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ABSTRACT
In an evolutionary system, robustness describes the resilience
to mutational and environmental changes, whereas evolv-
ability captures the capability of generating novel and adap-
tive phenotypes. The research literature has not seen an
effective quantification of phenotypic evolvability able to
predict the evolutionary potential of the search for novel
phenotypes. In this study, we propose to characterize the
mutational potential among different phenotypes using the
phenotype network, where vertices are phenotypes and edges
represent mutational connections between them. In the frame-
work of such a network, we quantitatively analyze the evolv-
ability of phenotypes by exploring a number of vertex cen-
trality measures commonly used in complex networks. In
our simulation studies we use a Linear Genetic Program-
ming system and a population of random walkers. Our re-
sults suggest that the weighted eigenvector centrality serves
as the best estimator of phenotypic evolvability.
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1. INTRODUCTION
The representation schemes in both natural and computa-

tional evolutionary systems often possess high redundancy,
i.e. multiple genotypes can map to the same phenotype [13,
15, 23, 26, 27, 28, 29, 35, 42]. The pervasive existence of such
a redundant genotype-to-phenotype mapping, especially in
high-level living organisms, suggests its functional contribu-
tion to adaptive evolution [6, 17, 20, 50].

A redundant genotype-to-phenotype mapping is common
in evolutionary algorithms and allows evolutionary popula-
tions to expand in neutral genotypic regions where muta-
tions to a genotype do not alter the phenotypic outcome.
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Neutral genetic variations by mutation possess the poten-
tial for creating novel phenotypes [26, 46]. They serve as
a staging ground for long-term adaptation and innovation.
Such neutrality provides a buffer against deleterious mu-
tational perturbations, and accumulates genetic variations
that might be non-neutral under changes of the environ-
mental context [9, 10, 23, 27, 45].

Robustness [24, 44] and evolvability [22, 33, 46] are often
discussed to describe the two sides of neutrality. Essentially,
both properties reflect how evolutionary systems respond to
changes. Robustness enables them to remain intact in the
face of deleterious changes, whereas evolvability allows them
to innovate to better fit the survival pressures of the envi-
ronment. At a first glance, these two properties may seem
contradictory, however, numerous theoretical and empirical
studies have reported that robustness and evolvability coop-
erate [24, 49], and robustness, in fact, can facilitate evolv-
ability [6, 8, 9, 10, 11].

Quantitative analysis of robustness and evolvability should
help to better understand the mechanisms of neutrality, and
recently many research studies in the fields of evolutionary
biology [7, 30, 48] and evolutionary computing [13, 19, 36,
37, 51] have addressed this issue. It has been proposed that
the relationship of robustness and evolvability crucially de-
pends on the distribution of genotypic redundancy and the
mutational interconnections among phenotypes. Robustness
promotes high evolvability if genotypic redundancy leads to
more connections to different phenotypes.

Network notions have often been used to model how geno-
typic redundancy is distributed and how different pheno-
types are connected through mutational changes to their un-
derlying genotypes. Genotype networks, a.k.a. neutral net-
works, have been demonstrated to be very useful vehicles
for quantitative studies of robustness and evolvability [34,
39, 47]. In genotype networks, genotypes are represented as
vertices, and reversible mutational connections, as in com-
mon evolutionary systems, are represented as undirected
edges between pairs of genotypes. A genotype network is
comprised of all genotypes that encode for the same pheno-
type. A phenotype network can be constructed by represent-
ing each vertex as a phenotype. Phenotypes are connected
through non-neutral point mutations between their under-
lying genotypes.

In the framework of genotype and phenotype networks,
evolvability can then be quantitatively characterized. Geno-
typic evolvability is often measured as the total number of
different phenotypes that a genotype can access through
single-step mutations [48]. Phenotypic evolvability can be
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measured as the total number of possible phenotypes that
are adjacent to a given phenotype (i.e. via phenotypically-
non-neutral single-point mutations to its underlying geno-
types) [48] or as the diversity of a phenotype’s mutational
connections to other phenotypes [7]. However, both pheno-
typic evolvability measures have been shown to have short-
comings at predicting the capability and efficiency of a phe-
notype finding other novel phenotypes through point mu-
tations [18]. The existing phenotypic evolvability measures
only describe the immediate hops accessing other pheno-
types but fail to predict evolutionary trajectories based on
the global structure of the genotype and phenotype net-
works.

In this study, we propose to use network centrality mea-
sures to quantify phenotypic evolvability in the context of
the phenotype network. Vertex centralities are widely used
in complex and social network analysis to capture the im-
portance of an individual vertex in the global network struc-
ture. They serve as promising candidates for quantifying the
evolvability of a phenotype in the phenotype network. We
adopt a Boolean Linear Genetic Programming (LGP) algo-
rithm as our evolutionary model system, and construct its
phenotype network by sampling the mutational connections
among phenotypes. We explore a number of centrality mea-
sures in this network and test their predictive power with
respect to the evolvability of phenotypes. Using simulations
of a population of random walkers, we observe that weighted
eigenvector centrality outperforms existing evolvability mea-
sures and serves as the best quantification of phenotypic
evolvability among all the studied centrality measures.

2. METHODS

2.1 Linear Genetic Programming System
We use a Linear Genetic Programming (LGP) algorithm

as our artificial evolutionary system for the quantitative
study of phenotypic evolvability. LGP is a branch of Ge-
netic Programming (GP), in the big family of Evolutionary
Computation (EC), where the chromosomal representation
is a set of instructions that are executed sequentially [5].
Although LGP follows a linear instructional structure, it is
very powerful and capable of modeling complex nonlinear
relationships among multiple attributes. LGP is one of the
three generic representatives, i.e., tree, linear, and graph, of
Genetic Programming [1] and has gained increasing popular-
ity due to its fast speed of program execution and individual
evaluation [4, 14, 41].

In this study, we consider a three-input, one-output Boolean
function modeling problem. Each LGP instruction is com-
prised of one return, two operands, and one Boolean opera-
tor producing the return value from the operands. Registers
R1, R2, and R3 store the three Boolean input values. Register
R0 takes a default initial Boolean value and its final value af-
ter the execution of all instructions is returned as the LGP
program’s output. To enhance the computational capacity
of LGP programs, we add an extra calculation register R4.
Calculation registers R0 and R4 can serve as both return or
operands, whereas input registers R1, R2, and R3 are read-
only and can only serve as operands such that their input
contents are protected from overwriting. The Boolean op-
erator in each LGP instruction is chosen from a pre-defined
operator set opr. An example Boolean LGP program with
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Figure 1: Schematic graph of a phenotype network.
Vertices represent phenotypes. An edge connects
two phenotypes if they have at least one pair of geno-
types that can be traversed from one to the other
through one single-point mutation (a single change
to any of the four elements of an LGP instruction).
Edges can have varying weights, indicating the total
number of single-point mutations that can change
genotypes of one phenotype to the other.

a length L = 3 is given below.

R4 = R2 AND R3

R0 = R1 OR R4

R0 = R3 NAND R0

A single-point mutation alters one of the four element/locus
of an instruction in a LGP program. A mutation point will
be chosen and a replacing allele will be decided randomly
and uniformly from the set of all possible alleles at each
locus.

2.2 Genotype and Phenotype
We consider each LGP program with a unique represen-

tation as a genotype. Since the two calculation registers can
be used as return and all five registers can serve as operands,
the total number of unique instructions is 2× 5× 5× |opr|,
where |opr| is the number of Boolean operators in the oper-
ator set opr. The total number of possible genotypes is thus
calculated as

∑
i (50× |opr|)Li , i.e. the sum of all possible

combinations of Li instructions. This number increases ex-
ponentially with the program length L and quickly reaches
large magnitudes with common LGP program length set-
tings.

For our LGP system, we define the three-input, one-output
Boolean function f : B3 → B, where B = {TRUE, FALSE},
represented by a LGP program as its phenotype. The total

number of possible phenotypes is thus 223 = 256.
Similar to many GP and EA algorithms, our LGP sys-

tem has a highly redundant genotype-to-phenotype map-
ping, i.e. there are many unique genotypes which map to
the same phenotype. We define the genotypic redundancy
of a phenotype as the total number of its underlying geno-
types. A phenotype with a high genotypic redundancy is
considered over-represented, and a phenotype with a low
genotypic redundancy is under-represented [37].

2.3 Phenotype Network
Network methods are powerful tools in modeling entities

and their complex relationships, and have seen numerous ap-
plications in a variety of areas including engineering, social
sciences, and biology [32]. We use the notion of a pheno-
type network to depict the distribution of mutational con-
nections among phenotypes. Those mutational connections
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reflect the potential for moving from one phenotype to an-
other. Thus the phenotype network can provide important
insights into the dynamics of a search for novel phenotypes
in an evolutionary system.

Figure 1 shows a schematic representation of a phenotype
network. Each vertex is an unique phenotype, and two phe-
notypes are connected by an edge if they have at least one
pair of genotypes that can be traversed from one to the other
through a single-point mutation. The amount of all possible
single-point mutations from one phenotype to another can
be captured using the weight of an edge.

With compact evolutionary systems where all genotypes
and phenotypes can be efficiently characterized, a phenotype
network can be constructed using exhaustive enumeration of
all mutational transitions among genotypes and phenotypes.
However, for common GP or EC instances, the genotype and
phenotype spaces are either infinite or simply too large to
apply exhaustive enumeration.

In such cases, the sampling of random mutations can be
used to estimate the genotypic redundancy of phenotypes
and the mutational connections among them. Random sam-
pling of a large number of genotypes can generate a good es-
timate of the distribution of genotypic redundancies among
different phenotypes. In addition, allowing a large popula-
tion of random walkers to explore the genotype and phe-
notype spaces and tracking every step of their single-point
mutational trajectories can be used to sample the mutational
connectivity among phenotypes.

2.4 Vertex Centralities
A phenotype network provides a global picture of how

phenotypes are connected through single-point mutations.
In such a framework, the evolvability of a phenotype, i.e. the
innovative capability of finding novel phenotypes, can be
quantitatively captured by the importance measures of in-
dividual vertices in the network.

When studying a network, it is often useful to measure the
contribution of individual vertices to the network. There
have been a number of such metrics from social network
analysis. We introduce a number of such centrality mea-
surements, and explore their applicability for quantifying
phenotypic evolvability. Consider a network G = (V,E) and
its adjacency matrix A.

1. Degree centrality — The degree centrality of a ver-
tex is simply its degree. Intuitively, the more neighbors
a vertex has, the more influence it may have in the net-
work. This assumes that all neighbors are considered
equally important. Formally, if we use 1 to denote the
column vector {1, 1, 1, . . . , 1}, the degree centrality of
the vertices in the graph is the vector A · 1.

2. Betweenness centrality — The betweenness cen-
trality quantifies the number of times a vertex v is part
of the shortest path between any pair of vertices [12],

represented as
∑
s6=v 6=t∈V

σst(v)
σst

, where σst is the to-
tal number of shortest paths from vertex s to vertex
t and σst(v) is the number of those paths that pass
through vertex v. Betweenness captures how impor-
tant a given vertex is for the connectivity of all other
pairs of vertices.

3. Closeness centrality — The closeness centrality is
denoted as 1∑

j 6=i dij
of a vertex i, where dij is the dis-

Table 1: LGP simulation configuration
Program length 2 ∼ 5 instructions
Input registers R1, R2, R3
Initial default register value FALSE

Calculation registers R0(output), R4
Operator set (opr) AND, OR, NAND, NOR
Total genotype samples one billion
Ensemble of random walkers one million
Number of random walk steps one thousand

tance, i.e. the shortest path, between vertices i and
j [2, 38]. Closeness centrality describes how easily a
given vertex can reach all other vertices. A higher
closeness centrality indicates a more central position
of a vertex in the network.

4. Eigenvector centrality — It would make sense to
give greater weight to a more important neighbor when
calculating the centrality of a vertex. Specifically, the
centrality of a vertex is proportional to the sum of the
centrality of its neighbors. Hence, if the centrality of
the vertices of the network is denoted as a positive real
column vector x, it should satisfy

Ax = cx,

for some constant c [3, 21]. That is, the relative values
of the centrality across the network do not change after
the incorporation of the neighbors’ centrality. It turns
out that this eigenvector centrality is always propor-
tional to the leading eigenvector of A. Note that the
eigenvector centrality can also be defined iteratively
from an “initial guess”. In this case, after a sufficient
number of iterations, the centrality thus defined always
converges to the same leading eigenvector of A. As a
result, eigenvector centrality of a vertex is large either
because it has a large number of neighbors or because
it has “important” neighbors, or both.

The above centrality measures are discussed in the con-
text of undirected networks. They can be applied to both
unweighted and weighted networks. Their applications to
weighted networks with slight modifications can be found
in [25, 31].

3. RESULTS
In this section, we first discuss the genotype and pheno-

type spaces of our example LGP system. Then we present
the phenotype network of the LGP system and characterize
its network properties. Last, we explore various vertex cen-
trality measures for the quantification of phenotypic evolv-
ability, and validate them through predictions of the mean
waiting time searching for a predefined target phenotype us-
ing an ensemble of simulated random walks.

3.1 Genotype and Phenotype Space
In our simulation, programs of variable lengths are con-

sidered, from a minimum of two instructions to a maxi-
mum of five. The operator set opr includes four funda-
mental Boolean functions AND, OR, NAND, and NOR. Table 1
shows the detailed configuration of our LGP system. In
our configuration, there are 200 unique LGP instructions,
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Figure 2: Distribution of phenotype’s redundancies.
The genotypic redundancy of a phenotype is the per-
centage of the total one billion sampled genotypes
that map to it.

Table 2: Phenotype network properties
Number of non-isolated vertices 236
Number of edges 10353
Connected components 1
Network diameter 4
Network centralization 0.546
Average vertex degree 87.737
Clustering coefficient 0.717

thus the total number of genotypes of our LGP system is
2002 + 2003 + 2004 + 2005 > 3.2 × 1011, a highly redun-
dant mapping to 256 phenotypes. Although this genotype
space is finite, such a size renders exhaustive enumeration
computationally infeasible.

One billion genotypes are randomly generated to sample
the genotype space. Their phenotypes are computed such
that the genotypic redundancy, i.e., the percentage of total
underlying genotypes, of each phenotype can be estimated.
Figure 2 shows the distribution of phenotype’s redundancies.
It is a highly heterogenous distribution with the most redun-
dant phenotype 255 (numbered using the decimal value of
its 8-bit binary output string for the permutation of all eight
possible three-bit inputs) having 23% of the total one billion
sampled genotypes and nine phenotypes having zero sam-
ples. Such heterogeneity of genotypic redundancy demon-
strates that an evolutionary search for desired phenotypes
crucially depends on which phenotypes are used as starting
nodes and which phenotype are chosen as the target node.
It also suggests the limitation of purely statistical consider-
ations, as a number of phenotypes are plainly invisible.

3.2 Boolean LGP Phenotype Network
To estimate the mutational connectivity among various

phenotypes, we use an ensemble of one million randomly ini-
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p
ro

p
o

rt
io

n

0 50 100 150 200

0.000

0.002

0.004

0.006

0.008

0.010

Figure 3: Distribution of vertex degree in the phe-
notype network. Histograms show the proportions
of vertices in the network and the blue curve repre-
sents the best fitting density function.

tialized LGP programs and allow them to take one-thousand-
step random walks in the genotype space. For each random
walker, we record its visit to different phenotypes at any
single step along its trajectory, and use the trajectories of
all random walkers to estimate the mutational connectivity
between any pair of different phenotypes.

Then we construct the approximate phenotype network of
our LGP system with vertices representing 256 different phe-
notypes and edges connecting pairs of them if there exist at
least one single-point mutation that can transfer genotypes
from one phenotype to another. Edges are weighted using
the total number of such single-point mutations.

Table 2 describes the properties of the Boolean LGP phe-
notype network. There are 236 non-isolated vertices, mean-
ing that 20, i.e. 256 − 236, phenotypes are never visited by
any random walker. The network is comprised of only one
giant component and is highly connected with a total num-
ber of 10353 edges. The network has a diameter of four,
suggesting that any pair of the 236 phenotypes can be tra-
versed from one to the other by at most four single-point
mutations. The metric of network centralization measures
relative differences among the centralities of all vertices in a
network. An extreme value of zero suggests that all vertices
in a network are equally central, whereas a value of one sug-
gests that one vertex has maximal centrality and all others
have minimal centrality. Our phenotype network has a cen-
tralization of 0.546, suggesting that there are many vertices
that are more central than the rest. On average, in the net-
work each vertex has 87.737 directly connected neighbors.
The network also exhibits a “small world” property with a
clustering coefficient 0.717, meaning that for most vertices,
their neighbors are also connected.

The vertex degree distribution of the LGP phenotype net-
work is shown in Figure 3. The degree distribution possesses
a bi-modal shape, indicating that the network has a two-ring
structure with a dense core and a thick peripheral.
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Figure 4: Vertex degree in relation to correspond-
ing phenotype’s genotypic redundancy. Each data
point represents one phenotype and shows the rela-
tion of its degree in the phenotype network and its
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Figure 4 shows the correlation of vertex degree and phe-
notype redundancy. Each data point represents one phe-
notype, and it depicts its vertex degree in the phenotype
network and its genotypic redundancy. There is a strong
and positive correlation (Spearman’s rank correlation ρ =
0.9799, p < 10−16), which suggests that, in general, pheno-
types comprised of more genotypes tend to be able to reach
more other phenotypes through single-point mutations.

3.3 Quantification of Phenotypic Evolvability
Using the framework of phenotype network, we compute

vertex centrality measures for all phenotypes, including be-
tweenness, closeness, degree, and eigenvector centralities in
both unweighed and weighted scenarios, and test them as
quantification measures of how evolvable a phenotype is.
The Cytoscape [40] software and its embedded extension
app CytoCNA [43] are used for centrality computation.

We set a fixed target phenotype and use a population of
ten thousand randomly generated LGP programs to see how
many steps it does take for genotypes from a specific phe-
notype to reach the target phenotype. Only single-point
mutations are allowed and the maximum evolution time is
limited to one million steps. The mean waiting time of phe-

notype p finding the target is calculated as
∑
ψ(gi)=p

t(gi)

|gi|ψ(gi)=p
,

where ψ maps a genotype to a phenotype, {gi|ψ(gi) = p}
represents all the genotypes of phenotype p, and t(gi) is the
number of steps that a genotype gi takes to find the target
phenotype. The initial population is comprised of randomly
generated LGP programs belonging to various phenotypes.
A mean waiting time finding the target can be estimated for
each of those phenotypes. The hypothesis is that the more
evolvable the starting phenotype, the less time it will take
to find the target. Note, however, that there is no fitness
currently guiding the path formation.
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Figure 5: Spearman’s rank correlation of mean wait-
ing time finding a target and the centrality mea-
sures of the starting phenotypes. The notation
“ w” means the application of centrality measures
in weighted-network scenarios. Random walkers
are genotypes randomly initialized and are classi-
fied based on their phenotypes. The total number of
steps that a random walker takes to reach the target
phenotype is recorded as its waiting time. The mean
waiting time of a phenotype is the average waiting
time of all its sampled underlying genotypes in the
initial population.

We conduct two sets of evolution simulations with two
different target phenotypes, namely phenotype 3 (genotypic
redundancy 0.023, vertex degree 163) and phenotype 15
(genotypic redundancy 0.047, vertex degree 188). In both
simulation sets, the mean waiting time of all starting phe-
notypes is calculated, and is used to evaluate how well the
centrality measures can predict the evolvability of pheno-
types. We perform Spearman’s rank correlation test on the
mean waiting time and centralities of each starting pheno-
type. Correlation coefficients ρ are shown in Figure 5, where
only significant correlations (p < 0.05) are reported.

Centrality measurements are found to be negatively corre-
lated with mean waiting time, implying that the more cen-
tral a starting phenotype is in the phenotype network, the
less time it takes to find the target, i.e. the more evolvable it
is. The weighted centrality measures in general have better
prediction power on how evolvable a phenotype is, except for
the weighted betweenness centrality where no significant cor-
relations are seen for both target settings. The best predict-
ing measure turns out to be the weighted eigenvector central-
ity. The correlation of weighted eigenvector centrality and
mean waiting time is highly significant (p = 8.77× 10−5 for
scenario using phenotype 3 as target, and p = 2.092× 10−5

for using phenotype 15 as target).
In addition, weighted eigenvector centrality is positively

correlated with the genotypic redundancy of the correspond-
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Figure 6: Weighted eigenvector centrality in relation
to phenotype redundancy. Each data point is one
phenotype and shows the weighted eigenvector cen-
trality and the genotypic redundancy of the corre-
sponding phenotype. A log-log scale is shown based
on the best least-square regression fit.

ing phenotype. As shown in Figure 6, these two metrics have
a power-law relationship, meaning that the best least-square
regression fit (Pearson’s correlation R2=0.966, p � 10−10)
is with a log-log scale. This observation implies that in our
LGP system, phenotypes with more underlying genotypes
tend to take more central positions in the phenotype net-
work. Although such a positive power-law correlation ex-
ists between a phenotype’s genotypic redundancy and the
best evolvability estimator, i.e. weighted eigenvector central-
ity, the redundancy itself does not serve as the best predic-
tor on the mean waiting time (Spearman’s rank correlation
ρ = −0.353 and ρ = −0.372 for the two target phenotype
settings respectively).

4. DISCUSSION
The redundancy in the mapping from genotype to pheno-

type is hypothesized as a mechanism to have resulted from
adaptive evolution itself. Such a redundant mapping en-
ables neutrality where mutations can appear neutral and do
not alter the phenotypic outcome. Neutrality improves the
robustness of evolutionary systems against random pertur-
bations, as well as aggregates genetic variations that make
evolutionary systems more evolvable generating novel adap-
tive phenotypes. Quantitative analysis of robustness and
evolvability helps to elucidate the complex relationship of
these two, and to understand core mechanisms of evolution.

Robustness and evolvability can correlate very differently
at the genotypic and phenotypic levels, and thus their quan-
titative analysis should be separated as well. Quantitative
measurements of genotypic and phenotypic robustness and
evolvability have been proposed in empirical studies. How-
ever, phenotypic evolvability quantification using the vertex
degree in the phenotype network [48] can be very limited for
predicting the long-term evolutionary trajectory.

In this contribution, we propose to measure evolvability of
phenotypes using vertex centralities in the phenotype net-
work. We adopted a three-input, one-output Boolean LGP
system as our evolutionary model system, and character-
ized its genotype and phenotype spaces using random sam-
pling and random walks. We constructed the phenotype
network and explored a number vertex centrality measures,
commonly used in social network analysis, as quantification
of phenotypic evolvability. The results of our simulation
studies suggest that more sophisticated centrality measures,
which consider the importance of a vertex on not only how
many neighbors it has but also how important those neigh-
bors are, better predict the long-term evolutionary capabil-
ities of phenotypes. Among them, the weighted eigenvec-
tor centrality serves as the best quantification of phenotypic
evolvability.

The predictive power of even the best centrality measure
is still not strong (correlation coefficient −0.5 < ρ < −0.4).
This suggests that there might be other confounding ele-
ments that can affect the search for novel phenotypes from
a given starting phenotype. While phenotypes are compared
and evaluated for adaptivity, genetic changes like point mu-
tations applied here occur at the genotypic level. We have
also seen that the distribution of genotypic mutational po-
tential within phenotypes is highly heterogeneous. Robust
genotypes are visited more frequently by an evolutionary
population and their mutational biases can substantially in-
fluence phenotypic search [19]. This has not been incorpo-
rated in the evolvability measurement, and will be our next
research objective.

In future studies, we also would like to include fitness in
our evolutionary model. With fitness-based selection consid-
ered, single-point mutations will no longer be reversible, and
thus the phenotype network becomes directed. As shown
in our previous research [19], introducing fitness alters the
structure and connectivity of genotype and phenotype net-
works significantly and invalidates many correlations of geno-
typic and phenotypic properties. This certainly will add
more complexity to the network analysis, but will better
simulate the scenarios in living organisms and evolutionary
algorithms.

Moreover, the phenotype network is well connected in our
example LGP system, and it is interesting to analyze other
problem instances with less a connectivity, meaning that
some phenotypes may be very difficult to reach through mu-
tations. We expect that the centrality measures may provide
an improved prediction power in such a scenario.

Further inquiries are also necessary to make centrality
measures applicable in real search processes where the geno-
type and phenotype networks are constantly increasing in
size and where iterative methods might be required to cal-
culate approximate evolvability measures.

Last, most robustness and evolvability studies focus on
point mutation, however, other forms of genetic changes
such as recombination and gene duplication could play an
important role linking genotypes as well. We have conducted
preliminary investigations on recombinational robustness and
evolvability [16, 17], and expect to include more analysis on
recombination or gene duplication in future studies.

This line of research serves as simulation studies on evo-
lution theories, and ultimately should inspire more sophisti-
cated and evolvable evolutionary algorithms.
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