
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Fitness Landscape Optimization Makes Stochastic
Symbolic Search By Genetic Programming Easier

Zhixing Huang ID 1, Yi Mei ID 1, Senior Member, IEEE,

Fangfang Zhang ID 1, Member, IEEE, Mengjie Zhang ID 1, Fellow, IEEE

Wolfgang Banzhaf ID 2, Member, IEEE

Abstract—Searching for symbolic models plays an important
role in a wide range of domains such as neural architecture
search and automatic program synthesis. Genetic programming
is a promising stochastic method for searching effective symbolic
models within an acceptable time. The genetic programming
performance is closely related to the hardness of the fitness
landscape. A better fitness landscape with less local optima
normally implies that it is easier to search for better solutions.
In recent years, there have been many studies enhancing genetic
programming performance by forming better fitness landscapes.
However, the better design of the fitness landscape highly relies
on specific domain knowledge and consumes a lot of expert
effort. This paper proposes a fitness landscape optimization
method to automatically design better fitness landscapes for
genetic programming search than the manually designed ones.
We optimize the landscapes by optimizing the neighborhood
structures of symbolic solutions. We verify the effectiveness of the
proposed method in both supervised learning and combinatorial
optimization problems. The results show that the proposed
method significantly reduces the hardness of fitness landscapes.
By simply searching against the automatically optimized fitness
landscapes, a genetic programming method can have a very
competitive performance with state-of-the-art methods.

Index Terms—Fitness landscape, neighborhood structure,
stochastic symbolic search, genetic programming.

I. INTRODUCTION

Searching for symbolic solutions is the core optimization
process in many artificial intelligence tasks such as neural
architecture search [1], digital circuit design [2], and program
synthesis [3]. Searching for symbolic solutions is vastly differ-
ent from searching for numerical solutions. For example, there
is a set of syntax rules for defining symbol combinations or
topological structures, which leads to irregular search spaces.
The physical meanings of similar symbol solutions are greatly
different from each other, which leads to a weak causality be-
tween symbolic solutions and their behaviors. These distinctive
features make symbolic search a challenging task. In practice,
the search space for symbolic solutions is tremendously large,
and we often lack a clear insight into effective symbolic

The authors are with 1 the Centre for Data Science and
Artificial Intelligence & School of Engineering and Computer
Science, Victoria University of Wellington, Wellington 6140, New
Zealand (E-mail: zhixing.huang@ecs.vuw.ac.nz; yi.mei@ecs.vuw.ac.nz;
fangfang.zhang@ecs.vuw.ac.nz; mengjie.zhang@ecs.vuw.ac.nz), and
2Department of Computer Science and Engineering, BEACON Center
for the Study of Evolution in Action, and Ecology, Evolution and Behavior
Program, Michigan State University, East Lansing, MI 48864, USA (E-mail:
banzhafw@msu.edu).

solutions. Therefore, we have to stochastically search for
possible solutions, hoping to find effective feasible ones in
a reasonable time, that is, stochastic symbolic search.

Each stochastic symbolic search problem has a fitness
landscape (FL). An FL is a surface that reflects the fitness
of all the possible solutions in a search space [4]. An FL
with less local optima (e.g., an unimodal landscape) normally
implies an easier symbolic search problem. For example,
with a less-local-optima FL, a simple iterative local search
can outperform well-designed metaheuristic methods in some
neural architecture search problems [5]. An FL consists of
three components: fitness function, solution space, and the
neighborhood structure of solutions [6]. A fitness function
measures the effectiveness and quality of all the possible
solutions, the possible solutions constitute the solution space,
and the neighborhood structure defines the neighbors of each
solution. However, the FLs of symbolic search problems are
normally extremely rugged because of the low causality among
symbolic solutions (i.e., a small change in a computer program
might lead to a huge change in the final output). Rugged FLs
make symbolic search very challenging.

Genetic programming (GP) is a typical evolutionary com-
putation method that searches for symbolic solutions [7].
GP evolves a population of variable-length individuals. Each
individual represents a symbolic solution such as a computer
program or a mathematical formula. GP directly searches
symbol combinations and their topological structures, which
essentially define the search space and neighborhood structures
of FLs. Applying GP to search symbolic solutions has attracted
many research interests [8], [9] and has been extended to
various applications, such as image classification [10], [11],
regression [12], [13], and dynamic combinatorial optimization
problems [14].

In recent years, some advanced techniques have enhanced
GP performance in searching symbolic solutions by essen-
tially designing better FLs. For example, multitask GP [15]
helps GP jump out from local optima by cooperating with
similar landscapes. Feature selection [16] and frequency-based
operators [17] change the neighborhood structures (e.g., one-
hop mutation) so that GP prefers particular neighbors with
a large number of certain features. However, these manually
enhanced fitness landscapes need very specific domain knowl-
edge and strong assumptions. For example, in multitask GP,
one has to find two (or more) correlated tasks whose fitness
landscapes are synergic. In frequency-based mutation, users

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9560-3020
https://orcid.org/0000-0003-0682-1363
https://orcid.org/0000-0001-5516-3972
https://orcid.org/0000-0003-4463-9538
https://orcid.org/0000-0002-6382-3245

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

have to assume that the effective solutions include an effective
primitive multiple times, which might not be the case in some
applications (e.g., in program synthesis, a program repeats a
primitive by looping [18]). It is tedious for human experts to
design better FLs.

Regarding the performance gain brought by better fitness
landscapes, one question naturally comes to mind: could we
find better fitness landscapes for GP automatically, rather than
manually designing them?

To answer this research question, this paper proposes a
fitness landscape optimization (FLO) method that aggregates
good GP solutions on the landscape by changing symbol
indices. The paper takes linear genetic programming (LGP) as
an example to verify the effectiveness of the proposed method
since the linear representation of LGP is straightforward for
demonstrating FLO. To the best of our knowledge, this paper
is the first attempt to explicitly optimize FLs for symbolic
search.

II. BACKGROUND

A. Problem Definition of Stochastic Symbolic Search

A stochastic symbolic search problem consists of a search
space S and a fitness function F . The search space S is defined
by S = {S, T }m where S defines a set of available symbols,
T defines a set of syntax rules, and m is the maximum size of
a GP solution. The GP search problem is to find the optimal
GP solution g∗ ∈ S so that F is optimized. Supposing F is a
minimizing problem, then we have

g∗ = argmin
g∈S

F(g).

GP searches possible solutions in S based on a certain
order. The one-hop movement from one solution to another
defines the neighborhood structure ν for a GP solution. ν
is essentially a distance measure ⊖ between solutions (e.g.,
editing distance). In other words, solutions gi and gj are
neighbors if gi ⊖ gj ≤ ϵ, where ϵ is the threshold of a
neighborhood. The fitness function F , the search space S, and
the neighborhood structure ν constitute the fitness landscape
L of a symbolic search problem L = {F ,S, ν}.

B. Fitness Landscape in Genetic Programming

An FL is an important perspective for understanding the
hardness of symbolic search problems. To investigate FLs,
we have to define specific solution spaces and neighborhood
structures. Given that this paper takes LGP as a case study,
this subsection discusses existing studies of FLs in GP, which
mainly focus on developing metrics to analyze the hardness
of FLs and describe FL properties. In the experiments, we
will apply the common metrics mentioned in this section to
measure the hardness of optimized FLs.

Fitness distance correlation (FDC) is a representative of FL
metrics. FDC measures the problem hardness by estimating
the correlation between the distance and the fitness difference
from global optima [19]. On an easy landscape, solutions are
supposed to have better fitness when they are closer to known
global optima, which means the fitness has a high correlation

with the distance to the optimal solutions. Otherwise, the land-
scape is misleading. Normally, FDC divides the hardness of a
search problem into three levels (suppose it is a minimizing
problem) [20]:

1) An easy (or straightforward) fitness landscape: FDC>
0.15, and FDC= 1 is the ideal case.

2) A deceptive (or unknown) fitness landscape:
0.15 >FDC> −0.15

3) A misleading fitness landscape: FDC< −0.15.
FDC has been shown to be a reliable FL metric of GP [21]–
[25] and an effective way to analyze parameter configurations
[26].

The local optima network is an FL analysis tool that
enumerates all possible solutions in the search space to identify
the local optima and their transitions [27], [28]. The local
optima network visualizes an FL by a graph, in which vertices
represent the local optima in the search space, and edges
represent transitions (and their probability) between vertices.
The characteristics of the graph such as the number of vertices
and edges, and the cliquishness of a cluster (i.e., a connected
sub-graph) show the characteristics of the FL (e.g., the con-
nectivity of local optima and their distributions). For example,
Ðurasevic et al. [29] used the local optima network to analyze
the effectiveness of different configurations of dimensionally-
aware GP, and He and Neri [30] used the local optima to show
the distribution of local optima.

However, it is infeasible to identify the global optima of
problems with large search spaces in practice [31], [32]. To
understand the FLs of GP benchmarks with large search
spaces, existing studies developed several FL metrics based
on the neighborhood of sampled solutions (i.e., neighborhood-
based metrics).

Negative scope coefficient (NSC) is a neighborhood-based
metric that measures the degree of “bad evolvability” (i.e.,
moving from good solutions to poor solutions) [33]. NSC first
identifies the fitness cloud based on the fitness of sampled
solutions and their neighbors [34]. The abscissas of the fitness
cloud are the fitnesses of sampled solutions, and the ordinates
of the fitness cloud are the fitnesses of their neighbors. Then,
NSC partitions the fitness cloud into segments [35]. NSC
gets the negative slopes among the mean values of segment
abscissas and ordinates as its result. Normally, NSC is less than
zero, and its absolute value indicates the degree of hardness
of a problem.

Hu et al. [36]–[39] analyzed FLs of GP based on robustness,
evolvability, and accessibility at three levels: genotypes, phe-
notypes, and fitness. Specifically, genotypic robustness indi-
cates the fraction of neutral moves1 caused by point mutations
for a given genotype, genotypic (or a phenotype) evolvability
indicates the proportion of non-neutral moves from a given
genotype, and phenotypic accessibility indicates the propensity
of mutating into a certain phenotype. Their results imply that
robustness and evolvability are negatively correlated at the

1A neutral move is a movement between two solutions with the same
fitness on FLs. A non-neutral move is a movement between two solutions
with different fitnesses. Specifically, moving toward better fitness is known
as “contributive move”, and moving toward worse fitness is known as
“destructive move”.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

genotypic level. Robust genotypes are normally hard to move
into genotypes with another phenotype by a point mutation.
Galván-López et al. [40] proposed to use locality [41] to
measure the consistency between genotypic and phenotypic
neighborhood structures. They assume that an FL with better
consistency between genotypic and phenotypic neighborhood
structures is easier for GP to search.

To sample solutions from FLs, several metrics perform a
random walk on FLs. For example, Kinnear [4] used a land-
scape autocorrelation to measure the correlation of fitness over
the random walk on an FL. Slaný and Sekanina [42] proposed
two quantity metrics for ruggedness and smoothness based on
the entropy of fitness over the random walk. However, these
random walk-based metrics are not accurate enough to predict
algorithm performance since in many problems they are highly
dependent on the starting point of walking and it is difficult
to perform importance sampling (more weight to sample good
solutions) [6].

C. Improving Fitness Landscapes in Genetic Programming

Although very few studies explicitly optimize GP’s FLs,
many existing GP studies are essentially improving the FLs.
To illustrate this idea, this subsection discusses example GP
studies from the perspective of the three components of FLs.

1) Fitness Functions: The fitness function is a very
problem-specific component in FLs. In symbolic regression
problems, root mean square error is one of the common
fitness functions to indicate GP’s approximation performance.
However, the root mean square error only considers pair-
wise errors in training data but does not consider the data
distribution. To encourage GP to produce more concise and
less overfit solutions, Haut et al. [43] proposed to use R2,
a measure of correlation coefficient, as the fitness function
when training GP for symbolic regression tasks. Chen et al.
[44] further verified the effectiveness of applying linear scaling
with R2 in GP for symbolic regression tasks.

Designing better fitness functions for a specific domain is
non-trivial and tedious. To construct better fitness functions for
a wider range of applications, multitask GP simultaneously
optimizes several similar tasks, expecting that these similar
tasks have synergistic fitness functions. Multitask GP has
shown great potential in combinatorial optimization problems
[15], [45] and classification problems [46], [47]. From a
broader perspective, since fitness functions exert evolutionary
pressure on GP by selection operators, advancing selection
operators is an alternative way to improve fitness functions of
GP [48], [49].

2) Solution Spaces: Each GP individual is a solution,
and GP representations directly determine the solution space.
There have been many GP representations [50]–[52]. For
example, with the same primitive set, tree-based and linear
representations have very different solution spaces because
of the different topological structures of primitives [7], [53].
These representations have pros and cons for different prob-
lems [54]. Tree-based GP is good at parallelizing building
block computation, while LGP is good at reusing building
blocks. To reduce redundant solutions from solution spaces,

R[1] = x1 × x0

R[0] = R[1] − x0

R[0] = R[0] + R[0]

LGP individual

f(x0, x1)=2(x0x1 – x0)

Mathematic
model

Fig. 1. An example LGP individual with three instructions.

existing studies also apply feature selection [16], [55] and
grammar-guided techniques [56]–[58] to GP solution spaces.

3) Neighborhood Structures: Neighborhood structures de-
fine the neighborhood relationship among solutions. The
neighborhood structures of existing GP methods are essentially
genetic operators. Two neighboring GP solutions can reach
each other by performing the genetic operator once. There are
a huge number of existing studies proposing various genetic
operators for GP based on different levels of information, such
as the genotype-based [17], phenotype-based [59]–[61], and
semantics-based [62], [63].

However, the performance of these genetic operators is
limited by the “many-to-one” mapping (e.g., multiple geno-
types map to one phenotype, and multiple phenotypes map
to one semantics). The “many-to-one” mapping prevents GP
from straightforwardly searching the solution space. In other
words, it is uneasy for GP to identify a corresponding symbolic
solution even when it has higher-level information (e.g., phe-
notypes and semantics). Moreover, designing genetic operators
based on these levels of information needs a lot of domain
knowledge and manual tuning. It is hard and expensive to
refine FLs and extend these improvements to other domains.

D. Linear Genetic Programming

This paper takes LGP [53] as an example GP method
to demonstrate the proposed FLO method. LGP represents
symbolic solutions in the form of assembly programs. Each
LGP individual is a sequence of register-based instructions.
Fig. 1 shows an example of LGP individuals with three instruc-
tions, representing a mathematical formula 2(x0x1−x0). LGP
first initializes registers by certain values (e.g., 1 in symbolic
regression and low-level heuristic values in DJSS [54]). LGP
sequentially executes the instructions to represent a computer
program. The first register “R[0]” outputs the program result
by default. Each instruction consists of four components, a
destination register, a function, and two source registers. The
function accepts the values in source registers as inputs and
outputs the result to the destination register. LGP applies micro
and macro mutation, and linear crossover to produce offspring.
Specifically, micro mutation produces offspring by changing
primitives in existing instructions, macro mutation by inserting
or removing instructions, and linear crossover by swapping
instruction segments over two LGP individuals.

Because of the use of registers, LGP naturally reuses
intermediate results, which was shown to be effective in
practice [54], [64]. In this paper, the linear representation of
LGP individuals greatly facilitates our indexing of symbols
and solutions by treating instructions as symbols and an
LGP program as a symbolic solution. Theoretically, FLO is
applicable to any GP representation that can be represented as

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

a list of symbols, among which the LGP representation is the
most straightforward choice for this study.

III. FITNESS LANDSCAPE OPTIMIZATION

A. Main Idea

The main idea of fitness landscape optimization is to first
index symbols into integers, and second to optimize the fitness
landscape based on such symbol indices. We optimize the
fitness landscape by rearranging the neighbors of symbolic so-
lutions, i.e., by changing the indices of symbols. We do not op-
timize the fitness function or the solution space here since they
are usually given by specific problems. Our method is generic
for stochastic symbolic search methods whose solutions are
represented as a list of symbols (e.g., assembly programs).
Each symbol has a unique index, and each symbolic model
is a vector of indices. Unlike existing GP studies that define
neighborhoods based on genetic operators (e.g., crossover and
mutation), we define the neighborhood structures of symbolic
solutions based on the Euclidean distance of the index vectors.

We ordinally denote the indices of symbols as I =
[I1, I2, ..., Il, ..., In]T where n is the number of symbols. We
define an optimization objective function F (I) for the fitness
landscape. FLO is essentially an optimization problem

I∗ = argmin
I

F (I).

The main goal of the objective F (I) is to minimize the dis-
tance between good solutions, maximize the distance between
good and poor solutions, and encourage the optimized indices
to be consistent with domain knowledge. By this means, the
number of local optima between global optima would be
reduced, and the FL becomes less rugged. The symbol indices
I represent a solution Gi by a mapping matrix θi, Gi = θiI,
where

Gi = [Gi1, Gi2, ..., Gik, ..., Gim]
T
.

Gi is an ordinal encoding for a symbolic solution.

θi = Rm×n =

θi1
θi2
...

θim

 =

θi,1,1 θi,1,2 · · · θi,1,n

θi,2,1
. . .

...
... θi,k,l

...
θi,m,1 · · · · · · θi,m,n

 ,

where m(m ≥ 1) is the maximum length of Gi. Each row of
θi has at most one “1”, and the rest of its elements are “0”
(i.e., θik is one-hot encoding). Since symbolic solutions might
not have the maximum length m, Gi uses a placeholder “−1”
to index those empty symbols.

To illustrate the idea, Fig. 2 shows a simple example of
FLO. Suppose there are 12 possible symbols, denoted from
A to L. These symbols are indexed by 0 to 11 initially
(i.e., I = [0, 1, ..., 11]

T). For the sake of simplicity, in this
example, each program in the search space has one symbol
(i.e., m = 1). We thus have 12 unique programs, denoted from
G1 to G12. Specifically, G1 = [0], G2 = [1], G3 = [2], etc.
We define the neighborhood structure as a Euclidean distance
||Gi − Gj ||2 ≤ 1, i, j ∈ {1, 2, ..., 12}. Fig. 2-(a) shows the
initial FL of these programs. We can see that the initial FL
is rugged. There are two optimal programs (supposing it is a

I = [0,1,2,3,4,5,6,7,8,9,10,11]T I = [3,2,0,1,10,11,5,6,7,8,9,4]T

(a) (b)

G3 G4 G2 G1 G1
2
G7 G8 G9 G1

0
G1
1
G5 G6

2

3

4

5

6

7

Fi
tn

es
s

Program

A B C D E F G H I J K L A B C D E F G H I J K LSymbols Symbols

G1 G2 G3 G4 G5 G6 G7 G8 G9 G1
0
G1
1
G1
2

2

3

4

5

6

7

F
itn

es
s

Program

Fig. 2. A simple example of FLO. (a) the initial FL is rugged; (b) the
optimized FL is cone-like. By optimizing the indices of symbols that lead to
different neighbors for each solution, we make the FL easier to search.

Collect GP solutions
from the population

Evaluate F(I)

Are
stopping criteria

satisfied?

Output I

YES

NO

LGP population
Initialization

Fitness evaluation

Parent selection

Producing
offspring

Output the fittest
individual

Are
stopping criteria

satisfied?

YES

NO

Fitness landscape
optimization

Optimize F(I) by
stochastic gradient

descent

Symbol index
initialization

Sample good and bad
solutions from the search

Evaluate F(I)

Are
stopping criteria

satisfied?
Output I

YES
NO

Optimize F(I) by
stochastic gradient

descent

Symbol index
initialization

Fig. 3. The overall framework of FLO.

minimizing problem) on the FL, “G1 = [0]” and “G12 = [11]”.
To smoothen the FL and reduce the local optima, we aggregate
good programs (e.g., G1 and G2) and separate good and poor
programs (e.g., G1 and G6). For example, we let A and L
have indices of 3 and 4 respectively. Consequently, G1 has an
index vector of “[3]”, and G2 has an index vector of “[4]”,
Fig. 2-(b) shows the optimized FL, where the symbol index
I = [3, 2, 0, 1, ..., 9, 4]

T , each symbol with a different index
from the initial I. The new I defines new neighbors for the
programs. We can see that by aggregating good solutions and
separating good and poor solutions, the FL becomes smoother
and more “cone-like” (i.e., the distance to the optimal solutions
is highly correlated to the fitness discrepancy) than the initial
one. The number of local optima is also reduced. It is easier
to search for optimal solutions on the optimized FL than on
the initial one.

B. Overall Framework

The overall framework of FLO is shown in Fig. 32. We first
enumerate all the possible symbols and create an initial symbol
index I. FLO samples good and bad solutions from the search
and then evaluates F (I) based on the sampled solutions. FLO
applies a stochastic gradient descent method to optimize the
indices based on the sampled solutions. We denote the set of
sampled good and bad solutions as B and Blose, respectively.
FLO repeats the optimization until it reaches the stopping
criteria.

C. Optimization Objectives
This section formulates our optimization objectives F (I).

Based on the main idea of optimization objectives, there are

2Our code will be public after paper acceptance.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

three sub-objectives: inner distance between good solutions,
inter distance between good and poor solutions, and the
consistency with domain knowledge. They are denoted as
D(I), Dlose(I), and E(N(I)), respectively. F (I) combines
these three objectives linearly, as shown in Eq. (1) where
α1 = α2 = α3 and

∑i=3
i=1 αi = 1 by default.

F (I) = α1

D(I0)
D(I) + α2 ×Dlose(I0)

Dlose(I)
+

α3

E(N(I0))
E(N(I)), (1)

subject to
Il ∈ N ; Il < n; Ii ̸= Ij if i ̸= j.

The three constraints ensure that the range and the uniqueness
of the indices. Because these sub-objectives have different data
scales, they are normalized to [0, 1] by D(I0), Dlose(I0), and
E(N(I0)), where I0 are the indices before each optimization.

1) Inner Distance between Good Solutions:

D(I) = 1

|B|2

|B|∑
a=1

|B|∑
b=1

||Ga −Gb||22. (2)

D(I) formulates the Euclidean distance between good so-
lutions, as shown in Eq. (2). To simplify the derivation, we
omit the square root in the Euclidean distance (i.e., squaring
the L2 norm). Objectives Dlose(I) and E(N(I)) also apply
the squared L2 norm for simplifying the derivation. For all
pairs of good solutions in B, D(I) sums the squared Euclidean
distance and calculates their average.

To clarify the relationship between I and D(I), we
denote ||Ga − Gb||22 as Qab(I), and thus D(I) =
1

|B|2
∑|B|

a=1

∑|B|
b=1 Qab(I). By substituting Gik = θikI, we

have:

Qab(I) = ||Ga −Gb||22 =

m∑
k=1

(Gak −Gbk)
2

=

m∑
k=1

(θa,kI− θb,kI)2. (3)

Because θik is one-hot mapping, Qab(I) is further simplified.

Qab(I) =
m∑

k=1

(

n∑
l=1

(θa,k,l − θb,k,l)I)2.

Note that since Gak and Gbk may be “−1”, which indicates
an empty corresponding symbol, the subtraction of Gak−Gbk
is redefined as:

Gak −Gbk =

 Gak −Gbk Gak ≥ 0 and Gbk ≥ 0
0 Gak < 0 and Gbk < 0
1 otherwise

.

2) Inter Distance between Good and Bad Solutions:

Dlose(I) =
1

|B||Blose|

|B|∑
a∈B

|Blose|∑
b∈Blose

||Ga −Gb||22

=
1

|B||Blose|

|B|∑
a∈B

|Blose|∑
b∈Blose

Qab(I). (4)

In contrast to D(I), Dlose(I) formulates the Euclidean
distance between good and poor solutions, as shown in Eq.
(4). Dlose(I) considers poor solutions in the calculation (i.e.,
Blose). To make Dlose(I) more comprehensive, there is an
archive that records the poor solutions over the search. Blose

samples poor solutions from both the current search stage and
the historical archive. Blose have the same size with B.

3) Domain Knowledge Consistency:

E(N(I)) = ||N0 ⊗N0 −
1

n2
N(I)⊗N(I)||22. (5)

E(N(I)) is defined as the difference between the domain
knowledge and the existing indices, as shown in Eq. (5).
Smaller differences imply that the symbol indices are more
consistent with the domain knowledge. Eq. (5) squares the L2

norm to simplify the derivation, and applies the element-wise
production (denoted as ⊗). N0 is a predefined distance matrix
whose elements are the distance between symbols based on
the domain knowledge. For example, character A is closer to
B than to Z based on the alphabetical order. We denote N0
as

N0 = Rn×n = [dN,1, · · · , dN,l, · · · , dN,n]

=

dN,1,1 · · · dN,l,1 · · · dN,n,1

dN,1,2

. . .
...

...
. . .

...
dN,1,n · · · dN,n,n

 .

In this paper, we define dN,a,b as the product of the edit-
ing distance (Dg,a,b) and the semantic distance (Ds,a,b) of
instructions a and b. dN,a,b =

Dg,a,b

Dg,max
· Ds,a,b

Ds,max
where Dg,max

and Ds,max are the maximum Dg and Ds among the possible
instructions. The semantic distance is defined as the Euclidean
distance between instruction outputs. The instructions get their
outputs based on ten randomly sampled input instances. The
number of sampled input instances is set based on our prior
investigation, which did not exert a significant impact on final
performance. As these instruction outputs can be reused for
different problems, they are not counted in the total fitness
evaluation.

N(I) is a distance matrix between the current indices.

N(I) = Rn×n = [∆1I, · · · ,∆lI, · · · ,∆nI] ,

where

∆l = Rn×n =

lthcolumn
−1 1

−1 1
. . . 1

0
1 −1

 .

Because dN,i,j ∈ [0, 1], we normalize N(I) ⊗ N(I) by 1
n2 .

Based on N0 and N(I), Eq. (5) can be extended as E(N(I)) =∑n
j

∑n
i

(
d2N,i,j − 1

n2 (Ij − Ii)2
)2

.

D. Stochastic Gradient Descent
We optimize F (I) by a stochastic gradient descent method.

Specifically, the new indices

I′ = ⌊I− sign(
∂F

∂I
)− U(σn)× ∂F

∂I
⌋, (6)

where σ is the maximum step size and U(σn) returns a
uniformly random float value in [0, σn]. σ has a range of
(0, 1] and multiplies by n to represent actual step size. We
apply stochastic step size here to let our search be capable
of jumping out of local optima and fine-tune indices by
probability. sign(·) returns 1 for positive inputs, 0 for zero
inputs, and -1 otherwise. −sign(∂F∂I) ensures that a symbol
index at least moves one unit along the negative gradient. FLO

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

performs a flooring operation on I to ensure integer indices. If
F (I′) < F (I), I is updated by I′ (i.e., I = I′). The stochastic
gradient descent iterates until it reaches the maximum iteration
times. Based on Eq. (1), we have:
∂F

∂I
=

α1

D(I0)
∂D

∂I
+

α2 ×Dlose(I0)
−Dlose(I)2

∂Dlose

∂I
+

α3

E(N(I0))
∂E

∂I
. (7)

The partial derivation of D(I) is shown as Eq. (8).

∂D

∂I
=

[
∂D

∂I1
, · · · , ∂D

∂Il
, · · · , ∂D

∂In

]T

, (8)

where

∂D

∂Il
=

1

|B|2

|B|∑
a=1

|B|∑
b=1

∂Qab

∂Il

=
1

|B|2

|B|∑
a=1

|B|∑
b=1

(

m∑
k

2(Gak −Gbk)(θa,k,l − θb,k,l)). (9)

Based on Eq. (9), we can know that when a and b are
duplicated solutions, the gradient of ∂D

∂Il will vanish. To
avoid the gradient vanishing, we should eliminate duplicated
solutions in B and sample diverse good solutions.

Similarly, the partial derivation of Dlose(I) is shown as Eq.
(10).

∂Dlose

∂I
=

[
∂Dlose

∂I1
, · · · , ∂Dlose

∂Il
, · · · , ∂Dlose

∂In

]T

, (10)

where

∂Dlose

∂Il
=

1

|B|
1

|Blose|

|B|∑
a∈B

|Blose|∑
b∈Blose

∂Qab

∂Il

=
1

|B|
1

|Blose|

|B|∑
a∈B

|Blose|∑
b∈Blose[

m∑
k

2(Gak −Gbk)(θa,k,l − θb,k,l)

]
. (11)

As B and Blose are unlikely overlapped (if they are over-
lapped, just simply remove the overlapped part), Eq. (11) is
non-zero.

The partial derivation of E(N(I)) is shown as Eq. (12).

∂E

∂I
=

[
∂E

∂I1
, · · · , ∂E

∂Il
, · · · , ∂E

∂In

]T

, (12)

where
∂E

∂Il
=

n∑
j

2

[
d2N,l,j −

1

n2
(Ij − Il)2

]
2

n2
(Ij − Il)

+

n∑
i

2

[
d2N,i,l −

1

n2
(Il − Ii)2

]
2

n2
(Ii − Il). (13)

Note that in Eq. (13), the first item is not zero only when i = l
and j ̸= l, and the second item is not zero when j = l and
i ̸= l. We can simplify Eq. (13) by assuming dN,i,l = dN,l,i
and denoting j in the first item as i without loss of generality,
as shown in Eq. (14)

∂E

∂Il
=

4

n2

[
n∑
i

[
d2N,l,i −

1

n2
(Ii − Il)2

]
(Ii − Il)

+

n∑
i

[
d2N,i,l −

1

n2
(Il − Ii)2

]
(Ii − Il)

]

=
8

n2

[
n∑
i

[
d2N,l,i −

1

n2
(Ii − Il)2

]
(Ii − Il)

]
. (14)

Algorithm 1: Fitness Landscape Optimization

Input: A fitness landscape L = {F , S, ν} where
S = {S, T }m

Output: Optimized symbol indices I
1 I← initialize the indices of symbols in S.
2 while stopping criteria are not satisfied do
3 Sample solutions from S and categorize them into good

solutions B and bad solutions Blose based on F .
4 µ(I)← get the used symbols in B.
5 Evaluate F (I).

/* stochastic gradient descent */
6 for j ← 1 to 20 do
7 Evaluate ∂F

∂I if I is changed.
8 I′ ← ⌊I− sign(∂F

∂I)− U(σn)× ∂F
∂I ⌋

9 Evaluate F (I′).
10 if F (I′) < F (I) then

/* I← I′ */
11 Il ← I′l, l ∈ µ(I) in a random order.
12 Il ← I′l, l /∈ µ(I) in a random order.
13 F (I)← F (I′).

14 Return I;

In practice, |Ii − Ij | is not important if Ii and Ij are not
effective symbols. So, we further simplify Eq. (14) as:

∂E

∂Il
=

8

n2

 |µ(I)|∑
i∈µ(I)

[
d2N,l,i −

1

n2
(Ii − Il)2

]
(Ii − Il)

 , (15)

where µ(I) are the used symbols in good solutions B.
∂F
∂I is normally very sparse (i.e., there are a large number

of zero or nearly zero elements) when n is large after nor-
malization, which greatly limits the search efficiency of the
stochastic gradient descent. To improve the search efficiency,
we adjust ∂F

∂I by

∂F

∂Il
= sign(

∂F

∂Il
)/(− ln(

∣∣∣∣∂F∂Il
∣∣∣∣)).

To satisfy the constraints in Eq. (1) and prioritize the effective
symbols (indicated by µ(I)), we first update Il(l ∈ µ(I)) one-
by-one in a random order, and then update Il(l /∈ µ(I)) one-
by-one in a random order based on Eq. (6). If I′i = I′j(i ̸= j),
we assign I′j a random integer ranging between 0 and n − 1
until I′j is unique in I′.

Alg. 1 shows the pseudo-code of FLO. Given a fitness
landscape L, we first initialize the indices of available symbols
in S. We then perform solution sampling and stochastic
gradient descent to optimize L until the stopping criteria are
satisfied. Specifically, we categorize the sampled solutions into
good solutions B and bad solutions Blose, respectively, by the
fitness function F . We also collect the used symbols µ(I) in
good solutions. After that, we optimize L by updating the
symbol indices I which essentially changes the neighborhood
structure ν. We stop the stochastic gradient descent after
20 iterations, which has been shown to be long enough in
our prior experiments. If the new objective function F (I′) is
smaller than the original objective value F (I), we use I′ to
update I. The final symbol indices are output as the optimized
indices.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE I
TEST PROBLEMS

Problem Mathematic model Primitives #instructions m Number of possible solutions ng

Finger f(x0) = x0 × x0 − x0 {+,−,×, R0, x0} 2 (1× 3× 2× 2)2 = 144
Toy f(x0, x1, x2, x3) = x0 × (x1 + x2) {+,−,×,÷, R0, R1, R2, x0, x1, x2, x3} 2 (3× 4× 7× 7)2 = 345744

R1 f(x0) =
(x0+1)3

x2
0−x0+1

{+,−,×,÷,
√

| · |, ln (| · |), R0, x0} 4 (1× 6× 2× 2)4 = 331776

⟨Tmean, 0.85⟩ unknown {+,−,max, R0, R1, PT,OWT} 3 (2× 3× 4× 4)3 = 373248

Collect GP solutions
from the population

Evaluate F(I)

Optimize F(I):
I’=I − δ×(∂F/∂I)

If F(I’) < F(I), I = I’

Are
stopping criteria

satisfied?

Output I

YES

NO

LGP population
Initialization

Fitness evaluation

Parent selection

Producing
offspring

Output the fittest
individual

Are
stopping criteria

satisfied?

YES

NO

Fitness landscape
optimization

Optimize F(I) by
stochastic gradient

descent

Symbol index
initialization

LGP population
Initialization

Fitness evaluation

Parent selection
Producing
offspring

Output the fittest
individual and
the optimized

indexes Iop

Reach maximum
generations?

YES NO

Stochastic
gradient descent

Symbol index
initialization

Evaluate F(I)

Output the optimized
indexes Iop

Fig. 4. The evolutionary framework of LGP with FLO. The components of
FLO are highlighted in grey and bold.

E. Applying FLO to LGP

This paper applies FLO to LGP to verify the effectiveness
of the proposed method. LGP here serves as the sampling
method in FLO to obtain good and bad solutions from the
search space. Fig. 4 shows the evolutionary framework of
basic LGP with FLO. LGP searches for symbolic solutions by
iteratively producing offspring based on good solutions. After
fitness evaluation, we sort LGP individuals based on fitness
and obtain up-to-date good and bad solutions (i.e., B and
Blose) to perform FLO. The stopping criterion of LGP is the
maximum number of generations. The fittest LGP individual
and the optimized symbol indices are outputted at the end of
LGP evolution.

IV. EXPERIMENT DESIGN

Our experiments verify the effectiveness of the proposed
FLO method by 1) investigating the hardness reduction of the
optimized landscapes of LGP and 2) analyzing the patterns of
the optimized FLs within the context of LGP. Specifically, we
measure the hardness reduction by four common FL metrics
and analyze the patterns by visualizing the optimized FLs.

A. Performance Measure

To comprehensively analyze the hardness of landscapes, we
apply four common FL analysis metrics in existing GP studies
together, including fitness distance correlation (FDC) [19],
negative scope coefficient (NSC) [33], robustness (RBS) [37],
and evolvability (EVO) [6]. Specifically, FDC measures the
degree that an FL looks like a “cone” (i.e., a high correlation
between the distance to optima and the fitness difference from
optima). NSC measures the degree of “bad evolvability”. RBS
measures the probability of a neutral move. EVO measures the
probability of moving toward a better neighbor. Larger values
of the four metrics mean an easier FL, in other words, an
easier search problem.

B. Test Problems

We verify the effectiveness of the proposed method in
supervised learning problems and the learn-to-optimize com-
binatorial optimization problems. Specifically, we select three
symbolic regression problems, i.e., supervised learning prob-
lems, and a ubiquitous dynamic combinatorial optimization
problem, i.e., dynamic job shop scheduling (DJSS), as our
tested problems since GP has been successfully applied to
these two tasks [13], [14]. The comparison between the
proposed method and advanced methods in these two tasks
can imply the potential generality of the proposed method. The
details of the problems are shown in Table I. LGP searches
for mathematical models for the symbolic regression problems
based on the labeled data, and learns decision policies (i.e.,
dispatching rules) to optimize the DJSS problem based on
the simulation performance. Finger and Toy are two naive
symbolic regression problems with different difficulty levels.
R1 and ⟨Tmean, 0.85⟩ are common benchmark problems
in symbolic regression and DJSS [15], [63]. ⟨Tmean, 0.85⟩
indicates a DJSS scenario optimizing the mean tardiness of
job shops with a utilization level of 0.85. The utilization
level indicates the rate of new job arrival, and the value
of 0.85 indicates a busy job shop. The DJSS scenario is
essentially a distribution that samples the simulation instances
for training and testing. LGP searches a decision policy to
make instant decisions for the dynamic events in DJSS [54].
The “Mathematic model” column indicates the ground truth
symbolic solutions of the investigated problems. The “Primi-
tives” column lists the functions and terminals for LGP, where
Ri denotes the registers in LGP instructions and xi denotes
the input dimension. “PT” and “OWT” are the input features
in DJSS, which indicate the processing time of operations and
their waiting time.

We strictly limit the search space of the four tested problems
so that the search space can be enumerated in an acceptable
time for the visualization of FLs. Both Finger and Toy are sym-
bolic regression problems with a maximum program size of 2
instructions. In the Toy problem, the input data has a redundant
dimension (i.e., x3) to increase problem hardness. To limit the
number of possible solutions in R1 and ⟨Tmean, 0.85⟩, we
only retain necessary primitives and constrain the maximum
program size of 4 and 3 instructions, respectively. Table I
shows the approximated number of all the possible solutions
of these four tested problems. We count the number of possible
solutions ng based on the following formula.

ng = (rd × nf × (rs + nx)
2)m,

where rd is the number of destination registers, nf is the
number of functions, rs is the number of source registers,

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

nx is the number of input features, and m is the maximum
program size. The fitness function of the symbolic regression
problems is root-mean-square-error (RMSE), and the fitness
function of ⟨Tmean, 0.85⟩ is the mean tardiness over simula-
tion. Although these example test problems have very limited
search spaces, they cover different kinds of domains, and
different numbers of instructions to make the experiments
more comprehensive. Note that our proposed method can
scale to symbolic models with more than 4 instructions. For
example, the symbolic models in Section VI have 50 to 100
instructions.

C. Compared Methods

The compared methods in our experiments are essentially
the neighborhood structures of FLs. Given the same fit-
ness functions and solution spaces, different neighborhood
structures likely will lead to different hardness of FLs. The
neighborhood structures in this paper include 1) the Euclidean
distance based on optimized symbol indices and 2) the genetic
operators of LGP. We verify the effectiveness of FLO by com-
paring the hardness of FLs with the optimized symbol indices
with the hardness of FLs whose neighborhood structures are
defined by genetic operators of LGP.

We compare FLO with two LGP genetic operators, free
macro mutation (denoted as “freemut”) [53] and frequency-
based macro mutation (denoted as “freqmut”). These two ge-
netic operators define the neighborhood structures of compared
FLs. Freemut is a basic mutation operator of LGP, serving
as a baseline. It defines the neighbors of an LGP individual
by inserting or removing a random instruction into/from the
individual. Freqmut is a self-adaptive genetic operator that
adapts over the generations. It defines the neighbors of an
LGP individual based on the primitive frequency in the top-
K individuals (K=10% in our experiments). The assumption
that primitive frequency implies importance of primitives is
common in advanced GP methods [17], [65]. Freqmut serves
as an advanced manually designed neighborhood structure.
These two genetic operators are used for identifying neighbors
of LGP individuals when we measure the FL analysis metrics.

The neighborhood structure of FLO is defined based on the
Euclidean distance of index vectors. Two LGP individuals Ga

and Gb are neighbors if ||Ga−Gb||2 ≤ ϵ. Since freeemut and
freqmut only vary one instruction when identifying neighbors,
we also only vary one instruction when identifying neighbors
in FLO.

In an independent run, the FL metrics analyze the hardness
of FLs of the three compared neighborhood structures at the
final generation of LGP search. The three methods compared
share the same LGP search as the sampling methods, which
ensures the same sampled solutions in analyzing FL hardness.
To compare the performance comprehensively, each method is
tested in 50 independent runs on each test problem.

D. Parameter Settings

FLO has two main parameters, the number of sampled good
solutions from the population B and the maximum step size
in the stochastic gradient descent σ. We set B = 10 and set

TABLE II
FRIEDMAN TEST OVER THE COMPARED METHODS ON THE FL METRICS OF

THE FOUR EXAMINED PROBLEMS

Metrics freemut freqmut FLO

FDC mean rank 2.375 2.625 1
p-value 0.038

NSC mean rank 2.25 2 1.75
p-value 0.779

RBS mean rank 2.25 1.5 2.25
p-value 0.472

EVO mean rank 1.75 2.75 1.25
p-value 0.174

TABLE III
THE MEAN METRIC VALUES (AND STANDARD DEVIATION) ON THE TESTED

PROBLEMS

Problems Metrics freemut freqmut FLO (Ours)

Finger

FDC 0.205 (0) − 0.205 (0) − 0.361 (0.126)
NSC −3.098 (0.001) − −1.934 (0.238) ≈ −1.951 (0.364)
RBS 0.381 (0) − 0.339 (0.014) − 0.415 (0.01)
EVO 0.86 (0) + 0.826 (0.014) ≈ 0.811 (0.032)

Toy

FDC 0.02 (0.106) − 0.056 (0.155) − 0.279 (0.206)
NSC −4.087 (13.19) ≈ −4.082 (10.19) ≈ −1.914 (1.254)
RBS 0.263 (0.072) ≈ 0.332 (0.055) + 0.257 (0.05)
EVO 0.587 (0.049) − 0.506 (0.065) − 0.615 (0.062)

R1

FDC 0.066 (0.086) − −0.029 (0.061) − 0.131 (0.104)
NSC −12.42 (11.43) ≈ −27.9 (30.69) ≈ −14.95 (19.02)
RBS 0.326 (0.087) − 0.615 (0.135) + 0.477 (0.024)
EVO 0.584 (0.079) − 0.285 (0.135) − 0.81 (0.034)

⟨Tmean,0.85⟩
FDC 0.072 (0.086) − 0.046 (0.082) − 0.184 (0.128)
NSC −21.13 (70.12) ≈ −11.83 (42.6) ≈ −11.23 (37.59)
RBS 0.699 (0.037) ≈ 0.765 (0.034) + 0.695 (0.019)
EVO 0.182 (0.043) − 0.092 (0.03) − 0.407 (0.078)

σ = 0.1. Specifically, to sample diverse good solutions in B,
we consider the top-B fitness values in the population, each
getting one individual, and vice versa for Blose. The threshold
of the neighborhood in FLO ϵ is not a parameter in FLO. It is
a problem-specific parameter when calculating FL metrics. ϵ
is set to approximately 5% of the total number of instructions,
except 5 for Finger which only has 12 possible instructions.
The parameters of the basic LGP evolution keep the same
as those of basic LGP for solving symbolic regression and
dynamic job shop scheduling [53], [54]. Each FLO iterates up
to 20 times and is performed every two LGP generations.

V. EXPERIMENT RESULTS

A. FL Hardness

This section analyzes the hardness of FLs defined by the
compared neighborhood structures at the final LGP generation.
Table II shows the overall performance of the compared
methods on the four FL metrics based on the Friedman test
with a significance level of 0.05. In Table II, a small rank
value indicates a large metric value (i.e., an easy FL). We can
see that FLO has a significantly easier FL in terms of FDC
over the tested problems. This implies that FLO successfully
optimizes the FLs to be more cone-like than the compared
methods. Table II also shows that the FLs of FLO have a
better mean NSC and EVO than freemut and freqmut, which
implies a higher probability of moving toward better neighbors
on the optimized FLs.

Table III shows the mean metric values (and their standard
deviations) of the compared methods for each problem. We
apply the Wilcoxon rank-sum test with a significance level

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

0 100 200
-0.2

-0.1

0.0

0.1

0.2

0.3

R
1-
FD

C

0 100 200
-1500

-1000

-500

0

500

1000

R
1-
N
S
C

0 100 200

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
1-
R
B
S

0 100 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
1-
E
V
O

0 100 200
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

<
T
m
ea
n,
0.
85
>
-F
D
C

0 100 200
-1000

-800

-600

-400

-200

0

200

400

600

<
T
m
ea
n,
0.
85
>
-N
S
C

0 100 200

0.5

0.6

0.7

0.8

<
T
m
ea
n,
0.
85
>
-R
B
S

0 100 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

<
T
m
ea
n,
0.
85
>
-E
V
O

0 100 200
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
in
ge
r-
F
D
C

 freemut freqmut FLO

0 100 200

-3.00

-2.75

-2.50

-2.25

-2.00

-1.75

-1.50

F
in
ge
r-
N
SC

0 100 200

0.32

0.34

0.36

0.38

0.40

0.42

0.44

F
in
ge
r-
R
B
S

0 100 200

0.78

0.80

0.82

0.84

0.86

0.88

0.90

F
in
ge
r-
E
V
O

0 100 200

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
oy
-F
D
C

0 100 200

-30

-20

-10

0

10

20

T
oy
-N
SC

0 100 200

0.20

0.25

0.30

0.35

0.40

T
oy
-R
B
S

0 100 200

0.4

0.5

0.6

0.7

0.8

0.9

T
oy
-E
V
O

Fig. 5. FL metrics over generations. X-axis: the number of LGP generations,
Y-axis: the metric values of a problem. The four columns from the left to right
are FDC, NSC, RBS, and EVO.

of 0.05 to analyze these metric values. “+” indicates a
significantly better metric value, “−” indicates a significantly
worse metric value, and “≈” indicates a statistically similar
metric value with the proposed method (i.e., FLO here). The
best mean metric values are highlighted in bold. Aligned with
Table II, the FLs of FLO have significantly better FDC values
on the four tested problems. In terms of NSC, the optimized
FLs of FLO show competitive hardness with the compared
methods. In terms of RBS and EVO, although the FLs of
freqmut have better RBS values (i.e., a high probability of
neutral move) in Toy, R1, and ⟨Tmean,0.85⟩, they sacrifice
the probability of moving to better neighbors (i.e, significantly
worse EVO values than FLO in the last three tested problems).
To conclude, the optimized FLs of FLO are significantly
easier than the ones of baseline and advanced neighborhood
structures in terms of FDC and at least competitive with the
compared methods in terms of the other three metrics. The
results show a very encouraging optimization performance of
FLO.

B. Metrics Over Generations

To understand the optimization process of FLO, this section
investigates the change of FL hardness over LGP search, as
shown in Fig. 5. Each column in Fig. 5 shows a certain
metric on the four tested problems. In terms of FDC (i.e.,
the first column in Fig. 5), FLO substantially improves FDC
values over generations and maintains at a significantly higher
level than freemut and freqmut. In terms of NSC, the three

compared methods all stay at a similar level over the whole
evolution. But we can see that FLO averagely has a smaller
standard deviation than the compared methods in the last three
problems (i.e., Toy, R1, and ⟨Tmean,0.85⟩), which implies a
more stable FL hardness of FLO. The curves of RBS seem
problem-specific since the three compared methods show very
different behaviors on the tested problems. But benefit from
the frequency-based mutation that prefers sampling primitives
in best-to-the-run solutions, freqmut averagely improves the
probability of a neutral move in most of the tested problems.
In terms of EVO, although most of the curves decline over the
generations since there are fewer and fewer better neighbors
when the LGP population moves to optimal solutions, the
FLs of FLO often maintain a higher level of EVO than the
compared methods.

C. Pattern Analyses on FLs

To intuitively investigate the FLs obtained by FLO, we
visualize the example FLs and discuss their patterns in this
section. Specifically, we show the example FLs obtained at dif-
ferent stages of LGP search on Finger, Toy, and ⟨Tmean,0.85⟩
problems. The solutions in these three problems have up to
three instructions, each instruction for one dimension, which
is straightforward for visualization. Fig. 6 shows the scatter
plots of the example FLs. Each point on the FLs is a symbolic
solution. The color of the points represents the fitness of the
solution. To highlight the patterns of the solutions, we color
the solutions with the best 25% fitness and with the worst
25% fitness, by cool and warm tones respectively. We leave
the remaining solutions with moderate fitness as transparent
to keep the visualization results sharp and clean. We also
highlight the optimal solutions by purple stars. The optimal
solutions are identified after enumerating all possible solutions.
Fig. 6 has three sub-figures, A, B, and C, each for a selected
problem. The instructions at the bottom of sub-figure A are the
corresponding instructions for each index, where “R0” stands
for the first (and the only one) register, and “x0” stands for the
first input feature. The sub-figures in each problem visualize
the dynamics of FLO from initial FLs, to the FLs at the 10th

generations, and to the final FLs. To show the FL of ⟨Tmean,
0.85⟩ at the 200th generation in a clearer way, we show the
cutting planes of Fig. 6-C(b-1) in Appendix B.

We discover three interesting patterns based on Fig. 6.
1) Aggregating Solutions with Different Fitness: Fig. 6

confirms the optimization on FLs. In the three problems, good
and bad solutions are distributed uniformly across the initial
FLs. For example, the blue lines in Fig. 6-B(a) spread across
the space. However, we can see that the good and bad solutions
aggregate respectively during the optimization. For example,
the good solutions aggregate to the bottom-left corner in Fig.
6-A(c), the good solutions aggregate to the top-right corner in
Fig. 6-B(c), and the good solutions approximately aggregate
to the indices from 15 to 35 on 2nd-3rd-instruction plane in
Fig. 6-C(b-2). More interestingly, for simple problems (i.e.,
Finger and Toy) whose optimal solutions are likely found
by LGP, the optimal solutions are located near the diagonal
after FLO, so that they are close to other good solutions. For

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

0 2 4 6 8 10 12

0

2

4

6

8

10

12

2n
d

in
st

ru
ct

io
n

1st instruction

0 2 4 6 8 10 12

0

2

4

6

8

10

12

2n
d

in
st

ru
ct

io
n

1st instruction

0 2 4 6 8 10 12

0

2

4

6

8

10

12

2n
d

in
st

ru
ct

io
n

1st instruction

0.00
0.250
0.500
0.750
1.00
1.25
1.50
1.75
2.00
2.25
2.50

A. FLs of Finger: (a) initial FL, (b) FL at the 10th generation, (c) FL at the 200th generation
(a) (b) (c)

B. FLs of Toy: (a) initial FL, (b) FL at the 10th generation, (c) FL at the 200th generation
(a) (b) (c)

C. FLs of <Tmean, 0.85>: (a-1) and (a-2) initial FL, (b-1) and (b-2) FL at the 200th generation. (a-2) and (b-2)
are the FLs projected on x-y, x-z, and y-z planes.

(a-1) (b-1)

(a-2) (b-2)

Fig. 6. The example FLs of Finger, Toy, and ⟨Tmean,0.85⟩. The cool tone indicates good fitness and the warm tone indicates bad fitness. The purple stars
indicate the optimal solutions. The instructions at the bottom of A are the corresponding instructions for each index.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

more difficult problems such as the DJSS problem ⟨Tmean,
0.85⟩, the optimal solutions are unnecessarily located near the
diagonal, but they are located near the cold-tone regions.

2) Fitness Aligning: We can see a fitness aligning pattern
when the number of possible introns in solutions3 increases
(i.e., Fig. 6-B and -C). The fitness aligning means that the
solutions with very similar fitness allocate along an axis or a
hyperplane (i.e., the fitness is aligned), rather than aggregating
as an ellipse or a hypersphere. For example, the solutions
with the same color in Fig. 6-B(a) allocate along axes, and
there are considerable 2-D planes with the same color across
Fig. 6-C(b-1). When there are a large number of introns in
the solutions, a solution can easily reach another solution
with the same fitness by adding, removing, or modifying
introns, which is equivalent to moving along axes or against
hyperplanes. The fitness aligning pattern shows the important
role of introns in performing neutral moves. It is consistent
with an empirical conclusion in existing LGP studies that
introns in LGP problems are effective in reducing destructive
search [53], [66].

3) Diagonal Symmetry: Fig. 6 implies a diagonal symmetry
pattern of FLs. The diagonal symmetry means that a fitness
landscape of LGP is symmetrical diagonally approximately.
For example, we can see two red lines 1st-instruction= 105
and 2nd-instruction= 105 in Fig. 6-B(a). Although the red line
2nd-instruction= 105 is more “solid” than 1st-instruction=
105, they are nearly symmetrical diagonally overall. This
implies that an instruction likely leads to similar effectiveness
when it is placed on both the first and second instructions. The
diagonal symmetry can also be seen roughly in the 2nd-3rd-
instruction plane in Fig. 6-C(b-2). Because the instructions
likely have similar effectiveness in similar places of LGP
programs, performing crossover to share effective instructions
is an important method to search for better solutions in existing
LGP studies [53].

Furthermore, Fig. 6-C(b-2) shows that the diagonal sym-
metry is dependent on two consecutive instructions (i.e., a
clearer visualization is shown in Appendix B). We can see
the diagonal symmetry on the 2nd-3rd-instruction plane but
not on the 1st-3rd-instruction plane. Given the importance of
neutral moves in LGP search [53] and the connection between
fitness aligning and mutating only one instruction, we highly
suspect that the diagonal symmetry implies a missed operator
in existing LGP studies, that is, swapping two consecutive
instructions. Swapping two consecutive instructions makes
use of the diagonal symmetry to perform neutral moves
on instruction positions in an LGP solution. Based on the
visualized FLs, Table IV shows the relationships among the
two newly found patterns, the LGP operators, and the (non-
)neutral move on instructions (i.e., what instructions should
be used) and instruction positions (i.e., where should place
the instruction).

3An intron is an LGP instruction that does not contribute to the final output
of an LGP program. An exon is an LGP instruction that contributes to the
final output of an LGP program.

TABLE IV
VISUALIZED EXPLANATIONS ON (NON-)NEUTRAL MOVE OF

INSTRUCTIONS AND THEIR POSITIONS

Patterns Search Operators Variation on LGP Pro-
grams

Fitness
aligning

Mutating introns neutral move on instruc-
tions

Mutating exons non-neutral move on in-
structions

Diagonal
symmetry

Swapping consecutive
instructions

neutral move on instruc-
tion positions

Swapping inconsecutive
instructions

non-neutral move on in-
struction positions

VI. FURTHER ANALYSIS

A. Test Performance on common Benchmarks

The previous section has verified that the proposed method
can effectively reduce the hardness of FLs. This section further
investigates whether the proposed FLO method is effective
in larger search spaces with higher dimensions and helps
the LGP method achieve better performance. To answer this
question, this section applies LGP with FLO to search sym-
bolic solutions for common benchmarks. Specifically, FLO
optimizes the FL during LGP evolution, and LGP searches for
new solutions based on the up-to-date optimized FLs. Since
the running overhead of FLO is correlated to the number of
instructions, we limit each LGP instruction to having up to
one operation and one input feature to reduce the number of
instructions.

We select ten benchmark problems from symbolic regres-
sion and DJSS, as shown in Table V. Nguyen4 has a lot
of repetitive multiplications and additions, which is aligned
with the main assumption of frequency-based mutation, that
is, the frequency of primitives implies the importance. In
contrast, Keijzer11 and R1 have much less repetitive patterns.
Airfoil, BHouse, and Redwine are three typical real-world
regression benchmarks downloaded from the UCI machine
learning datasets. We apply relative square error (RSE) to
measure performance in symbolic regression. ⟨Tmax, 0.95⟩
to ⟨WFmean, 0.95⟩ are four DJSS problems with different
optimization objectives for the overall job shop (i.e., maximum
tardiness, mean tardiness, maximum flowtime, and weighted
mean flowtime). A utilization level of 0.95 indicates a much
busier and more complex job shop than a utilization level of
0.85.

To verify the effectiveness of the proposed method, we
compare four methods. First, basic LGP serves as a baseline,
denoted as “basicLGP”. The second method is a basic LGP
method that applies frequency-based mutation (i.e., freqmut).
The third method is an LGP that applies an operator swapping
consecutive instructions. The third method verifies our insight
into the possibility of neutral move of instruction positions,
denoted by “swap”. The fourth method is an advanced method
(denoted as ADVAN). ADVAN represents different methods in
symbolic regression and DJSS problems; these are semantic
LGP [64] and grammar-guided LGP [67] for these two do-
mains, respectively. ADVAN parameters are set following their
recommendation. The final method is the one proposed here
which automatically optimizes the FL and applies basic LGP

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

https://archive.ics.uci.edu/dataset/291/airfoil+self+noise
https://www.kaggle.com/datasets/schirmerchad/bostonhoustingmlnd
https://archive.ics.uci.edu/dataset/186/wine+quality

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE V
THE TEN BENCHMARK PROBLEMS

Problems Formula
Synthetic symbolic regression benchmarks

Nguyen4 f(x0) = x6
0 + x5

0 + x4
0 + x3

0 + x2
0 + x0

Keijzer11 f(x0, x1) = x0x1 + sin((x0 − 1)(x1 − 1))

R1 f(x0) =
(x0+1)3

x2
0−x0+1

Real-world symbolic regression benchmarks
Airfoil unknown

BHouse unknown
Redwine unknown

DJSS benchmarks
⟨Tmax, 0.95⟩ unknown
⟨Tmean, 0.95⟩ unknown
⟨Fmax, 0.95⟩ unknown

⟨WFmean, 0.95⟩ unknown

to search against the optimized FL (denoted as LGP-FLO).
Specifically, LGP-FLO searches against the optimized FL by
moving a symbolic solution toward another better one based
on index vectors. The index vector of the symbolic solution
moves within its neighborhood, reaches another index vector,
and rebuilds a new symbolic solution. LGP-FLO also uses
neutral moves on instructions and their positions during the
search. The parameters of FLO (i.e., B and σ) are set as 10
and 0.1, respectively. The threshold of neighborhood structures
ϵ is approximately 5% of the total number of instructions, that
is, 100 for symbolic regression problems and 1000 for DJSS
problems. The other parameters of basic LGP follow [53],
[54].

All methods compared have the same primitive sets for
the same problems. The function set for symbolic regression
is {+,−,×,÷, sin, cos,

√
| · |, ln(| · |)}. The terminal set for

symbolic regression is the problem input features. The function
set for DJSS is {+,−,×,÷,max,min} (ADVAN method in
DJSS includes “IF”, as recommended). There are thirteen
input features in the DJSS problems, including the processing
time of operations and the number of remaining operations
in machine queues [54]. All methods evolve a population of
256 individuals for 200 generations to search for the fittest
solutions.

Table VI shows mean test performance (and standard de-
viation) over 50 independent runs. A Friedman test on the
compared methods shows a p-value of 1.7e-4, which indicates
a significant difference in performance. We further apply
a Wilcoxon rank-sum test with Bonferroni correction and
a significance level of 0.05 to analyze the performance of
compared methods versus LGP-FLO on each benchmark. The
notations of “+”, “−”, “≈” are the same as in Table III.

We can see that by optimizing the FL over the search,
we can significantly improve the performance of stochastic
symbolic search methods. Specifically, LGP-FLO has signifi-
cantly better performance than basic LGP in many benchmarks
and LGP with advanced manually-designed operators (i.e.,
freqmut). Besides, LGP-FLO also has a very competitive
performance with ADVAN methods in both supervised learn-
ing and dynamic combinatorial optimization problems. The
comparison between LGP-FLO and ADVAN confirms that
searching for automatically optimized FLs is very competitive

to those manually-designed ADVAN methods. The mean ranks
of the Friedman test show that LGP-FLO has the best overall
performance (i.e., 1.75) amongst the compared methods on the
tested benchmark problems. These results imply that FLO is
effective in higher dimensions and larger search spaces, given
that these benchmarks have a large primitive set and require
long programs.

By comparing “swap” and “basicLGP”, we demonstrate a
significant performance improvement with “swap”. We con-
firm that the neutral move of instruction positions is an effec-
tive operator for LGP search. Given that swapping consecutive
instructions to perform a neutral move of instruction positions
is a newly discovered operator based on the pattern analysis
of optimized FLs, we believe that the optimized FLs and their
pattern analysis help explore more effective and explainable
search mechanisms for stochastic symbolic search.

B. Parameter Sensitivity

FLO has two main parameters, the number of sampled
solutions from the population B and the maximum step size
σ. They are set as 10 and 0.1 by default. This section
investigates the sensitivity of these two parameters. Specifi-
cally, we compare the FL hardness of B = 5, 10, 15, 20 and
σ = 0.005, 0.05, 0.1, 0.5, 1, and apply a Friedman test with
significance level of 0.05 to analyze overall performance on
tested problems (i.e., Finger, Toy, R1, and ⟨Tmean, 0.85⟩), as
shown in Tables VII and VIII. Other parameter settings are
kept the same as in section IV-D.

We can see that all the p-values in Tables VII and VIII
are larger than 0.05, indicating that there is no significant
difference among the choices of B and σ over the four FL
metrics. These results confirm that B and σ are relatively
robust parameters.

VII. CONCLUSIONS

The results imply an encouraging potential of the proposed
FLO method to find better or very competitive landscapes
automatically. The proposed FLO method is essentially an
optimization approach that optimizes the symbol indices of
symbols to construct better neighborhood structures for sym-
bolic solutions. Specifically, FLO aggregates good solutions,
separates good solutions from bad ones, and encourages the
new neighborhood structures to be consistent with the domain
knowledge. We apply LGP, an evolutionary computation-
based stochastic symbolic search method, to investigate the
effectiveness of the proposed FLO. Based on the results, four
main conclusions are drawn:

1) Evaluating four kinds of FL metrics reveals that FLO
successfully finds significantly more cone-like land-
scapes than manually designed landscapes. The cone-
like landscapes are also confirmed by the visualized
landscape after optimization.

2) Visualization results on LGP landscapes show two im-
portant patterns of LGP landscapes. If there are LGP
introns in the search space, solutions with similar fitness
likely aggregate to a hyperplane on FL (i.e., fitness align-
ing), and the hyperplanes spanned by two consecutive

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE VI
MEAN TEST PERFORMANCE (AND STANDARD DEVIATION) ON THE TEN BENCHMARK PROBLEMS. THE BEST MEAN PERFORMANCE IS HIGHLIGHTED IN

BOLD.

Problems basicLGP freqmut swap ADVAN LGP-FLO (Ours)
Nguyen4 0.149 (0.248) − 0.069 (0.052) ≈ 0.071 (0.064) − 0.052 (0.064) ≈ 0.048 (0.045)
Keijzer11 0.339 (0.142) − 0.299 (0.103) − 0.288 (0.121) − 0.213 (0.091) ≈ 0.22 (0.104)

R1 0.034 (0.035) − 0.02 (0.026) − 0.016 (0.027) − 0.011 (0.034) − 0.01 (0.02)
Airfoil 0.643 (0.132) − 0.557 (0.113) ≈ 0.559 (0.114) ≈ 0.524 (0.049) ≈ 0.521 (0.095)
Bhouse 0.404 (0.126) ≈ 0.443 (0.11) ≈ 0.374 (0.114) + 0.312 (0.063) + 0.417 (0.088)

Redwine 0.759 (0.034) − 0.74 (0.037) ≈ 0.741 (0.033) ≈ 0.699 (0.025) + 0.735 (0.031)
⟨Tmax,0.95⟩ 3999.2 (90.9) ≈ 3976.3 (190.1) ≈ 3969.1 (91.5) ≈ 3968.8 (112.3) ≈ 3967.5 (88.3)
⟨Tmean,0.95⟩ 1118.2 (10.7) ≈ 1114.1 (9.1) ≈ 1113.8 (11.4) ≈ 1116.3 (12.1) ≈ 1115 (7.7)
⟨Fmax,0.95⟩ 4585.4 (126.1) − 4523.2 (107.3) ≈ 4518.4 (70.3) − 4501 (74.8) ≈ 4477.4 (71.4)

⟨WFmean,0.95⟩ 2715.8 (16.4) − 2710.6 (37.7) ≈ 2708.8 (20.6) ≈ 2711.7 (21.5) ≈ 2711.6 (26.4)
mean ranks 4.8 3.3 2.95 2.2 1.75

pair-wise p-value 1.4E-4 0.276 0.881 1

TABLE VII
FRIEDMAN TEST OVER B ON THE FOUR METRICS

metrics B = 5 B = 10 B = 15 B = 20

FDC mean rank 3.25 2 2.25 2.5
p-value 0.552

NSC mean rank 2.25 2.25 2.5 2.5
p-value 0.96

RBS mean rank 1.25 2.25 3.5 3
p-value 0.075

EVO mean rank 2 2.25 3.25 2.5
p-value 0.552

mean rank over metrics 2.188 2.188 2.875 2.625

TABLE VIII
FRIEDMAN TEST OVER σ ON THE FOUR METRICS

metrics σ = 0.005 σ = 0.05 σ = 0.1 σ = 0.5 σ = 1

FDC mean rank 3.25 3 2.75 3 3
p-value 0.995

NSC mean rank 3.25 3 2.75 3.25 2.75
p-value 0.981

RBS mean rank 2 2 2.75 4.75 3.5
p-value 0.060

EVO mean rank 2.5 3.5 3.5 2.25 3.25
p-value 0.678

mean rank over metrics 2.75 2.875 2.938 3.313 3.125

LGP instruction positions normally have a diagonally
symmetric layout (i.e., diagonal symmetry).

3) Pattern analysis on visualized FLs further helps to design
a new operator for LGP, swapping two consecutive
instructions, which is missed by existing LGP studies.
The results on common benchmarks confirm that swap-
ping consecutive instructions implements an essential
capability of fine-tuning instruction positions, which
improves LGP performance.

4) LGP that searches against the optimized FLs achieves
very competitive performance with advanced methods
within the same number of fitness evaluations. This im-
plies that the automatically designed landscapes achieve
competitive effects to those designed by human experts.

To the best of our knowledge, this paper is the first at-
tempt to explicitly optimize FLs of stochastic symbolic search
automatically. The proposed FLO method is general enough
to be applied to other domains (e.g., classification) and to
other stochastic symbolic search methods once their solutions
are represented as a list of symbols (e.g., a tree-based GP
program represents as a symbol list by preorder traversal). We
will investigate the effectiveness of the proposed FLO method

in other domains and with other symbolic search methods
in the future. Our experiments use four common FL metrics
to evaluate the quality of FLs. This also facilitates further
investigations of the correlation of these FL metrics, missed
by existing FL analysis studies. In future work, we will further
improve the search mechanisms (e.g., adaptive local search)
over the optimized FLs to enhance the effectiveness. Note that
since the FLO running overhead increases with the primitive
set, we need to further reduce the overhead in the future.

ACKNOWLEDGMENTS

This work was supported in part by the Marsden
Fund of New Zealand Government under Contracts MFP-
VUW1913, New Zealand MBIE Endeavour Fund under con-
tract C11X2001, New Zealand MBIE Data Science SSIF Fund
under the contract RTVU1914.

REFERENCES

[1] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A
survey on evolutionary neural architecture search,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 34, no. 2, pp. 550–570,
2023.

[2] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang,
K. Zhong, X. Ning, Y. Ma, H. Yang, B. Yu, H. Yang, and Y. Wang,
“Machine learning for electronic design automation: A survey,” ACM
Transactions on Design Automation of Electronic Systems, vol. 26, no. 5,
pp. 1–46, 2021.

[3] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based
program synthesis,” Communications of the ACM, vol. 61, no. 12, pp.
84–93, 2018.

[4] K. Kinnear, “Fitness landscapes and difficulty in genetic programming,”
in Proceedings of the First IEEE Conference on Evolutionary Compu-
tation and IEEE World Congress on Computational Intelligence, 1994,
pp. 142–147.

[5] N. M. Rodrigues, K. M. Malan, G. Ochoa, L. Vanneschi, and S. Silva,
“Fitness landscape analysis of convolutional neural network architectures
for image classification,” Information Sciences, vol. 609, pp. 711–726,
2022.

[6] L. Vanneschi, “Fitness landscapes and problem hardness in genetic
programming,” in Proceedings of the 12th annual conference companion
on Genetic and evolutionary computation, 2010, pp. 2711–2738.

[7] J. R. Koza, Genetic Programming : On the Programming of Computers
By Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[8] Y. Mei, Q. Chen, A. Lensen, B. Xue, and M. Zhang, “Explainable artifi-
cial intelligence by genetic programming: A survey,” IEEE Transactions
on Evolutionary Computation, vol. 27, no. 3, pp. 621 – 641, 2022.

[9] C. Raymond, Q. Chen, B. Xue, and M. Zhang, “Learning symbolic
model-agnostic loss functions via meta-learning,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 45, no. 11, pp. 13 699–
13 714, 2023.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[10] Q. Fan, Y. Bi, B. Xue, and M. Zhang, “A genetic programming-based
method for image classification with small training data,” Knowledge-
Based Systems, vol. 283, p. 111188, 2024.

[11] N. Haut, W. Banzhaf, B. Punch, and D. Colbry, “Accelerating Im-
age Analysis Research with Active Learning Techniques in Genetic
Programming,” in Genetic Programming Theory and Practice XX, ser.
Genetic and Evolutionary Computation. Singapore: Springer Nature,
2024, pp. 45–64.

[12] Q. Chen, B. Xue, W. Browne, and M. Zhang, “Evolutionary regres-
sion and modelling,” in Handbook of Evolutionary Machine Learning.
Singapore: Springer Nature Singapore, 2024, pp. 121–149.

[13] N. Makke and S. Chawla, “Interpretable scientific discovery with sym-
bolic regression: a review,” Artificial Intelligence Review, vol. 57, no. 1,
p. 2, 2024.

[14] F. Zhang, S. Nguyen, Y. Mei, and M. Zhang, Genetic Programming for
Production Scheduling. Singapore: Springer Singapore, 2021.

[15] Z. Huang, Y. Mei, F. Zhang, and M. Zhang, “Multitask Linear Genetic
Programming with Shared Individuals and its Application to Dynamic
Job Shop Scheduling,” IEEE Transactions on Evolutionary Computation,
pp. 1–15, 2023.

[16] Q. Chen, M. Zhang, and B. Xue, “Feature selection to improve
generalization of genetic programming for high-dimensional symbolic
regression,” IEEE Transactions on Evolutionary Computation, vol. 21,
no. 5, pp. 792–806, 2017.

[17] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Guided Subtree Selection
for Genetic Operators in Genetic Programming for Dynamic Flexible Job
Shop Scheduling,” in Proceedings of European Conference on Genetic
Programming, 2020, pp. 262–278.

[18] M. Wan, T. Weise, and K. Tang, “Novel loop structures and the evolution
of mathematical algorithms,” in Proceedings of European Conference on
Genetic Programming, 2011, pp. 49–60.

[19] T. Jones and S. Forrest, “Fitness Distance Correlation as a Measure of
Problem Difficulty for Genetic Algorithms,” in Proceedings of the 6th
International Conference on Genetic Algorithms, 1995, pp. 184–192.

[20] L. Vanneschi, M. Tomassini, P. Collard, and M. Clergue, “A Survey
of Problem Difficulty in Genetic Programming,” in Proceedings of the
Congress of the Italian Association for Artificial Intelligence, 2005, pp.
66–77.

[21] M. Clergue, P. Collard, M. Tomassini, and L. Vanneschi, “Fitness Dis-
tance Correlation And Problem Difficulty For Genetic Programming.”
in Proceedings of Genetic and Evolutionary Computation Conference,
2002, pp. 724–732.

[22] L. Vanneschi, M. Tomassini, M. Clergue, and P. Collard, “Difficulty
of Unimodal and Multimodal Landscapes in Genetic Programming,” in
Genetic and Evolutionary Computation, 2003, pp. 1788–1799.

[23] L. Vanneschi, M. Tomassini, P. Collard, and M. Clergue, “Fitness
Distance Correlation in Structural Mutation Genetic Programming,” in
Proceedings of European Conference on Genetic Programming, 2003,
pp. 455–464.

[24] L. Vanneschi and M. Tomassini, “Pros and Cons of Fitness Distance
Correlation in Genetic Programming,” in Proceedings of Genetic and
Evolutionary Computation Conference Workshop Program, 2003, pp.
284–287.

[25] L. Vanneschi, “Theory and practice for efficient genetic programming,”
phdthesis, Université de Lausanne, Faculté des sciences, 2004.

[26] R. C̆orić, M. Ðumić, and D. Jakobović, “Genetic programming hy-
perheuristic parameter configuration using fitness landscape analysis,”
Applied Intelligence, vol. 51, no. 10, pp. 7402–7426, 2021.

[27] G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos, “A study of NK
landscapes’ basins and local optima networks,” in Proceedings of the
Genetic and evolutionary computation Conference, 2008, pp. 555–562.

[28] G. Ochoa, S. Verel, F. Daolio, and M. Tomassini, “Local Optima
Networks: A New Model of Combinatorial Fitness Landscapes,” in
Recent Advances in the Theory and Application of Fitness Landscapes,
2014, vol. 6, pp. 233–262.

[29] M. Durasevic, D. Jakobovic, M. Scoczynski Ribeiro Martins, S. Picek,
and M. Wagner, “Fitness Landscape Analysis of Dimensionally-Aware
Genetic Programming Featuring Feynman Equations,” in Proceedings
of International Conference on Parallel Problem Solving from Nature,
2020, pp. 111–124.

[30] Y. He and F. Neri, “Fitness Landscape Analysis of Genetic Programming
Search Spaces with Local Optima Networks,” in Proceedings of the
Companion Conference on Genetic and Evolutionary Computation,
2023, pp. 2056–2063.

[31] M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue, “A Study
of Fitness Distance Correlation as a Difficulty Measure in Genetic

Programming,” Evolutionary Computation, vol. 13, no. 2, pp. 213–239,
2005.

[32] L. Vanneschi, M. Tomassini, P. Collard, and M. Clergue, “Fitness
distance correlation in genetic programming: a constructive counterex-
ample,” in Proceedings of the Congress on Evolutionary Computation,
2003, pp. 289–296.

[33] L. Vanneschi, M. Clergue, P. Collard, M. Tomassini, and S. Vérel,
“Fitness Clouds and Problem Hardness in Genetic Programming,” in
Proceedings of Genetic and Evolutionary Computation Conference,
2004, pp. 690–701.

[34] S. Verel, P. Collard, and M. Clergue, “Where are bottlenecks in NK fit-
ness landscapes?” in Proceedings of The 2003 Congress on Evolutionary
Computation, 2003, pp. 273–280.

[35] L. Vanneschi, M. Tomassini, P. Collard, and S. Vérel, “Negative Slope
Coefficient: A Measure to Characterize Genetic Programming Fitness
Landscapes,” in Proceedings of European Conference on Genetic Pro-
gramming, 2006, pp. 178–189.

[36] T. Hu, J. L. Payne, W. Banzhaf, and J. H. Moore, “Robustness, evolv-
ability, and accessibility in linear genetic programming,” in European
Conference on Genetic Programming, 2011, pp. 13–24.

[37] T. Hu, J. L. Payne, W. Banzhaf, and J. H. Moore, “Evolutionary
dynamics on multiple scales: A quantitative analysis of the interplay
between genotype, phenotype, and fitness in linear genetic program-
ming,” Genetic Programming and Evolvable Machines, vol. 13, no. 3,
pp. 305–337, 2012.

[38] T. Hu, W. Banzhaf, and J. H. Moore, “Robustness and evolvability of
recombination in linear genetic programming,” in European Conference
on Genetic Programming, vol. 7831, 2013, pp. 97–108.

[39] T. Hu and W. Banzhaf, “Neutrality, Robustness, and Evolvability in
Genetic Programming,” in Genetic Programming Theory and Practice
XIV, 2018, pp. 101–117.

[40] E. Galván-López, J. McDermott, M. O’Neill, and A. Brabazon, “Defin-
ing locality as a problem difficulty measure in genetic programming,”
Genetic Programming and Evolvable Machines, vol. 12, no. 4, pp. 365–
401, 2011.

[41] F. Rothlauf and M. Oetzel, “On the Locality of Grammatical Evolution,”
in Proceedings of European Conference on Genetic Programming, 2006,
pp. 320–330.

[42] K. Slaný and L. Sekanina, “Fitness Landscape Analysis and Image Filter
Evolution Using Functional-Level CGP,” in Proceedings of European
Conference on Genetic Programming, 2007, pp. 311–320.

[43] N. Haut, W. Banzhaf, and B. Punch, “Correlation Versus RMSE Loss
Functions in Symbolic Regression Tasks,” in Genetic Programming
Theory and Practice XIX, ser. Genetic and Evolutionary Computation.
Singapore: Springer Nature, 2023, pp. 31–55.

[44] Q. Chen, B. Xue, and W. Banzhaf, “Relieving Coefficient Learning in
Genetic Programming for Symbolic Regression via Correlation and Lin-
ear Scaling,” in Proceedings of Genetic and Evolutionary Computation
Conference, 2023, pp. 420–428.

[45] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Multitask Multiobjective
Genetic Programming for Automated Scheduling Heuristic Learning
in Dynamic Flexible Job-Shop Scheduling,” IEEE Transactions on
Cybernetics, pp. 1–14, 2022.

[46] T. Wei and J. Zhong, “A Preliminary Study of Knowledge Transfer in
Multi-Classification Using Gene Expression Programming,” Frontiers in
Neuroscience, vol. 13, no. January, pp. 1–14, 2020.

[47] Y. Bi, B. Xue, and M. Zhang, “Learning and Sharing: A Multitask
Genetic Programming Approach to Image Feature Learning,” IEEE
Transactions on Evolutionary Computation, vol. 26, no. 2, pp. 218–232,
2022.

[48] T. Helmuth, L. Spector, and J. Matheson, “Solving Uncompromising
Problems With Lexicase Selection,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 5, pp. 630–643, 2015.

[49] H. Zhang, Q. Chen, B. Xue, W. Banzhaf, and M. Zhang, “A Double
Lexicase Selection Operator for Bloat Control in Evolutionary Feature
Construction for Regression,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference, Jul. 2023, pp. 1194–1202.

[50] J. F. Miller, “An empirical study of the efficiency of learning boolean
functions using a Cartesian Genetic Programming approach,” Proceed-
ings of the Genetic and Evolutionary Computation Conference, vol. 2,
no. December, pp. 1135–1142, 1999.

[51] C. Ferreira, “Gene Expression Programming: a New Adaptive Algorithm
for Solving Problems,” Complex Systems, vol. 13, no. 2, pp. 87–129,
2001.

[52] L. F. D. P. Sotto, P. Kaufmann, T. Atkinson, R. Kalkreuth, and
M. Porto Basgalupp, “Graph representations in genetic programming,”

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

Genetic Programming and Evolvable Machines, vol. 22, no. 4, pp. 607–
636, 2021.

[53] M. Brameier and W. Banzhaf, Linear Genetic Programming. Springer
New York, NY, 2007.

[54] Z. Huang, Y. Mei, F. Zhang, and M. Zhang, “A Further Investigation to
Improve Linear Genetic Programming in Dynamic Job Shop Schedul-
ing,” in Proceedings of IEEE Symposium Series on Computational
Intelligence, Dec. 2022, pp. 496–503.

[55] F. Zhang, Y. Mei, S. Nguyen, and M. Zhang, “Evolving Scheduling
Heuristics via Genetic Programming with Feature Selection in Dynamic
Flexible Job-Shop Scheduling,” IEEE Transactions on Cybernetics,
vol. 51, no. 4, pp. 1797–1811, 2021.

[56] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Extending
Program Synthesis Grammars for Grammar-Guided Genetic Program-
ming,” in Parallel Problem Solving from Nature – PPSN XV, vol. 11101,
2018, pp. 197–208.

[57] C. S. Pereira, D. M. Dias, M. A. C. Pacheco, M. M. Vellasco, A. V. Abs
Da Cruz, and E. H. Hollmann, “Quantum-Inspired Genetic Programming
Algorithm for the Crude Oil Scheduling of a Real-World Refinery,”
IEEE Systems Journal, vol. 14, no. 3, pp. 3926–3937, 2020.

[58] Z. Huang, Y. Mei, F. Zhang, and M. Zhang, “Grammar-guided Linear
Genetic Programming for Dynamic Job Shop Scheduling,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference, New
York, NY, USA, Jul. 2023, pp. 1137–1145.

[59] L. F. D. P. Sotto and V. V. d. Melo, “Studying bloat control and main-
tenance of effective code in linear genetic programming for symbolic
regression,” Neurocomputing, vol. 180, pp. 79–93, 2016.

[60] T. Hu, G. Ochoa, and W. Banzhaf, “Phenotype Search Trajectory
Networks for Linear Genetic Programming,” in Proceedings of European
Conference on Genetic Programming, vol. 13986 LNCS, 2023, pp. 52–
67.

[61] Z. Huang, Y. Mei, F. Zhang, and M. Zhang, “Graph-based linear genetic
programming: a case study of dynamic scheduling,” in Proceedings of
the Genetic and Evolutionary Computation Conference, New York, NY,
USA, Jul. 2022, pp. 955–963.

[62] T. P. Pawlak, B. Wieloch, and K. Krawiec, “Semantic Backpropagation
for Designing Search Operators in Genetic Programming,” IEEE Trans-
actions on Evolutionary Computation, vol. 19, no. 3, pp. 326–340, 2015.

[63] T. P. Pawlak and K. Krawiec, “Competent Geometric Semantic Genetic
Programming for Symbolic Regression and Boolean Function Synthe-
sis,” Evolutionary Computation, vol. 26, no. 2, pp. 177–212, 2018.

[64] Z. Huang, Y. Mei, and J. Zhong, “Semantic Linear Genetic Programming
for Symbolic Regression,” IEEE Transactions on Cybernetics, pp. 1–14,
2022.

[65] J. Zhong, Y.-S. Ong, and W. Cai, “Self-Learning Gene Expression Pro-
gramming,” IEEE Transactions on Evolutionary Computation, vol. 20,
no. 1, pp. 65–80, 2016.

[66] L. F. D. P. Sotto, F. Rothlauf, V. V. de Melo, and M. P. Basgalupp, “An
analysis of the influence of noneffective instructions in linear genetic
programming,” Evolutionary Computation, vol. 30, no. 1, pp. 51–74,
2022.

[67] Z. Huang, Y. Mei, F. Zhang, and M. Zhang, “Toward Evolving Dis-
patching Rules With Flow Control Operations By Grammar-Guided
Linear Genetic Programming,” IEEE Transactions on Evolutionary
Computation, pp. 1–15, 2024.

Zhixing Huang received the B.S. and M.S. degrees
from the School of Computer Science and Engineer-
ing, South China University of Technology, China,
in 2018 and 2020, respectively, and received his
Ph.D degree from the School of Engineering and
Computer Science, Victoria University of Welling-
ton, New Zealand, in 2024. He is currently a post-
doctoral fellow in Artificial Intelligence with the
Centre of Data Science and AI & the School of
Engineering and Computer Science, Victoria Uni-
versity of Wellington, New Zealand. His research

interests include evolutionary computation (e.g., genetic programming and its
applications), combinatorial optimization, and evolutionary learning.

Dr. Huang is a member of the IEEE Computational Intelligence Society and
IEEE Taskforce on Evolutionary Scheduling and Combinatorial Optimisation.
He has been serving as a reviewer for top international journals such as the
IEEE Transactions on Evolutionary Computation and the IEEE Transactions
on Neural Networks and Learning Systems.

Yi Mei received his BSc and PhD degrees from
the University of Science and Technology of China
in 2005 and 2010, respectively. He is currently an
Associate Professor at the School of Engineering and
Computer Science, Victoria University of Welling-
ton, Wellington, New Zealand. His research inter-
ests include evolutionary computation and machine
learning for combinatorial optimisation, genetic pro-
gramming, hyper-heuristics, and explainable AI. He
is an Associate Editor of IEEE Transactions on
Evolutionary Computation, IEEE Transactions on

Artificial Intelligence, and Journal of Scheduling. He is the Chair of IEEE
Taskforce on Evolutionary Scheduling and Combinatorial Optimisation. He is
a Fellow of Engineering New Zealand and an IEEE Senior Member.

Fangfang Zhang received the B.Sc. and M.Sc. de-
grees from Shenzhen University, China, and the PhD
degree in Computer Science from Victoria Univer-
sity of Wellington, New Zealand, in 2014, 2017, and
2021, respectively. Her PhD thesis received the ACM
SIGEVO Dissertation Award, Honorable Mention,
and IEEE CIS Outstanding PhD Dissertation Award.
She is currently a lecturer in the Centre for Data
Science and Artifical Intelligence & School of En-
gineering and Computer Science, Victoria University
of Wellington, New Zealand. Her research interests

include evolutionary computation, hyper-heuristic learning/optimisation, job
shop scheduling, surrogate, and multitask learning.

Dr Fangfang is an Associate Editor of IEEE Transactions on Evolutionary
Computation, Expert Systems With Applications, and Swarm and Evolution-
ary Computation. She is a Vice-Chair of the Task Force on Evolutionary
Scheduling and Combinatorial Optimisation. She is the Vice-Chair of IEEE
New Zealand Central Section.

Mengjie Zhang (M’04-SM’10-F’19) received his
PhD degree in computer science from RMIT Uni-
versity, Melbourne, Australia, in 2000. He is cur-
rently a Professor of Computer Science, the Di-
rector of Centre for Data Science and Artificial
Intelligence, Victoria University of Wellington, New
Zealand. His current research interests include evo-
lutionary machine learning, genetic programming,
image analysis, feature selection and reduction, job
shop scheduling, and evolutionary deep learning and
transfer learning. He has published over 800 research

papers in refereed international journals and conferences. He is a Fellow of
the Royal Society of New Zealand, a Fellow of Engineering New Zealand, a
Fellow of IEEE, and an IEEE Distinguished Lecturer.

Wolfgang Banzhaf received the Dr.rer.nat (Ph.D.)
degree from the Department of Physics, Technische
Hochschule Karlsruhe (currently, Karlsruhe Institute
of Technology), Karlsruhe, Germany, in 1985. He
was the University Research Professor with the De-
partment of Computer Science, Memorial University
of Newfoundland, St. John’s, NL, Canada, where he
served as the Head of Department from 2003 to 2009
and from 2012 to 2016. He is the John R. Koza
Chair of Genetic Programming with the Department
of Computer Science and Engineering and a member

of the BEACON Center for the Study of Evolution in Action, Michigan
State University, East Lansing, MI, USA. Studies of self-organization and
the field of Artificial Life are also of very much interest to him. He has
become more involved with network research as it applies to natural and man-
made systems. His research interests are in the field of bioinspired computing,
notably evolutionary computation, and complex adaptive systems.

This article has been accepted for publication in IEEE Transactions on Evolutionary Computation. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2024.3525006

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Michigan State University. Downloaded on June 24,2025 at 07:38:19 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Background
	Problem Definition of Stochastic Symbolic Search
	Fitness Landscape in Genetic Programming
	Improving Fitness Landscapes in Genetic Programming
	Fitness Functions
	Solution Spaces
	Neighborhood Structures

	Linear Genetic Programming

	Fitness Landscape Optimization
	Main Idea
	Overall Framework
	Optimization Objectives
	Inner Distance between Good Solutions
	Inter Distance between Good and Bad Solutions
	Domain Knowledge Consistency

	Stochastic Gradient Descent
	Applying FLO to LGP

	Experiment Design
	Performance Measure
	Test Problems
	Compared Methods
	Parameter Settings

	Experiment Results
	FL Hardness
	Metrics Over Generations
	Pattern Analyses on FLs
	Aggregating Solutions with Different Fitness
	Fitness Aligning
	Diagonal Symmetry

	Further Analysis
	Test Performance on common Benchmarks
	Parameter Sensitivity

	Conclusions
	References
	Biographies
	Zhixing Huang
	Yi Mei
	Fangfang Zhang
	Mengjie Zhang (M’04-SM’10-F’19)
	Wolfgang Banzhaf

