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ABSTRACT
In this contribution we propose a hybrid genetic programming
approach for evolving a decision making system in the domain of
RoboCup Soccer (Simulation League). Genetic programming has
been rarely used in this domain in the past, due to the di�culties
and restrictions of the soccer simulation. �e real-time require-
ments of robot soccer and the lengthy evaluation time even for
simulated games provide a formidable obstacle to the application of
evolutionary approaches. Our new method uses two evolutionary
phases, each of which compensating for restrictions and limitations
of the other. �e �rst phase produces some evolved GP individuals
applying an o�-game evaluation system which can be trained on
snapshots of game situations as they actually happened in earlier
games, and corresponding decisions tagged as correct or wrong.
�e second phase uses the best individuals of the �rst phase as input
to run another GP system to evolve players in a real game environ-
ment where the quality of decisions is evaluated through winning
or losing during real-time runs of the simulator. We benchmark
the new system against a baseline system used by most simula-
tion league teams, as well as against winning systems of the 2016
tournament.

CCS CONCEPTS
•Computer systems organization → Evolutionary robotics;
•So�ware and its engineering→ Genetic programming;
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1 INTRODUCTION
A multi-agent system is a system in which there are multiple inter-
acting intelligent agents within an environment [6]. �ese systems
can be used in di�erent domains for solving problems where a
single agent is unable to achieve the de�ned goal or reaching it
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might be time consuming and not e�cient. �e problem of decision
making in multi-agent systems is a complex one. Each agent in
a multi-agent system needs to be equipped with its own indepen-
dent decision making system in order to be able to interact with
other agents and also with the environment. �e communication
between agents is limited in these environments and the amount of
information that can be sent or received from is normally limited
per cycle, depending on the environment type.

Each agent has di�erent functions and skills that it can execute
in a cycle or a period of time. In order to execute the best action
for reaching the goal of the system, there are two main problems.
First, the functions and skills of an agent need to be optimized
to reach the best possible outcome in principle. Second, when all
functions and skills are available, a good decision making system is
required so that the skills and functions are used at the right time
so the goal can be reached in an e�cient and fast way. �e problem
of generating a good decision making system when we have the
functions and skills available is the problem we focus on in this
article. All of the implementations reported in this contribution are
based on the source code of the award winning MarliK team [20]
which has developed a set of good skills. �e decision making
system is then subjected to a genetic programming approach for
improving the outcome of an agent’s actions.

Genetic Programming (GP) is a research method within the �eld
of Evolutionary Computation (EC) [5] that generates programs and
algorithms through simulated evolution automatically. In Genetic
Programming, computer programs are evolved with a computer pro-
gram represented as a tree (as used here) or another data structure
like a sequence of instructions. �e trees are composed of functions
and terminals, depending on the problem de�nition. Crossover and
mutation operators are used for evolving individuals over genera-
tions. Evaluation of trees in GP traverses the corresponding tree
recursively in the evaluation method that is de�ned depending on
the problem statement.

�e particular method used here employs two phases of GP
application, with di�erent training sets and di�erent dynamics. �e
�rst phase sets agents into game situations we call snapshots which
stem from previous games with the simulator, where the potential
behaviors an agent can choose are labeled by hand and trained
with an o�ine system. �e second phase uses these situations to
interpolate in real-time game situations. Agents start out with what
they have learned to work well in o�-line situations, and are put
into real games. �us, the learning is human-like in the sense that
behavior is trained for speci�c pa�erns of circumstances which
are in some sense idealized typical situations with a slim chance
to ever be encountered in a real game. Yet, similar situations could
well be encountered and the system interpolates between those
while running a real game. �e evaluation in the second phase is
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based on the consequences (gaining an advantage in the game, or
loosing ground). It is hoped that with an increase in the density of
situations, the system becomes more and more accurate and able to
win real games. �is approach is similar in philosophy, yet di�erent
technically from the memory modelling approach we proposed two
decades ago [16].

�e rest of the paper is structured as follows: In Section 2 we
discuss the soccer simulation domain and previous usage of EC
in this domain, along with the challenges that were faced in that
research. Section 3 details the hybrid GP method. Section 4 presents
the performance analysis. Finally, conclusions and future work are
found in Section 5.

2 THE SOCCER SIMULATION DOMAIN AND
EVOLUTIONARY COMPUTATION

�e Soccer 2D Simulation Server (RCSSServer) [15] is the so�ware
in the soccer 2D simulation league that provides a complex multi-
agent system. It allows groups to develop their own soccer teams
of 11 individual agents and play against another team. �e soccer
simulation domain is a very di�cult, real-time, noisy, and highly
dynamic environment.

Genetic programming has been applied to multi-agent coordina-
tion before. Andre in [1] evolved communication between agents
with di�erent skills. �reshi in [18] evolved agent-based commu-
nication in a cooperative avoidance domain. Raik and Durnota
in [19] used GP to evolve cooperative sporting strategies. Luke and
Spector in [13] and Haynes et al. in [8] used GP to develop cooper-
ation in predator-prey environments. Iba in [9] applied a similar
approach to cooperative behavior in the TileWorld domain. �ese
were some of the early related methods applied before Sean Luke
applied Genetic Programming to a very di�cult problem domain,
RoboCup soccer 2D simulation.

�e RoboCup soccer server is said to be not a good match for
GP [11] because the soccer server domain is very complex and
there are multiple options and controls with many special cases
important for each decision or action. �is makes it hard for GP
to be integrated successfully. Another di�culty is the time factor.
�e soccer server runs in real-time and all players are connected
separately via UDP sockets to the server. Each game takes ten
minutes to play and there is an enforced 10ms delay between world
model updates which results in the entire game to last about 10
minutes (equal to 6000 of 10ms cycles) [12].

In 1997, Sean Luke proposed using Genetic Programming for
producing a team of competitive agents for the RoboCup97 o�cial
competition [11, 14]. �e objective that Luke and his teammates
set for their team was fairly modest. �eir goal at �rst was to
produce a team of agents able to play an entire game [11, 12]. �ey
managed to produce agents that were able to decide how to disperse
throughout the �eld, pass, kick to the goal, defend the goal, and
coordinate with and defer to other teammates. At the time their
team participated in RoboCup97, all other teams were hand-cra�ed,
human coded algorithms and their team was the only one with
intelligent players using an AI approach. �ey managed to win
their �rst two games in the competition but lost others. In the
end they won the RoboCup97 scienti�c challenge award for their
research [11].

One of the reasons which makes it a serious problem to evolve
a computer program to work successfully in this domain is that
it requires a very large number of evaluations. In this case, each
evaluation is equal to a run of a game in the simulator. In one
of their previous results in a simpler domain, Luke and Spector
found that GP would require about 100,000 evaluations in order
to �nd a reasonable solution [13]. In a more complex domain like
soccer it is likely that more evaluations would be necessary to �nd
a reasonable solution. If we consider each evaluation in a soccer
simulation server run to take 5 minutes, it would take up to a full
year to perform 100,000 evaluations. �e challenge of cu�ing down
this time from years to a few months or weeks, while still being
able to produce a relatively good-playing soccer team from only a
small number of evolutionary runs, was one of the main problems
they faced. Luke and Spector managed to take on this problem in
several ways [11]:

• �ey used brute force in order to speed up the process,
running 32 parallel games and cu�ing down time for each
evaluation from a full game of 10 minutes to limited periods
of games of between 20 seconds and one minute duration.

• �ey cut down population size and number of generations.
• �ey developed an additional layer of so�ware to simplify

the domain in order to eliminate many boundary condi-
tions the GP programs would have to account for.

• �ey spent much time designing a function set and eval-
uation criteria to promote be�er evolution in the soccer
simulation domain.

• �ey used parallel runs with di�erent genome structures
to have more options when they were close to the compe-
tition.

�eir �tness function was only based on the number of goals that
a team scored in a game. In order to prevent premature convergence
(a problem because of their use of small population sizes) they
employed a high mutation rate of 30% [3, 11].

A�er Luke’s team pioneered GP in the soccer simulation domain
in RoboCup97, a team named Darwin United applied GP to evolve
their agents in RoboCup98 [2]. Darwin United used a di�erent
method than Luke’s team for evolving their players and they em-
ployed an optional coach agent - who receives noiseless data from
the server but has very limited communication with agents- for
storing data and coordinating the decision for rewarding players
a�er each command execution [17].

A�er Luke and Darwin United, Aronsson in [3] also employed GP
to teach so�ware robots to play soccer. He focused on designing a
be�er �tness function. Aronsson also made several compromises to
limit the duration of the evolutionary process because of excessive
running times needed for evaluating each population due to the
complex nature of the soccer simulation framework.

Aronsson used a similar approach as Luke for implementing
trees in his GP system. Both groups evolved a move tree and a kick
tree for agents and set a basic state-rule to determine which tree to
call in each cycle of the game. If a player was close enough to kick
the ball, the kick tree would be called and if a player could see the
ball but it was not reachable, the move tree would be called. Figure 1
depicts the structure of a decision tree in Aronsson’s research. Each
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Figure 1: �e structure of Aronsson’s decision trees

leaf node is an action and all other nodes are predicates in his ex-
periments. Predicates are Boolean functions that give information
about the environment around the agents such as: OpponentIsClose,
IAmNearGoal, and IAmClosestTo�eBall.

One main di�erence in the decision making of Aronsson’s agents
compared to previous approaches was that players that calculated
to have an obvious chance of scoring a goal would a�empt to score
without considering the decision of the evolved kick tree. �is
“action overriding” was expected to focus the agents’ a�ention on
team coordination and positioning. Improving the quality of their
decision making indeed worked as expected.

�e �tness measure used by Aronsson was based on each player’s
performance during a game, or on the average of its performance
if that player played multiple games during the evaluation process.
�e �tness value was calculated as weighted sum of some parame-
ters such as: team’s score, opponent team’s score, number of goals
the agent scored, total number of passes made by the agent, number
of shoots on goal made by the agent, and etc.

Aronsson performed two experiments, di�erent only in the team
set-up. In the �rst experiment, players learned to chase and kick
the ball towards the goal or pass it to a teammate, but in the sec-
ond experiment players converged and did not develop further
than the �rst experiment. Also it was found that players from the
�rst experiment were developing towards team coordination only
slowly [3].

Aronsson’s conclusion was that so�ware robots are able to learn
to play simulated soccer but that the strategies that the robots
developed were most likely inferior to human-coded algorithms,
though be�er than initially random strategies [3].

GP was rarely used in the domain of soccer simulation a�er these
contributions were published. Lichocki et al. in [10] evolved team
compositions by agent swapping and Aşık and Akın in [4] used
genetic algorithms for solving multi-agent decision problems.

2.1 �e Challenges of Evolving Agents in the
Soccer Server Domain

Luke, Aronsson, and the Darwin United team used GP for evolving
soccer agents in the soccer 2D simulation framework. Some impor-
tant aspects and challenges of research done by Luke’s team are as
follows;

• In his research, all agents were evolved only during the
actual run of the soccer simulator and there is no learning
for agents except inside the matches.

• For evaluating individuals during a game, each agent can
execute only one decision tree so that it will be evaluated
by its decisions. Due to the limited number of players (11

per team) in each game and the long run times for each
game, large population sizes are almost impossible.

• Since it was the �rst year of the competition, skills devel-
oped for agents (such as pass, dribble, shoot, etc.) were
very simple and not as mature as today.

Here are some problems and challenges Aronsson faced during
his research:

• All agents were evaluated during actual runs of the simu-
lator. Evaluating individuals during running a game was
very time-consuming so he had to limit evaluation times
which rendered weaker agents.
• �e evolved agents had di�culties with basic skills, such

as ball interception. Even when GP found a very good
individual, this basic skills might have resulted in bad per-
formance, receiving a low �tness value ultimately leading
to its elimination.

• Due to the nature of the soccer simulator, only small popu-
lation sizes were possible which limited the exploration of
the search space and had a substantial impact on the �nal
result.

• As a result, the team was not competitive enough to play
against teams that were participating in the RoboCup com-
petition of that year.

3 HYBRID GP METHOD FOR DECISION
MAKING OF AGENTS

Our new method consists of using GP with a newly proposed eval-
uation method in order to generate decision trees for soccer agents,
followed by another GP algorithm, with a di�erent setup and eval-
uation method, which uses the best individuals of the �rst GP as
input rather than a random population.

In the �rst phase of the approach, a GP algorithm with a random
initial population and a large population size creates decision trees
for agents. �e �tness function evaluates the behavior of an agent
in some pre-de�ned situations from real games with a set of desired
outputs, each of which with a pre-de�ned score for di�erent actions
performed. �e data used for evaluating individuals in order to train
our agents are generated using actions of agents from top teams of
the world from the latest RoboCup competition. Individuals will
be scored on the decisions they made for these speci�c situations
using a �tness function that evaluates those decisions. �e selection
method in our method is tournament selection for this phase of the
algorithm, with crossover and mutation for generating variant trees
using the sub-tree replacement method. Function and terminal sets
are player skills (such as pass, dribble,etc.) and predicates from
the environment needed for making decisions (such as inOppField,
oppIsClose, etc.).

In the second phase of the method, the best individuals resulting
from the �rst phase are used as inputs to another GP system. �is
phase is again using a GP to evolve decision tree of agents, how-
ever, this happens in real-time games. Di�erences between the GP
method used in second phase and �rst phase of the approach can
be summarized as:

• In the �rst phase, individuals are initialized randomly using
the ramped half-and-half method. In the second phase, the
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Figure 2: An overview of the proposed hybrid method

best individuals of the �rst phase are used as �rst genera-
tion individuals. �us, in the second phase �t individuals
from pre-de�ned scenarios of games are further evolved
by taking part in real-time simulated soccer games.

• Individuals of the �rst phase are evaluated using some pre-
de�ned situations and also a pre-de�ned scoring system as
the �tness function (supervised learning of situations). In
the second phase, each individual is evaluated in a real run
of a simulated soccer game, mostly by feedback for each
action of agents. For instance, if an agent decides to pass a
ball to a teammate and that action results in losing the ball
in a short period of time, or if it decides to dribble with
the ball when it is not safe to do so, it will be considered a
wrong decision and will negatively a�ect its �tness value
compared to other individuals. �e total result of the game
also a�ects all team members’ �tness values.

• In the second phase, the population size is much smaller
due to the long run time of the games needed for evalu-
ating an individual (about 10 minutes per run) as well as
the limited number of agents that are able to be tested in
the �eld (one individual per agent, so no more than 10
evaluations in each game excluding the goalkeeper).

A sketch of the proposed hybrid method and the main charac-
teristics of both GP systems used in the two phases is shown in
Figure 2.

3.1 Addressing Challenges
�is hybrid GP method will address some of the main challenges
that were faced in previous works using GP in the soccer simulation
environment such as:

3.1.1 Small Population Size. Because each evaluation was done
previously during a partial run of a game in the simulator, the limit
of evaluating 10 individuals per game prevented researchers from
having a large population size for each generation of the GP run.
Using the �rst phase of GP with a �tness function that can evaluate
individuals without the need of running a full game enables us to
execute millions of evaluations in a much shorter period of time.

3.1.2 Time-consuming Evaluations. Each run of a full game in
the soccer simulator takes about 10 minutes. If an individual is to be
evaluated during one game, it therefore takes 10 minutes to evaluate.
�e largest number of evaluations that can be done in a game is 10

as we have 10 players excluding the goalkeeper agent. In order to
achieve a desired number of evaluations we would need months
and years for evaluations. �e �rst phase of GP helps �nding some
intelligent agents that can properly behave in certain situations
(games snapshots). �ey use this knowledge in the second phase
to ”interpolate” between situations generating be�er auspices for
improvement of behavior in the time-consuming evaluations of full
real-time games.

3.1.3 High Level Skills of Agents. �is research uses source code
and skills of the MarliK team that is an internationally recognized
team in the RoboCup soccer 2D simulation league and was placed
third of the world in 2011 and 2012 and also won �rst place in some
international competitions such as DutchOpen and IranOpen from
2009 to 2013. Instead of agents with very basic skill functions such
as intercepting, passing, and shooting skills used for evolution in
earlier work, the high level skills of the MarliK team are used here,
which lowers the chance of eliminating good individuals during
the evolution process due to errors caused by basic skill functions,
as happened in previous research.

3.2 Implementation
We use the GPC++ library [7] for implementing GP in both phases
of the hybrid method. �e structure of a tree in our tree-based GP
system is very similar to what Aronsson applied in his research,
shown in Figure 1. Here, we implement and test the hybrid method
for the kick decision tree of agents, the decision tree for when
agents have the ball.

�e function set for both phases of the method includes agent
skills such as pass, dribble, and clear. Terminals are also chosen from
the following predicates: nearGoal, nearOwnGoal, inOppField, opp-
IsFar, oppIsClose, oppIsVeryClose, weAreWinning, weAreDefending,
weAreA�acking, tmmAvailable, pathClear, and ballInDangerArea.

3.3 Fitness of First Phase
Each individual in our tree-based GP is evaluated by the actions it
takes in some prede�ned simulated situations that are derived from
real games. �ese situations are extracted using the decisions that
were made by agents of the strongest teams from the RoboCup 2016
competition. Each of these situations is called a “snapshot” and it
contains information about the �eld, such as position of teammates
and opponents in that speci�c cycle of the game. Each snapshot is
associated with a reward for each particular action that could be
made in that situation. A decision in a snapshot is classi�ed into
one of the following categories associating a number with each of
them that increases as the action become worse;

• perfect: �e best possible action for that situation of the
game which was chosen in the real game by the agents of
top teams.

• good: �e action is good to be executed and there is not
much risk included in the action in that situation of the
game.

• bad: �e action is not a good choice and might result in
losing possession of the ball or an opportunity, and there
is at least one be�er option to choose from.

• veryBad: �e action is a very bad choice and it is very
risky for that cycle of the game.
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Figure 3: A snapshot from �nal game of RoboCup 2016

• worst: �e action is an obvious bad choice and will im-
mediately result in losing a great opportunity or losing
possession of the ball.

Figure 3 shows a snapshot of the RoboCup 2016 �nal game
between the Helios and Gliders teams that was used in our �tness
function. In this situation, player number 9 of the a�acking team
on the le� side of the �eld has a great opportunity to score a goal
and decided to dribble with the ball towards the goal to improve its
chance for scoring. For this snapshot, dribble action is set as perfect
decision, and pass and clear actions are classi�ed as bad and worst
decisions, respectively.

We used 100 snapshots from games of the �nal round of RoboCup
2016 in order to evaluate the �rst phase of genetic programming.

3.4 Fitness of Second Phase
Due to the complexity and nature of the soccer simulator, evaluation
of individuals in this phase of the algorithm is very time consuming
compared to the �rst phase. �e �tness function for this phase
of the algorithm is reward-based and each individual will get a
reward based on the action that it took in each cycle of the game.
Evaluation of these actions is achieved using a combination of some
parameters from consequences of these actions and some basic rules
of common sense, such as when the agent does not clear the ball
during an a�ack situation in front of the opponent’s goal.

Each population is evaluated during one full game run in the
soccer simulator. An individual is randomly assigned to a player
before beginning of a match and the �tness value of that individual
is the sum of its rewards received from all the actions taken during
the game.

Here is a list of events that a�ect �tness values of individuals of
a population:

• If ball possession is lost to the opponent team in the fol-
lowing 20 cycles a�er the agent executed an action.

• If a goal is scored in the next 100 cycles.

Table 1: Scoring system of individuals

Parameter Value
perfect 0
good 10
bad 20

veryBad 40
worst 80

• If ball object’s x dimension is increased or decreased (an
increase means ball is moved toward the opponent’s goal).

• If the player is not a defender and cleared the ball while in
opponent’s �eld.

• If opponent team scored a goal in the next 50 cycles.
• If the player decided to dribble with the ball while team-

mate goalie agent is very close (chance of giving a back
pass fault to opponent).

Each of the above events will positively or negatively a�ect the
�tness value of individuals in the population, depending on the
e�ectiveness or severity of the event on the whole team’s gameplay.

4 PERFORMANCE ANALYSIS
4.1 Runs of the First Phase
We performed 10 runs with di�erent random seeds for the �rst
phase of the method. During these runs, as it was expected, initial
individuals made good progress toward reaching the target �tness.
A smaller �tness value for an individual means that it performed
be�er actions in more snapshots of the game. For example if an
individual makes the perfect decision in 75 out of a total of 100 snap-
shots, and makes 15 good, 6 bad, 2 veryBad, and 2 worst decisions, it
will end up with a �tness value of 510. �e scores associated with
each of these actions are shown in Table 1.

�e best individual a�er 100 generations had a �tness value of
180 which means it had a very good performance in the simulated
snapshots of the game and it chose the perfect decision in at least
82 out of 100 snapshots.

Figure 4 shows the development of the �tness of the best and
worst individual of each population as well as the average �tness of
individuals in each generation during evolution of the �rst phase.
�e data shown in Figure 4 gives the average of 10 runs performed
during our experiment. Smaller �tness values represent be�er
performance.

Figure 5 shows error bars on the average �tness of individuals
over generations in the runs of the �rst phase using standard devi-
ation of individuals in each generation indicating what �tness the
majority of each population achieved.

It can be observed that in all runs of the �rst phase, major
progress of individuals is made in the �rst 20 generations and the
latest improvement observed in the best �tness was in generation
83. Destructive mutation and crossover operators are the main rea-
sons that cause signi�cant changes in the �tness of worst individual
over the generations. It can also be observed that the population
seems to converge repeatedly in certain generations, just to later
break out again. �is seems to happen when the worst individual

1029



GECCO ’17, July 15–19, 2017, Berlin, Germany Amir Tavafi and Wolfgang Banzhaf

Figure 4: Evolution of best, average, andworst �tness in runs
of the �rst phase

Figure 5: Error bars indicating (one) standard deviation of
individuals in runs of the �rst phase

of population has a be�er �tness and it seems to break out when
a signi�cant increase in worst proportion of the population hap-
pens due to a destructive mutation or crossover as it happened in
generations 52 and 98.

4.2 Run of the Second Phase
�e top 10 individuals of the �rst phase of running GP were then
used as the initial population of the GP in our second phase in
order to be evolved during real runs of the soccer simulator. A
signi�cant improvement in best �tness was not expected since the
initial population was not randomly generated and individuals were
already evolved during the �rst phase. �is also demonstrates that
the o�-game evolution using snapshots was useful as guidance in
real-time games of this phase.

�e individuals that were evolved during the �rst phase of the
algorithm were only tested against 100 speci�c snapshots from real
games. �e �tness function of the second phase of the algorithm
evaluates the individuals during real games where they could get
actual feedback of their behavior to ensure the decisions made from
simulated snapshots actually work well during real games as well.

Figure 6: Fitness evolution in second phase over generations

As expected, a smaller improvement in �tness values and behavior
of agents was observed during the runs of GP in this phase of the
method for 25 generations.

Figure 6 illustrates evolution of the best, worst, and average
�tness in each generation for this phase of the algorithm. Elitist
selection is used in both phases of the method and the best indi-
vidual will always survive to the next generation. �e reason for
a worsening best �tness value in some consecutive generations is
the fact that roles of individuals are assigned to players randomly
in each generation. For example, the best individual of generation
4 was the one that was assigned randomly to a defender role dur-
ing the evaluation run and it received a �tness value of 150. �e
same individual was assigned to an a�acker role during the next
generation and its �tness value worsened as it did not make good
decisions as an a�acker during the second time that it was being
tested. As it was explained, this process makes sure that during
the evolutionary process, the best individuals are the ones that are
most likely to perform well in all di�erent roles.

Looking at the average �tness values in the run of this phase, we
can see that in the �rst generation all individuals of the population
had good �tness since they were the best ones from the previous
phase of the method. However, in the course of 25 generations,
some changes take place that obviously made some individuals
perform be�er and some worse than at the outset. �e signi�cant
changes in average �tness of di�erent generations compared to
�rst phase can be explained by the small population size for this
phase of the algorithm.

For the same reason, the worst �tness of the �rst generation
is signi�cantly lower than most of the next generations as shown
in Figure 6. Destructive crossover and mutation operators are the
main reasons for the signi�cant changes of the worst individual’s
�tness in each generation.

Figure 7 shows the distribution of individuals in each generation
using one standard deviation of the individuals in each population.
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Figure 7: Error bars indicating (one) standard deviation of
individuals in the second phase

Table 2: Performance of hybrid GP method vs. old MarliK

Tested team Opponent Avg. GF Avg. GA Win %
Hybrid method Agent2D 6.12 (2.27) 0.40 (0.57) 100%

Old MarliK 4.36 (1.81) 0.44 (0.50) 92%
Hybrid method Helios 1.00 (0.89) 1.56 (1.20) 20%

Old MarliK 0.72 (0.78) 1.96 (1.31) 8%
Hybrid method Gliders 2.08 (1.81) 1.12 (0.77) 40%

Old MarliK 1.84 (1.41) 1.12 (0.99) 40%

4.3 Hybrid GP Method vs. MarliK’s Old
Decision Making System

�e �nal version ofMarliK without the new decision making system
built by the hybrid GP method was tested in 25 games against the
Agent2D, Helios, and Gliders teams. �en, the new decision making
system which consists of the best individual from the last generation
of the second phase of the method was added to MarliK for all of
the agents and tested against same teams.

Agent2D is an open-source base code that most of the teams in
soccer 2D simulation league, as well as MarliK, are currently using,
and Gliders and Helios are the most powerful teams from latest
(2016) RoboCup competition.

Table 2 shows the results of these experiments. Data from each
row of table represents results of 25 games. Average number of
goals scored and conceded per game with their standard deviation
shown in parentheses as well as percentage of wins of each version
of MarliK that was used is shown in the table.

We observe that the hybrid GP method of decision making out-
performed MarliK ’s previous static decision making system in most
cases, leading to be�er overall results. Looking at the results of
Table 2, it can be concluded that the a�acking power of the team
was more positively in�uenced than the defending power of the
team. An explanation for this fact is that the hybrid GP method is
only used for with-ball decision making of agents here. Power of
defense in a soccer team is more in�uenced by skills such as block,

Table 3: Performance of homogeneous approach vs. hetero-
geneous approach

Tested team Opponent Avg. GF Avg. GA Win %
Homogeneous Agent2D 6.12 (2.27) 0.40 (0.57) 100%
Heterogeneous 5.72 (1.82) 0.36 (0.56) 100%
Homogeneous Helios 1.00 (0.89) 1.56 (1.20) 20%
Heterogeneous 0.92 (0.89) 1.32 (1.05) 16%
Homogeneous Gliders 2.08 (1.81) 1.12 (0.77) 40%
Heterogeneous 2.48 (1.70) 1.16 (1.08) 52%

mark, and intercept which are executed in the without-ball decision
making of players.

4.4 Homogeneous vs. Heterogeneous Approach
In this research, we have followed the homogeneous approach
meaning that we evolved/used the same decision tree for all agents
of a team, without considering their speci�c role. A heterogeneous
approach is also possible to follow which means to evolve separate
decision trees for each player, or for di�erent groups of players
with similar roles (defender, mid�elder, and a�acker).

Whether to have the same decision tree for all players or separate
decision trees for di�erent player roles (defenders, mid�elders, and
a�ackers) is one of the big challenges for RoboCup teams. Here we
try to answer this question by comparing outcomes for these two
approaches to our method.

For answering the question of whether a homogeneous or a het-
erogeneous approach works be�er for our method, we ran a parallel
experiment with the second phase of the algorithm where agents
were divided into the 3 main categories of defenders, mid�elders,
and a�ackers. Each of these categories had a separate (evolving)
population and the experiment was done using the same GP con-
�guration as the second phase of our method before. �e best
individuals from the latest population of the �rst phase GP were
used as initial population for both teams.

Table 3 compares performance of these two approaches of our
method. We observe that the heterogeneous team slightly outper-
forms the homogeneous against one opponent. From these results
and the experiments from previously discussed research, we ex-
pect that over more generations, the heterogeneous approach has
more chance of evolving be�er individuals compared to the ho-
mogeneous approach. Specializing in one behavioral role showed
slightly be�er performance, in particular against the Gliders team.

4.5 Hybrid GP Method vs. Base Algorithms
In order to make sure that the hybrid GP method works be�er
than the old decision system of MarliK as well as either phase
of the method separately in face-to-face matches, we did another
experiment.

First, the top individual from the last generation of the �rst phase
was chosen as the decision tree of all players in Team A. �en, the
second GP of the hybrid method which had a small population
size and used time-consuming runs of the soccer simulator for
evaluating individuals was executed again, but instead of using the
best individuals from the �rst GP as initial population, a randomly
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Table 4: Performance of hybrid GP method against base al-
gorithms

Tested team Opponent Avg. GF Avg. GA Win %
Hybrid method Old MarliK 1.68 (1.43) 1.56 (1.44) 56%
Hybrid method Team A 1.64 (1.16) 1.44 (0.94) 64%
Hybrid method Team B 5.36 (2.04) 0.00 (0.00) 100%

generated initial population was used and individuals were evolved
for 25 generations (same as it was done in second phase of the
hybrid GP method). �e best individual from the last generation
was used as decision tree of all players in Team B.

We tested the hybrid GP team in face-to-face matches against
previous version of MarliK with the old decision making system,
Team A, and Team B. Results of running 25 games between each
of these teams against the hybrid GP team are shown in Table 4.
�ese results support our previous experiments and ensure be�er
performance of our method’s �nal solution against each of the base
algorithms.

5 CONCLUSIONS AND FUTUREWORK
In this research we proposed and implemented a new hybrid GP
method to improve the decision making of soccer simulation teams.
�e proposed approach consists of two phases each of which tries
to cover the other’s restrictions and limitations. �e �rst phase will
produce some evolved individuals based on a GP algorithm with
an o�-game evaluation system and the second phase uses the best
individuals of the �rst phase as input to run another GP algorithm
to evolve players in the simulated game environment.

To test the method, we used the MarliK team skill set. Our hybrid
GP method improved agent performance as well as the overall team
performance against three other teams. Two of these teams are top
teams from the latest (2016) RoboCup competition and the third
team is the base code that is used by most of the RoboCup teams as
a benchmark. Comparing to previously mentioned work similar to
the second phase of our method, we observed that adding the �rst
phase of GP with its di�erent type of �tness function, improved
overall performance of �nal solutions substantially.

Since evaluations in the second phase of our method are very
time-consuming, we only implemented the method for the kick
decision tree of agents. In future work, the move tree can also be
implemented using the same method.

Another important factor in this research that will a�ect the
results is the opponent team against which the individuals are
evaluated in the second phase. Depending on the behavior and
power of the opponent team, the process of evolution for individuals
might be di�erent. �is can also be investigated in future work to
see how this factor might in�uence the �nal solutions.

Because of the nature of the pass skill function in MarliK, we
only included one pass function in the terminal set of our GP and
let MarliK ’s pass function decide whether to perform a direct pass,
a leading pass, a through pass, or a cross pass. Depending on the
implementation type for pass skills, each type of these passes can
also be used in the function set of both GPs. Moreover, other

predicates might be considered for adding to the function set of
both GPs that will directly a�ect the evolving decision trees.
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