitate increased heritable variation for a phenotypic trait. Soma-
totropin, also known as growth hormone, has widespread anabolic
effects on tissues throughout the body. Mutations that affect soma-
totropin regulation, structure, or the response by cells all provide
avenues for substantial heritable variation in body size [8]. Dog
breeds exhibit a range of body weights spanning nearly an order
of magnitude. Indeed, among certain groups of dogs, much of this
variation can be explained by just six genes, several of which are
associated with pathways somatotropin participates in [25]. The
presence of such hormonal signaling pathways can be viewed as
making a broad range of heritable phenotypic variation more read-
ily realizable via mutation.

2.2 Genotype-Phenotype Map and Evolvability

In biological science, phenotype refers to an organism’s observable
characteristics (morphological, behavioral, physiological, chemical,
etc.) that govern its interaction with the environment and ultimately
determine its fitness. Genotype refers to the heritable information
that shapes the phenotype displayed by the individual, i.e., the
organism’s DNA. Development is the process through which an
organism’s genotype and environment interact to determine its
phenotype. It can be useful to abstract development as a mathe-
matical function that takes genetic information as its input and
outputs phenotypic characteristics. This mathematical function
representing development is referred to as the genotype-phenotype
map [1].

The nature of the genotype-phenotype map employed in an
evolving system influences that system’s evolvability [22]. It is of
theoretical interest to study genotype-phenotype maps and their
relation to evolvability. In computational evolution, it is also of prac-
tical interest to implement evolvable genotype-phenotype maps:
more evolvable genotype-phenotype mappings appear to enable
more sophisticated digital evolution. Let us discuss three theoretical
constructs that are useful to understanding the relationship between
the genotype-phenotype map and evolvability: latent evolvability,
acquired evolvability, and innate evolvability.

The terms latent evolvability and acquired evolvability were in-
troduced in [24] to discuss canalization, the ability of a population
to bias the types of phenotypic variability generated among its off-
spring in order to exploit fitness biases specific to its environment.
Reisinger and Miikkulainen argue that canalization is a “learned”
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bias, developed over the course of evolution in response to selec-
tion pressure in a particular environment [24]. Latent evolvability
describes a genotype-phenotype map’s potential to exhibit canal-
ization while acquired evolvability describes actual canalization
exhibited by an evolving population in response to a particular
fitness environment. We introduce the term innate evolvability to
describe bias towards viable variation that is inherent to a genotype-
phenotype map. For example, Clune et al. identify bias towards
phenotypic regularity, which in certain environments tends to be a
useful trait, as an inherent quality of indirect genetic encoding [5].

Innate, latent, and acquired evolvability each represent an oppor-
tunity for intervention by digital evolution practitioners in pursuit
of evolvability. Researchers can manually design an architecture for
an evolving system (often inspired by the developmental processes
in nature) that exhibits strong innate [6] or latent [24] evolvability.
Indeed, hand-design of genotype-phenotype maps is ubiquitous
in evolutionary computing [31]. Researchers have built genotype-
phenotype mappings that exhibit latent [23] and innate [6, 28]
evolvability. Such hand-designed genotype-phenotype mappings
have been used to solve complex problems [3, 34]. Unfortunately,
existing manually-designed genotype-phenotype mappings tend to
be domain-specific — a scheme useful for artificial neuroevolution,
for example, is not likely to be useful for linear genetic program-
ming. In addition, sophisticated genotype-phenotype mappings —
particularly those mimicking low-level aspects of embryological
development — can prove difficult to design and implement [9, p
223].

Selection techniques like evolvability selection [18], modularly
varying environments [12], the provision of a large number of
niches for different tasks [19], etc. can be employed to steer evolv-
ing populations towards regions of the genotype space that be-
stow acquired evolvability. Although these approaches have been
demonstrated successfully, they are inherently limited by the latent
evolvability of the genotype-phenotype mapping with which they
are employed [24].

2.3 Evolution and Learning

In this article, we propose a new approach to achieve evolvability:
directly learning an evolvable genotype-phenotype map from a
training set of phenotypes harvested from local fitness peaks. This
idea is inspired by recent work framing evolution and evolvability in
the context of learning theory [15, 32]. These authors point out that
phenotypic variation generated under mutation and recombination
is fundamentally shaped by an evolutionary history. By this obser-
vation, they suggest an analogy between evolution and a machine
learning system that exploits past experience to make informed de-
cisions. The key point is that undirected genetic variation can lead
to structured phenotypic variation under a genotype-phenotype
map that is shaped by evolutionary history [32]. Kourvais et al.
specifically suggest that evolution might learn to generalize from
past experience, essentially learning the structural regularities of
phenotypes that were successful in the past and generating new
phenotypes that are variations on that theme [15]. Our proposed
AutoMap approach makes this hypothesized learning process ex-
plicit.
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Figure 1: Schematics of bottlenecked a denoising autoen-
coders.

2.4 Autoencoder Neural Networks

We propose to learn evolvable genotype-phenotype mappings via
autoencoder neural networks. Autoencoders are artificial neural
networks that are trained to regurgitate as output the input that they
were provided. Such networks are used to discover efficient lower-
dimensional codings for datasets and, more recently, as a method
for generative modeling [13, 17]. We will use two specific types
of autoencoders: the bottlenecked autoencoder and the denoising
autoencoder.

Figure la provides a schematic depiction of a bottleneck au-
toencoder. This autoencoder has a small layer in the middle that
information must pass through to reach the output. Thus, the au-
toencoder is forced to learn a compact representation for the inputs
it is trained with. The part of the autoencoder that precedes the
bottleneck is called the encoder and the part that follows is called
the decoder.

Figure 1b provides a schematic depiction of a denoising autoen-
coder. These autoencoders are trained to take noisy input and, from
that noisy input, recover a signal in its original unadulterated form.

Both the bottleneck and denoising autoencoders are unsuper-
vised learning models: they do not require labeled training data. In-
stead, these autoencoders learn to exploit structure in the unlabeled
training data in order to perform compression or reconstruction of
input.

3 METHODS

3.1 Learning an Evolvable
Genotype-Phenotype Mapping

The pair of proposed techniques to automatically learn evolvable
genotype-phenotype mappings are based on artificial neural net-
work autoencoders trained to encode phenotypes taken from lo-
cal fitness peaks spread throughout an evolutionary search space.
These phenotypes are gathered by evolving a large number of repli-
cate direct-encoded populations and retaining champion individuals
from each population.

The first approach, the bottleneck map, uses just the decoder
portion of the bottleneck autoencoder. The decoder serves as the
genotype-phenotype map so the genotype is now in the bottle-
neck vector space while the phenotype remains in the same vector
space as before. The idea of this approach is that, because the bot-
tleneck provides a compact representation of those high-fitness
phenotypes, using the decoder as a genotype-phenotype mapping
will readily allow mutation to move the phenotype between oth-
erwise distant fitness peaks. Figure 2a illustrates how the decoder
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Figure 2: Schematics of genotype-phenotype maps con-
structed with a bottlenecked autoencoder and a denoising
autoencoder.

component of the bottleneck encoding is employed to define a
genotype-phenotype mapping.

The second approach, the denoiser map, employs the entire de-
noising autoencoder as the genotype-phenotype mapping. Note
that the genotype and phenotype remain in the same, equivalent
vector spaces. The idea of this design is that mutations that would
otherwise be deleterious will be interpreted as noise and prevented
from being expressed by the genotype-phenotype mapping. Effec-
tively, this mapping should flatten out the valleys between local
fitness peaks in order to allow evolution to more readily drift be-
tween peaks. Figure 2b illustrates how the denoiser autoencoder is
used to define a genotype-phenotype mapping.

3.2 n-legged Table Problem

This simple problem is used to present a proof-of-concept for the
proposed AutoMap techniques. The n-legged table problem models
a table design scenario. In this problem, the phenotype of a table
is abstracted to a collection of continuous-valued individual leg
lengths. All other details of table design are ignored. Stability is
considered a highly-advantageous trait for a table. Fitness is based
on the stability of a table, which is assumed to result solely from
uniformity of table leg lengths. Clearly, as n grows beyond four
or so this toy problem begins to lose a meaningful connection to
real world tables. (When was the last time you saw a fifty-legged
table?) However, mathematically (and intuitively) the n-legged table
problem scales easily. We arbitrarily use n = 100 for all experiments
in this domain.

We chose this toy problem because it induces a straightforward
rugged fitness landscape. Because unstable tables are disadvan-
tageous, mutations to tables with uniform leg lengths tend to be
deleterious. Thus, evolving between different table heights — i.e.,
escaping local maxima — is a tricky challenge.

For evolvability-signature experiments, evenness of leg lengths
was the sole criterion for fitness in order to isolate the ability of a
genotype-phenotype mapping to fulfill this constraint. For a phe-
notype ¥, the fitness score was computed as

-0 (%)

where o represents calculation of standard deviation. Note that in all
experiments, selection was performed to maximize (not minimize)
fitness score. Under this criterion, each level table of a particu-
lar height is a local fitness peak because any single-site mutation
increases the leg height variance.
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For response-to-selection experiments, the evenness of leg lengths
and absolute height of a table were both factored into the fitness
score. For a phenotype %, the fitness score was computed as

—o(¥) — |p(®)/10]

where o represents calculation of standard deviation and p repre-
sents calculation of mean. Under this criterion, a selection pressure
for short tables is applied. The global fitness score peak is the table
with all legs length zero. However, the phenotypic fitness landscape
remains rugged with local peaks occurring as before at level tables.
Thus, the ability of a genotype-phenotype map to facilitate evolu-
tion will be reflected by the ability of a population to escape local
fitness peaks and progress towards the global fitness peak.

3.3 Scrabble String Problem

The Scrabble string problem provides a more challenging testbed
for the AutoMap approach. In this problem domain, phenotypes
are 100-character strings consisting of the letters “a” through “z”
and the “” (space) character. Fitness is determined as the count
of letter characters contained in valid Scrabble words within the
100-character string. First and foremost, this problem was chosen
because phenotypes — and potential indirect genotype-phenotype
maps — were thought likely to be easily human-understandable.
This problem was chosen as a rough stand-in for linear genetic
programming. Finally, working in this problem domain allowed
us to leverage existing deep learning work with character-level
representations of English language sentences [33]. Like the n-
legged table problem, the Scrabble string problem presents a rugged
fitness landscape. Many changes to components to the phenotype
that are part of a valid scrabble word will invalidate the word,
sharply reducing the string’s count of letter characters contained
in valid Scrabble words. Thus, many mutations will have severely
deleterious consequences. Because the Scrabble string problem is
much less regular than the n-legged table problem, predicting which
types of variation will be severely deleterious in this domain is a
more challenging task.

3.4 Implementation

The evolutionary computing components of this project were imple-
mented using the Distributed Evolutionary Algorithms for Python
package, which allows for rapid prototyping and extreme flexibil-
ity [10]. The artificial neural network autoencoder components of
this project were implemented using PyTorch, a Python-based deep
learning framework [20]. The software used to perform and analyze
our experiments, our figures, and data from our experiments are
available via the Open Science Framework at https://osf.io/n92c7/.

3.4.1 n-legged Table Problem. For the n-legged table problem,
the denoising autoencoder consisted of a 100-to-100 fully-connected
linear layer without bias. The network was trained for 2500 epochs
by stochastic gradient descent with learning rate: 1074, momentum
0.9, and batch size 2048. Model parameters were initialized uni-
formly between 0.005 and 0.015. During training, parameters were
clamped in the range (0, 1). During the training process, Gaussian
noise with p = 0, 0 = 0.025 was introduced to the input presented
to the autoencoder. Loss was defined as mean square error of the
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Figure 3: Input/output examples for the denoiser autencoder
in the Scrabble domain.

difference between the original phenotype the reconstructed phe-
notype.

For the n-legged table problem, the bottleneck autoencoder con-
sisted of a 100-to-1 fully-connected linear layer with bias (encoder)
and a 1-to-100 fully-connected linear layer with bias (decoder). Thus,
the bottleneck consisted of 1 float value. The network was trained
for 200 epochs by stochastic gradient descent with learning rate
1073, momentum 0.7, and batch size 16. Loss was defined as mean
square error of the difference between the presented phenotype
and the reconstructed phenotype.

Training data for both encoders used for the n-legged table prob-
lem consisted of 250 populations of 300 individuals evolved with
the direct genotype-phenotype map. Initial leg lengths of each sep-
arate population were taken from a Gaussian random walk seeded
uniformly between 0 and 1000 with y = 0,0 = 1.0 where each set
of 100 consecutive values was taken as the initial leg lengths of a
particular individual. This step was performed to ensure that the
250 populations were well-spread throughout the phenotype space.
The 250 populations were evolved separately for 50 generations
using the operators and settings described for the direct encoding
for the evolvability-signature experiments. The 7500 phenotypes
— vectors of 100 float values — present in the populations after 50
generations of evolution were taken as training data. Leg length
values were normalized to the range (0, 1) for the training process.
Both encoders were easily trained on a PC (no GPU).

For all n-legged table experiments, population size 300 and tour-
nament selection with k = 5 was used. With probability 0.5, off-
spring engaged in two-point crossover with one other individual.
(Note, though, that when the bottleneck genotype-phenotype is
employed the genotype is a single float value so crossover has no
effect.) Mutation was performed by site-wise Gaussian perturbation
of the genome. For evolvability-signature experiments, mutation
of genome elements was y = 0,0 = 0.1 with a per-individual
probability of 0.2 and a subsequent per-site probability of 0.01.
For response-to-selection experiments, mutation of genome ele-
ments was y = 0,0 = 0.1 with a per-individual probability of 0.2
and subsequent a per-site probability of 0.2. (For all experiments
with the bottleneck map, a per-site probability of 1 was employed.)
These particular operators were used due to their easy accessibility
in DEAP. It would be beneficial to repeat these experiments with
other common operator and parameter choices to investigate the
generalizability of the AutoMap approach.
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Figure 4: Illustration of denoising autoencoder in action in
the Scrabble domain.

3.4.2  Scrabble String Problem. For the Scrabble string prob-
lem, the denoising autoencoder consisted of: a 9,000-channel 1-
dimensional convolution layer with kernel size 3, a ReLU layer, a
100-channel 1-dimensional convolution layer with kernel size 5, a
ReLU layer, a 1500-to-1500 fully-connected linear layer with bias,
a Tanh layer, and a 1500-to-27 fully-connected linear layer with
bias. Initial model weights were drawn from the standard normal
distribution. To generate training data, 20,000 direct-encoded pop-
ulations of 50 100-character strings were evolved for 40,000 genera-
tions. During training, inputs to the autoencoder were 15-character
substrings of champion phenotypes with each character encoded as
a one-hot vector. With probability 0.25, the middle character of the
presented substring was redrawn. Over the course of two days, the
network was trained for 4 epochs on a GPU-accelerated machine
with the Adam optimizer and batch size 256. Loss was defined as
mean square error of the difference between the true identity of the
input substring’s middle character (before any scrambling) and the
predicted identity of that character. At the conclusion of training,
the denoising autoencoder predicted the correct identity of the sub-
string’s middle character at a rate of approximately 85% on testing
data. Example input/output of the denoising autoencoder during
training is shown in Figure 3. For the Scrabble string problem, each
site of the 100-character genotype was fed through the denoiser,
yielding a new 100-character string that consisted of the denoiser’s
prediction at each site. Figure 4 illustrates this process. The denoiser
genotype-phenotype mapping was achieved by performing four of
these denoising passes on the genotype.

For all Scrabble string experiments, tournament selection with
k = 3 was used. No crossover was performed. Mutations scrambled
a single, randomly-chosen character in the genotype. We applied
a per-individual mutation rate of 0.2 and a subsequent per-site
mutation rate of 0.1 while evolving training data for the denoiser.
For all other experiments, we used a per-individual mutation rate
of 0.33 and a subsequent per-site mutation rate of 0.01.

3.5 Evolvability Signature

Tarapore et al. introduced an evolvability measure that enables
simultaneous inspection of both major aspects of evolvability —
viability and novelty of phenotypic outcomes under mutation [29].
They forgo use of a scalar metric to describe evolvability, instead re-
porting evolvability using what they term a “signature.” Essentially,
the signature is a two-dimensional heatmap presenting the changes
in phenotypic form and fitness observed in individual offspring
from a single parent. For a highly evolvable individual, we would
expect to see offspring occurring with significant frequency in the
corner of the heatmap indicating significant change in phenotypic
form with slight or no loss of fitness. The evolvability signature

987

GECCO 18, July 15-19, 2018, Kyoto, Japan

provides a nuanced snapshot of evolvability, allowing for interac-
tion between the two primary components of evolvability to be
visualized. Such information can be diagnostic, for example alert-
ing researchers to phenomena that might appear falsely promising
using other metrics, such as genetic changes that alter phenotypic
form substantially but at great cost to fitness or genetic changes
that are beneficial to fitness but fail to uncover novel phenotypic
form. In these diagrams, fitness increases left-to-right and novelty
increases top-to-bottom. Thus, the parental phenotype tends be
placed in the upper right of the diagram. (With the occurrence
of mutations that benefit fitness, the parental phenotype ends up
placed closer to the upper middle of the diagram.) Likewise, mutant
phenotypes that are both novel and viable are placed in the lower
right of the diagram.

4 RESULTS AND DISCUSSION
4.1 n-legged Table Problem

We used evolvability signature analysis to characterize the evolvabil-
ity of the n-legged table direct, bottleneck, and denoiser encodings
(Figure 5). The bottleneck mapping clearly generates more novelty
per mutational step than either of the other mappings. Fitness does
decline in tandem with novelty, but the absolute fitness scores of
all mutant offspring under the bottleneck mapping are greater than
the absolute fitness of the direct-evolved champions. Relatedly, al-
though beneficial mutational outcomes are observed frequently
under the direct encoding, this is likely affected by relatively low
absolute fitness of —0.82 (s = 0.1) for direct-evolved champions (in
comparison, for instance, to absolute fitness of —0.025, s = 0.004
for denoiser-evolved champions). Finally, more novelty is produced
by mutation under the direct encoding compared to the denoising
encoding. The denoiser’s action filtering out certain phenotypic
variation likely contributes to the reduction of novelty observed
under mutation.

Subsequently, we assessed the ability of the three genotype-
phenotype maps to facilitate traversal of the evolutionary search
space in response to a selective pressure. Specifically, a selection
pressure for short table height was added. Table height is calcu-
lated as the mean leg length of a table. For each map, we evolved
three replicate populations of 300 individuals for 5,000 generations.
We initialized these populations to have table height of approxi-
mately 1,000. Response to selection pressure for short table height
was assessed by tracking mean table height of the populations
generation-by-generation. Figure 6 plots mean table height by gen-
eration under selection for both zero table height and table stability.
Shaded areas, hugging the table height trajectories so tight as to be
difficult to discern, represent bootstrapped 95% confidence intervals
(n =3).

Under the direct mapping, a slight decrease in mean table height
is observed for a few generations after initialization. However, no
further decrease in mean table height was observed over the course
of evolutionary runs. These runs ended with a mean table height
of approximately 950. Direct-encoded populations were trapped at
local fitness peaks and unable to respond to selective pressure for
short table height.

Under the bottleneck mapping, a swift decrease in mean table
height is observed after initialization. Well within 100 generations,
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Figure 5: Evolvability signatures for three genotype-phenotype maps in the n-legged table problem domain. Note that subfigure
5c is presented with different axis scaling than subfigures 5a and 5b.
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Figure 6: Response to short-table selection pressure under
different genotype-phenotype maps.

the populations approached to the global fitness peak of a perfectly
level table with height zero. Populations with the bottleneck map-
ping were able to quickly respond to selective pressure for short
table height.

Under the denoising mapping, a slight drop-off in mean table
height occurs after initialization, followed by a steady decrease in
table height over the remainder of the evolutionary time. These runs
ended with a mean table height of approximately 630. Although
not as swiftly as under the bottleneck mapping, denoiser-encoded
populations were still able to respond to selective pressure for short
table height.

Cursory inspection of input/output of the decoding component
of the bottleneck autoencoder revealed that it had learned to echo
the single bottlenecked float in order to uniformly populate the vec-
tor of 100 phenotypic leg lengths. Thus, the bottleneck genetic rep-
resentation essentially described the table height; table leg lengths
were set to this height value via the genotype-phenotype map.
Evolvability signature analysis suggests that this encoding allows
the generation of substantial novelty with mild deleterious con-
sequence. Indeed, as shown in Figure 6, table populations using
this encoding are able to rapidly evolve to a global fitness peak.
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Figure 7: Phenotypic divergence by mutational step in the
Scrabble string domain.

Similar inspection of the denoising autoencoder revealed that that
neural network had essentially learned to calculate each phenotypic
leg length output as the average of its inputs. Thus, the denoising
encoding took genetic input for what — under the direct encod-
ing — would otherwise be an unstable table and output a stable
table nearby in phenotype space. Although this encoding does not
enhance the novelty of phenotypic outcomes under mutation rel-
ative to the direct encoding, it does curb the deleterious effects
of mutation. Thus, as shown in Figure 6, table populations using
this encoding are able to make slow and steady progress towards a
global fitness peak.

4.2 Scrabble String Problem

Evolvability signature analysis was used to characterize the evolv-
ability of the learned denoiser encoding in the scrabble string. To
generate these signatures, 250 champion genotypes were drawn
from the direct-encoded populations used to train the denoiser en-
coding. 100-step mutational walks were then taken from the cham-
pion genotype. The phenotypes generated from those genotypes
under both the direct and the denoising encoding were compared.
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Figure 9: Gaussian kernel density estimates for evolvability
signatures of direct and indirect encodings in Scrabble string
domain.
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Figure 10: Maximum individual fitness by generation in pop-
ulations evolving in the Scrabble string domain.

Figure 7 plots novelty (number of non-matching phenotypic char-
acters between the original champion and its mutant offspring)
against mutational step (n = 250). Novelty increases more rapidly
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under the denoiser encoding relative to the direct encoding. Figure
8 plots fitness relative to the original champion against mutational
step (n = 250). Fitness declines more slowly under mutation with
the denoiser encoding compared to the direct encoding. In both
of these figures, bootstrapped 95% confidence are shaded along
each curve but are tight enough to be difficult to discern. Figure 9
ties together fitness and novelty information from these random
mutational walks in the format of an evolvability signature. Kernel
density estimate contours of evolvability signature densities under
both encodings are shown side-by-side. This comparison shows
that the denoiser encoding simultaneously yields more novelty and
less fitness decline under mutation.

Subsequently, we tested the capacity of the denoiser encoding to
speed up adaptive evolution. We set up twenty replicate Scrabble
string populations to use the denoiser genotype-phenotype map
and twenty Scrabble string populations to use the direct map. For
each population, maximum fitness was recorded over 1,000 gen-
erations of evolution. Figure 10 shows that the populations using
the denoiser encoding gain fitness more rapidly than the direct
encoding over the first few hundred generations (n = 20). (Again,
bootstrapped 95% confidence are shaded along each curve.) Clearly,
the evolvability properties of the denoiser encoding translate to
evolutionary dynamics that differ strongly from the direct encoding.

As shown in Figures 3 and 4, the denoising autoencoder es-
sentially learns to spell-check a genotype to generate the pheno-
type. Generally, though not always, characters contributing to valid
words are left undisturbed. Interestingly, the change that the de-
noiser makes to correct a spelling error doesn’t always reflect the
original state of the string. There are often several possible repairs
that will yield valid spelling outcomes. We hypothesize that this
dynamic explains the rapid rate of novelty increase under mutation
— often, instead of correcting the mutated site in the phenotype
corrections are applied to one or several other sites. Thus, more
than one character in the phenotype may change due to mutation
of a single site in the genome. In particular, based on informal
analysis of example sentences fed to it, the denoising autoencoder
seems to favor fixing spelling mistakes by strategically replacing a
letter character with a space. This tendency might occur because
the denoiser encountered spaces more often than any other single
character during training.

5 CONCLUSION

We introduced AutoMap, a scheme to learn evolvable genotype-
phenotype encodings via autoencoder artificial neural networks
trained on champion phenotypes from a preliminary evolutionary
search. We presented two variants of the AutoMap approach. One
is built around a denoising autoencoder that yields a more neutral
evolutionary search space through phenotypic robustness under
mutation. The other employs a bottleneck autoencoder to yield a
more compact representation. Both approaches were demonstrated
to increase evolvability relative to the direct encoding in the context
of a proof-of-concept test problem, the n-legged table problem. The
denoiser approach was further demonstrated to increase evolvabil-
ity in the more challenging Scrabble string problem.

Much work is left to be done. As immediate next steps, the
bottleneck approach should be demonstrated in the Scrabble string
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domain and the capacity of both approaches to facilitate evolution
towards higher-value fitness peaks should be explored, perhaps by
defining high-level criteria to be rewarded in addition to the low-
level spelling criteria. In addition, this approach should be put in
explicit conversation with recent thinking about parallels between
the principles of machine learning and the evolution of evolvability
[15, 32].

Indeed, this exploratory work only scratches the surface of the
possible applications of the AutoMap approach. Such artificial neu-
ral network autoencoders can, in principle, be employed with any
phenotype that can be represented as a vector. AutoMap might
reduce the human labor and expertise required to design evolvable
genotype-phenotype mappings for new evolutionary computing
domains. Further, these autoencoder-based approaches might yield
more evolvable genotype-phenotype maps than human design for
existing evolutionary computing domains.

Unfortunately, autoencoder design and training itself typically
requires skilled human input; AutoMap cannot entirely sidestep the
need for manual labor. Indeed, the question of how to adapt autoen-
coder architecture and training to a less well-understood domain is
nontrivial. For example, questions such as “What should the size
of the bottleneck be for a bottlenecked autoencoder?” or “What
type of noise should a denoising autoencoder be trained with?”
will need to be addressed in any application of AutoMap. It should
also be noted that the success of AutoMap in any problem domain
depends on the computational capacity to generate large amounts
of training data through direct evolution and a willingness to accept
the computational cost of performing a forward pass through the
autoencoder component for each fitness evaluation when evolving
with a learned genotype-phenotype map. Domains where evolu-
tion with pre-existing encodings generate poor solutions, repeated
cycles of autoencoder training and generation of new training data
via evolution might be necessary to yield satisfactory performance.
Despite these limitations, we believe that the AutoMap approach to
learning evolvable genotype-phenotype maps will prove a useful
component of the computational evolution toolbox.
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