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1 INTRODUCTION

Since its origin more than two millennia ago, epistemological thinking in the West
has been driven by a desire to find a way to certify knowledge as certain. Mathemat-
ics and logic seemed to offer a template for certainty, and as a consequence, modern
science as it emerged from the work of scholars like Galileo and Newton aimed
as much as possible for mathematical formalization. But by the beginning of the
twentieth century the certainty of logic and mathematics was no longer an unques-
tioned truth: it had become a research question. From paradoxes in the foundations
of logic and mathematics to equations with solutions that are in a sense unknowable,
certainty had begun to seem rather uncertain. By the 1930s, as mathematicians and
logicians grappled with the problem of formalisation, they found themselves being
forced to look beyond formal systems, and to contemplate the possibility that the
solution was of a different nature than they had imagined, that the answers lay in
the realm of the living, creative world — the world of uncertainty. Although they
did not systematically pursue this line of thought, we believe that their intuition was
essentially correct, and it serves as our starting point.

The basic reason for the failure of the formalisation programme, we contend,
has to do with the inherent nature of logic and mathematics, the very quality that
makes these fields so attractive as the source of certainty: their timelessness. Logic
and mathematics, as formal systems, exist outside of time; hence their truths are

Roger White
Department of Geography, Memorial University of Newfoundland
St. John’s, NL, A1B 3X9, CANADA
e-mail: roger@mun.ca

Wolfgang Banzhaf
BEACON Center for the Study of Evolution in Action and Department of Computer Science and
Engineering, Michigan State University
East Lansing, MI, 48824, USA
e-mail: banzhafw@msu.edu

1



2 Roger White and Wolfgang Banzhaf

timeless – they are eternal and certain. But because they exclude time, they are
unable to represent one of the most fundamental characteristics of the world: its
creativity, its ability to generate novel structures, processes, and entities.

Bergson [4], by the beginning of the twentieth century, was already deeply both-
ered by the inability of mathematics and formal science to handle the creativity that
is ubiquitous in the living world, and he believed that this was due to the use of
“abstract” time — a representation of time — rather than “concrete” or real time.
In spite of his perceptive analysis of the problem, however, he saw no real solu-
tion. In effect mathematics and the hard sciences would be unable to address the
phenomenon of life because there was no way they could embody real or natural
time1 in their formal and theoretical structures. Real time could only be intuited,
and intuition fell outside the realm of hard science. This view had been anticipated
by Goethe [1, 12], who took metamorphosis as the fundamental feature of nature.
Implicitly recognising that formal systems could not encompass metamorphosis, he
proposed a scientific methodology based on the development of an intuition of the
phenomena by means of immersion in them. A recent echo of Bergson is found in
the work of Latour [10], who argues that existence involves continuous re-creation
in real (natural) time, while the representations of science short-circuit this process
of constructive transformation by enabling direct jumps to conclusions. He cleverly
refers to this time-eliminating aspect of science as “double clic”.

The solution to the problem of time, we believe, is to re-introduce real, natural
time into formal systems. Bergson did not believe there was any way of doing this,
because science was essentially tied to mathematics or other systems of abstrac-
tion which seemed always to eliminate real time. Today, however, we can introduce
real or natural time into our formal systems by representing the systems as algo-
rithms and executing them on a computer, which because it operates in natural time,
introduces natural time into the algorithm. The answer, in other words, lies in com-
puting. (In this chapter we will normally use the expression natural time rather than
real time in order to avoid confusion with the common use of the latter expression
to refer to something happening immediately, as in ”a real time solution”.)

This contribution will develop the argument that various difficulties that arise in
logic and formal scientific modelling point to the necessity of introducing natural
time itself into our formal treatment of science, mathematics, and logic. We first
discuss some of the difficulties in logic and scientific theory that arise either from
a failure to include time in the formal system, or if it is included, from the way it
is represented. We then provide examples of the explanatory power that becomes
available with the introduction of natural time into formal systems. Finally, the last
part of the contribution offers an outline of the way forward.

1 While time as a parameter has been used in mathematical tools, this amounts to merely a repre-
sentation of time.
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2 THE ROLE OF TIME IN MATHEMATICS AND SCIENCE

By the end of the nineteenth century the question of the certainty of mathematics it-
self was being raised. This led initially to efforts to show that mathematics could be
formalised as a logical system. Problems in the form of paradox soon emerged in this
programme, and those difficulties in turn led to attempts to demonstrate that the pro-
gramme was at least feasible in principle. However those attempts also failed when it
was proven that mathematics must contain unprovable or undecidable propositions.
The result was that mathematics came to resemble an archipelago of certainties sur-
rounded by a sea of logically necessary uncertainty. Moreover, with the discovery of
the phenomenon of deterministic chaos emerging in the classic three body problem,
uncertainties emerged even within the islands of established mathematics. Mean-
while, in physics, while thermodynamics had long seemed to be somehow problem-
atic because of the nature of entropy, at least it produced deterministic laws. During
the second half of the 20th century, however, it was shown by Prigogine [15, 17]
and others [13] that these laws are special cases, and that there are no laws gov-
erning most phenomena arising in such systems, because the phenomena of interest
arise when the systems are far from thermodynamic equilibrium, whereas the laws
describe the equilibrium state. At the same time, in biology, there was a growing
realisation that living systems exist in the energetic realm in which the traditional
laws of thermodynamics are of only limited use. And with the discovery that DNA
is the genetic material of life, much of biology was transformed into what might be
termed the informatics of life.

All of these developments have in common that they introduced, irrevocably and
in a radical way, uncertainty and unpredictability into mathematics and science.
They also have in common that they arose from attempts to ensure certainty and
predictability by keeping time, real time, out of the formal explanatory systems. To
a large extent, in the practice of everyday science, these developments have been
ignored. Science continues to focus on those areas where certainty seems to be at-
tainable. However, many of the most interesting and important problems are ones
that grow out of the uncertainties that have been uncovered over the past century:
problems like the origin and nature of life, the nature of creative processes, and the
origin of novel processes and entities. These tend to be treated discursively rather
than scientifically. However, we believe that it is now possible to develop formal
treatments of problems like these by including time — real, natural time rather than
any formal representation of it — in the explanatory mechanism. This will also mean
recognising that a certain degree of uncertainty and unpredictability is inherent in
any scientific treatment of these problems. But that would be a strength rather than a
failure, because uncertainty and indeterminacy are inherent characteristics of these
systems, and so any explanatory mechanism that doesn’t generate an appropriate de-
gree of unpredictability is a misrepresentation. Creativity itself cannot be timeless,
but it relies on the timeless laws of physics and chemistry to produce new phenom-
ena that transcend those laws without violating them. In the next four sections we
discuss in more detail the role of time in the treatment of paradox, incompleteness,
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uncertainty, and emergence in order to justify the necessity of including natural time
itself rather than formal time in our explanatory systems.

2.1 Paradox

By the end of the 19th century the desire to show that mathematics is certain had
led to Hilbert’s programme to show that mathematics could be recast as a syntac-
tical system, one in which all operations were strictly “mechanical” and semantics
played a minimal role. In this spirit, Frege, Russell and Whitehead reduced several
branches of mathematics to logic, thus apparently justifying the belief that the pro-
gramme was feasible. However, Russell’s work produced a paradox in set theory
that ultimately raised doubts about it. Russell’s paradox asks if the set of all sets that
do not contain themselves contains itself. Paradoxically, if it doesn’t, then it does;
if it does, then it doesn’t. Several solutions have been proposed to rid logic of this
paradox, but there is still some debate as to whether any of them is satisfactory [8].

The paradox seems to emerge because of the time-free nature of logic. If we
treat the process described in the analysis as an algorithm and execute it, then the
output is an endless oscillation. Does the set contain itself? First it doesn’t, then it
does, then it doesn’t, . . . . There is no contradiction. This oscillation depends on our
working in discontinuous time — in this case the time of the computer’s clock. We
can in principle make the clock speed arbitrarily fast, but if we could go to the limit
of continuous time in operating the computer we would see the paradox re-emerge
as something analogous to a quantum superposition: since the superposition endures
it doesn’t depend on time, and independent of time, the value is always both ’does’
and ’doesn’t’. However, if we were to observe the state of the system at a particular
instant, the superposition would collapse to a definite but arbitrary value — “does”
or “doesn’t” — just as Schroedinger’s famous cat is only definitively alive or dead
when the box is opened.

Of course a computer must work with a finite clock speed and so the paradox
cannot appear. This resolution of the paradox by casting it as an algorithm to be
executed in natural time emphasizes the difference between the existence of a set
and the process of constructing the set, a difference that echoes Prigogine’s [15], [17,
p. 320] distinction between being and becoming. In the algorithmic construction of
the set, the size of the set oscillates between n and n+ 1, sizes that correspond to
“doesn’t” and “does”. Most well known paradoxes are similar to Russell’s in that
they involve self-reference. However, Yablo [29, pp. 24-25] has demonstrated one
that is non-self-referential; but it, too, yields an oscillation (true, false, true, false
. . . ) if executed as an algorithm.
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2.2 Incompleteness

Whereas Russell discovered a paradox that cast doubt on the possibility of demon-
strating that mathematics is a purely syntactical system, both Gödel and Turing came
up with proofs that even to the extent that it is syntactical, it is impossible to demon-
strate that it is. Gödel showed that even for a relatively limited deductive system
there were true statements that couldn’t be proven true within the system. In order
to prove those statements, the system would have to be enlarged in some way, for ex-
ample with additional axioms. But in this enlarged system there would again appear
true statements that were not provable within it. This result highlighted the degree
to which mathematics as it existed depended not only on axioms and logical deduc-
tion — that is, syntax — but also on the products of what was called mathematical
intuition — the source of new concepts and procedures introduced to deal with new
problems or problems that were otherwise intractable. In other words, mathematics
was progressively extended by constructions based on these intuitions. The intu-
itions came with semantic content, which Gödel’s result implicitly suggested could
not be eliminated, even in principle.

But there was another problem. Gödel, like Hilbert, thought of deduction as a
mechanical procedure; thus the idea of certainty was closely linked to the idea of
a machine operating in a completely predictable manner. Of course at the time the
idea was metaphorical; the deductions would actually be carried out by a person (the
person was invariably referred to as a computer), but for the results to be reliable,
the person would have to follow without error a precise sequence of operations that
would yield the desired result; in other words, for each deduction the person would
have to execute an algorithm. Thus the algorithm was implicitly part of the logical
apparatus used to generate mathematics. It was clear to Turing and Church that a
formal understanding of the nature of these algorithms was necessary. To that end
Turing formulated what is now known as the Turing machine (at the time, of course
— 1937 — it was purely conceptual), and at about the same time Church developed
an equivalent approach, the lambda calculus. An algorithm was considered legiti-
mate as a procedure if it could be described as a Turing machine or formulated in
the lambda calculus. Each algorithm corresponded to a particular Turing machine.
A Turing machine was required to have a finite number of states, and a proof calcu-
lated on the machine would need to finish in a finite number of steps. By proving that
it could not in general be shown whether or not algorithms would execute in a finite
number of steps (the halting problem), Turing demonstrated, in results analogous to
Gödel’s, that some propositions were not provable. Church arrived at the same result
using his lambda calculus. The results of Gödel, Turing, and Church showing that
it is impossible to prove that a consistent mathematical system is also complete are
complementary to Russell’s discovery of the paradox in set theory, which suggests
that an attempt to make a formal system complete will introduce an inconsistency.

Turing presumably imposed the restrictions of finite machine states and finite
steps in order to ensure that Turing machines would be close analogues of the re-
cursive equations which were the standard at that time for computing proofs. These
restrictions on the Turing machine were necessary conditions for proof, but as his



6 Roger White and Wolfgang Banzhaf

results showed, they did not amount to sufficient conditions. In making these as-
sumptions he effectively restricted the machines to producing time-free results. This
was entirely reasonable given that his goal was to formalize a procedure for produc-
ing mathematical results which were themselves timeless. Nevertheless he found
the restrictions to be somewhat problematic, as did Church and Gödel, because they
meant that a Turing machine could not capture the generation of the new concepts
and procedures that flowed from the exercise of mathematical intuition by mathe-
maticians. There was much informal discussion of this issue, including possibilities
for circumventing the limitations. Turing suggested that no single system of logic
could include all methods of proof, and so a number of systems would be required
for comprehensive results. Stating this thought in terms of Turing machines, he sug-
gested a multiple machine theory of mind — mind because he was still thinking of
the computer as a person, and the machine as the algorithm that the person would
follow mechanically. The multiple machine idea was that Turing machines would be
chained, so that different algorithms would be executed sequentially, thus overcom-
ing some of the limitations of the simple Turing machine. How would the sequence
be determined? Initially the idea was that it would be specified by the mathemati-
cian, but subsequently other methods were proposed, ranging from stochastic choice
to a situation in which each machine would choose the subsequent machine. Even-
tually Turing proposed that learning could provide the basis of choice. He observed
that mathematics advances by means of mathematicians exercising mathematical
intuition, which they then use to create new mathematics, a process he thought of as
learning. He then imagined a machine that could learn by experience, by means of
altering its own algorithms. (Copeland and Shagrir, 2015)

Time had been kept out of mathematics by defining it as consisting only of the
achieved corpus of results and ignoring the process by which those results were
generated. Turing and Church took a first step toward including the process by for-
malizing the treatment of the algorithms by which proofs were derived. But this did
not seem to them (or others) to be sufficient, because it did not capture the deeply
creative nature of mathematics as seen in the continual introduction of new con-
cepts and procedures that established whole new areas of mathematics. We might
interpret the journey from Turing algorithm to learning as an implicit recognition of
the necessity of natural time in mathematics. On the other hand, while Turing had
formalized the proof process in terms of a machine which would have to operate in
natural time, the machine was defined in such a way that the results that it produced
would be time free. Thus in postulating strategies like chained Turing machines to
represent learning, he probably assumed that the results would also be time free.
However, if mathematics is understood to include the process by which it is created,
it will have to involve natural time, even if the result of that creative process is time
free. While Turing spoke of learning, a more appropriate term might be creativity,
and creativity — the emergence of something new — necessarily involves time.
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2.3 Uncertainty

But is mathematics, in the narrower sense of established results, really entirely time-
less? Perhaps. But there is at least one small part of it — deterministic chaos —
that seems to be trying to break free and take up residence in natural time. The
phenomenon was discovered by Henri Poincaré at the beginning of the twentieth
century as he attempted to solve the Newtonian three-body problem. An equation
that exhibits deterministic chaotic dynamics can, up to a point, be treated as a time-
less structure and its properties investigated using standard mathematical techniques
(some invented by Poincaré for this purpose). It has been shown, for example, that
the attractor is a fractal object, and therefore infinitely complicated. As a conse-
quence the solution trajectory cannot be written explicitly. It can, however, be cal-
culated numerically — but only up to a point: since the attractor, as a fractal, is
infinitely complex, we can never know exactly where the system is on it, and hence
cannot predict the future states of the system.

Take one of the simplest possible cases, the difference equation version of the
logistic function:

Xt+1 = rXt(1−Xt) with 0 < Xt < 1 and 0 < r < 4.

Solving the equation for X as a function of t we have

X∗ = 1−1/r

This solution is stable for r ≤ 3; otherwise it is oscillatory. For r > 3.57 ap-
proximately, the oscillations are infinitely complex; i.e. the dynamics are chaotic.
Since the solution cannot be written explicitly, to see what it looks like we calculate
successive values of X , while recognizing that these values become increasingly ap-
proximate, and soon become entirely arbitrary — that is, they become unpredictable
even though the equation generating them is deterministic. This can be dismissed as
simply due to the rounding errors that result from the finite precision of the com-
puter, but it is actually a consequence of the interaction of the rounding errors with
the fractal nature of the attractor. The rate at which the values evolve from precise
to arbitrary is described by the Lyapunov exponent. So while the system may look
well defined and timeless from an analytical point of view because the attractor de-
termines the complete behaviour of the system, in fact the attractor is unknowable
analytically, and can only be known (and only in a very limited way) by iterating
the equation, or by other iterative techniques such as the one developed by Poincaré.
The iterations take place in time, and so it seems that at least some of our knowledge
of the behaviour of the equation necessarily involves natural time. Note that a phys-
ical process characterised by chaotic dynamics must also be unpredictable in the
long run, because as the process “executes” it will be following a fractal attractor,
and the physical system that is executing the process, being finite, will be subject to
“rounding errors”, which in effect act as a stochastic perturbation. In other words,
the resolution that can be achieved by the physical system is less than that of the at-
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tractor. This is the case with the three body problem that Poincaré was working on,
and the reason that the planetary trajectories of the solar system are unpredictable
at timescales beyond a hundred million years or so. It is also, in Prigogine’s (1997)
view, the fundamental reason for the unpredictability of thermodynamic systems
at the microscopic level (Laplace’s demon cannot do the math well enough), and
also a necessary factor in macroscopic self-organization in that the unpredictability
permits symmetry breaking—Prigogine calls this order by fluctuations.

With chaotic systems, then, we lose the promise that mathematics has tradition-
ally provided of a precise, God’s eye view over all time, and thus of certainty and
predictability. We are left only with calculations in natural time that give us rapidly
decreasing accuracy and hence increasing unpredictability. But from some points
of view this is not necessarily a problem. As Turing speculated in his discussion of
learning, learning requires trial and error, which would be pointless in a perfectly
predictable world, and specifically it requires an element of stochasticity. Many oth-
ers have made the same observation – that stochasticity seems to be a necessary
element in any creative process. In physical systems stochastic perturbations are the
basis of the symmetry breaking by which systems become increasingly complex and
organized. Chaotic dynamics may thus play a positive role by providing a necessary
source of stochasticity in physical, biological, and human systems.

Physics, with the major exception of thermodynamics (together with two very
specific cases in particle physics: CPT and a case of a heavy-fermion superconduc-
tor [20]), is characterized by laws that are “time reversible” in the sense that they
remain valid if time runs backward. In other words, time can be treated as a vari-
able, t, and the laws remain valid when −t is substituted for t. This is referred to
by some (e.g. [22]) as spatialized time, because we can travel in both directions in
it, as we can in space. Spatialized time is a conceptualization and representation of
natural time, whereas natural time is the time in which we and the world exist, inde-
pendently of any representation of it. Spatializing time is thus a way of eliminating
natural time by substituting a model for the real thing. The physics of spatialized
time is essentially a timeless physics, since we have access to the entire corpus of
physical laws in the same sense that we have access to the entire body of timeless
mathematics.

The fact that time can be treated as a variable permits the spectacularly accu-
rate predictions that flow from physical theory: the equations can be solved to show
the state of the system as a function of time, and thus the state at any particular
time, whether past, present or future. This physics is in a deep sense deterministic.
This is true even of quantum physics, where, as Prigogine [16] points out, the wave
function evolves deterministically; uncertainty appears only when the wave func-
tion collapses as a result of observation. The determinism of spatialized time is the
basis of Einstein’s famous remark that “for us convinced physicists, the distinction
between past, present and future is an illusion, although a persistent one” (as quoted
in [16, p. 165]). His point was that time as we experience it flowing inexorably and
irreversibly is an illusion; in relativistic space-time, the reality that underlies our
daily illusory existence, we have access to all times. However, Prigogine [16] points
out that the space-time of relativity is not necessarily spatialized; that is just the con-
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ventional interpretation. In any case, because it is apparently timeless, the physics of
quantum theory and relativity is understood to represent our closest approximation
to certain knowledge of the world.

Thermodynamics represents a rude exception to this timelessly serene picture.
Here time has a direction, and when it is reversed the physics doesn’t work quite
the same way. In the forward direction of time, the entropy of an isolated system in-
creases until it reaches the maximum possible value given local constraints. In this
sense the system is predictable. But when time is reversed, so that entropy is progres-
sively lowered, the system becomes unpredictable, because, as Prigogine showed,
when the entropy of a system is lowered, an increasing number of possible states ap-
pears, states that are macroscopically quite distinct but have similar entropy levels.
But only one of these can actually exist, and in general we have no certain way of
knowing which one that will be. The same phenomenon appears in reversed compu-
tation. In other words the reversed time future is characterized by a bifurcation tree
of possibilities. Its future is open; it is no longer deterministic or fully predictable,
but rather path dependent. This discussion of reversed time futures applies to iso-
lated systems, the ones for which thermodynamic theory was developed. However,
we do not live in an isolated system. Our planet is bathed in solar energy, which
keeps it far from equilibrium, and we supplement this with increasing amounts of
energy from other sources. Thus our open-system world is equivalent to a reversed
time, isolated-system world. It is a world of path dependency and open futures of a
self-organizing system.

The open futures of these systems is a source of unpredictability or uncertainty,
just as is the uncertainty arising from chaotic dynamics, and the two work together.
In both of these situations in which unpredictability appears, time continues to be
treated as a variable, but in the case of far from equilibrium systems the behaviour is
time asymmetric: if we treat decreasing entropy as equivalent to time reversal, phys-
ical systems are deterministic in +t but undetermined in −t. In the case of chaotic
systems, while the process may be mathematically deterministic in both +t and −t,
the outcome is undetermined for both directions of time. In both cases, since a math-
ematical treatment of the phenomenon is of limited use, the preferred approach is
computational. This is not just a pragmatic choice. It reflects the poverty of spatial-
ized time compared to the possibilities offered by real time. Whereas physics, with
the major exception of thermodynamics, is based on the assumption that spatialized
time captures all the characteristics of time that are essential for a scientific under-
standing of the world, natural time involves no assumptions. It is simply itself. A
computer can only implement an algorithm step by step, in natural time. As a con-
sequence, algorithms as they are executed do not depend on any conceptualization
or representation of time beyond a working assumption that time is discontinuous or
quantized, rather than continuous, an assumption imposed by the computer’s clock.
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2.4 Emergence

Far from equilibrium, self-organizing systems are the ones that we live in; our planet
is essentially a spherical bundle of such systems. The dynamics of plate tectonics
is driven by energy generated by radioactive decay in the earth’s core; the complex
behaviour of the oceans and atmosphere is driven by the flux of solar energy; and
life itself, including human societies, also depends on the continuous input of en-
ergy from the sun. Self-organization is a kind of emergence — it is the process by
which an organized structure or pattern emerges from the collective dynamics of the
individual objects making up the system, whether these are molecules of nitrogen
and oxygen organizing themselves into a cyclonic storm or individual people mov-
ing together to form an urban settlement. However, as the phrase self-organization
suggests, there is no prior specification of the form that is to emerge, and because
of the inherent indeterminacy of far-from equilibrium systems, there is always a
degree of uncertainty as to exactly what form will appear, as well as where and
when it will emerge. These forms are essentially just patterns in the collection of
their constituent particles or objects. Unlike their constituent objects, they have no
existence as independent entities, and they cannot, simply as patterns, act on their
environment — in other words, they have no agency. For this reason the emergence
of self-organized systems is called soft or weak emergence.

Strong emergence, on the other hand, refers to the appearance of new objects,
or new types of objects, in the system. We can identify three levels of strong emer-
gence:

1. In high energy physics, forces and particles emerge through symmetry break-
ing. Unlike the increasing energy input required to drive self-organization, this
process occurs as free energy in the system decreases and entropy increases.

2. At relatively moderate energy levels, physical systems produce an increasing
variety of chemical compounds. These molecules have an independent exis-
tence and distinctive properties, like a characteristic colour of solubility in wa-
ter, that are not simply the sum of the characteristics of their constituent atoms.
They also have a kind of passive agency: for example, they can interact with
each other chemically to produce new molecules with new properties, like a
new colour. Of course they can also interact physically, by means of collisions,
to produce weak emergence, for example in the form of a convection cell or
a cyclonic storm. But chemical reactions can result in the simultaneous occur-
rence of both strong and weak emergence, as when reacting molecules and their
products generate the macroscopic self-organized spiral patterns of the Belosov-
Zhabotinsky reaction. The production of a particular molecule may either use
or produce free energy, i.e. it may be either entropy increasing or entropy de-
creasing.

3. Also at relatively moderate energy levels, living systems emerge through chem-
ical processes, but also through self-assembly of larger structures (cells, organs,
organisms). The key characteristic of this level of strong emergence is that the
process is initiated and guided by an endogenous model of the system and its
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relationship with its environment. While in (1) and (2) emergence is determined
by the laws of physics, in this case it is determined by the relevant models work-
ing together with the laws of physics and chemistry. We include in living sys-
tems the meta-systems of life such as ecological, social, political, technological,
and economic systems.

It is this third kind of strong emergence, the kind that depends on and is guided
by models, that is the focus of our interest. Nevertheless the weak emergence of self-
organizing systems remains important in the context of strong emergence, because
a process of strong emergence, as in the case of the development of a fertilised egg
into a mature multi-cellular individual, often makes use of local self-organization.
Furthermore, self-organized structures are often the precursors of individuals with
agency, making the transition by means of a process of reification, as when a self-
organized settlement is incorporated as a city, a process that endows it with inde-
pendent agency. In general, while self-organized systems are forced to a state of
lower entropy by an exogenously determined flux of energy, living systems create
and maintain their organized structures in order to proactively import energy and
thus maintain a state of lower entropy. The causal circularity is a characteristic of
such systems.

Model based systems are a qualitatively new type. The models provide context
dependent rules of behaviour that supplement the effects of the laws of physics and
chemistry. Of course we can always reduce the structures that act as the models to
their basic chemical components in order to understand, for example, the chemical
structure of DNA or the chemistry of the synapses in a network of neurons, and there
are good reasons for doing this: it allows us to understand the underlying physical
mechanisms by which the model — and by extension the system of which it is a
part — functions. But this reduction to chemistry and physics tells us nothing about
how or why the system as a whole exists. These questions can only be answered at
the level of the model considered as a model, because it is the model that guides
the creation and functioning of the system of which it is a part. In other words, the
reductionist programme reveals the syntax of the system, but tells us nothing of the
semantics. It is the rules of behaviour of the system as a whole, rules provided by
the model, that determine the actions of the system in its environment, and thus,
ultimately, its success in terms of reproduction or survival. Part of the semantic
content of the model is therefore the teleonomic goal of survival. The teleonomy
is the result of the evolutionary process that produced the system. In this sense
evolution is the ultimate source of semantics: as Dobzhansky said in the famous title
of his paper, ”Nothing in biology makes sense except in the light of evolution” [5].
The mathematical biologist Robert Rosen [18][19] speculated that life, rather than
being a special case of physics and chemistry, in fact represents a generalization
of those fields, in the sense that a scientific explanation of life would reveal new
physics and chemistry. In other words the models inherent in living systems could
be seen as new physics and chemistry: they introduce semantics as an emergent
property of physico-chemical systems.
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2.4.1 Models

An interesting and useful definition of life, due to Rosen [18], is that life consists of
entities that contain models of themselves, that is, entities that exist and function by
virtue of the models they contain. The most basic model is that coded in DNA. But
neural systems also contain models, some of them, as we know, very elaborate. And
of course some models are stored in external media such as books and computers.
These three loci of models correspond to the three worlds of Karl Popper: World 1 is
the world of physical existence, World 2 corresponds to mental phenomena or ideas;
and World 3 consists of the externally stored and manipulated representations of the
ideas. Worlds 2 and 3 are not generally considered by scientists to be constituents
of the world that science seeks to explain. However, as Popper points out, they are
in fact part of it, and exert causal powers on World 1 [14]. The implication is that
a scientific understanding of biological and social phenomena requires not just an
analysis at the level of physical and chemical causation, but also consideration of
the causal role of meaning, or more specifically, meaning as embodied in models.
Thus semantics re-enters the picture in a fundamental way.

A model that is a part of a living system must be a formal structure with seman-
tics, not just syntax. It can function as a model only by virtue of its semantic content,
since in order to be a model it must represent another system, a system of which,
in the case of living organisms, it is itself usually a part. The modelled system thus
provides the model with its semantic content. As Rosen points out, this contradicts
the orthodox position of reductionist science (and in particular of Newtonian parti-
cle physics) that “every material behaviour [can] be...reduced to purely syntactical
sequences of configurations in an underlying system of particles” [19, p.68; see also
p.46ff].

Non-living systems lack semantics; they might thus be characterised as identity
models of themselves, or zero-order models. Models associated with living organ-
isms (e.g. DNA or an idea of self) would then be first order models. And some
scientific models, those that are models of models (e.g. a mathematical model of
DNA), would be second order models. This chapter is concerned with first order
models.

We propose the following definition:

a is a first order model of A, i.e. a is a functional representation of A (a r A), if

1. a is a structure (not just a collection) of appropriate elements in some medium,
whether chemical (e.g. a DNA molecule composed of amino acids), cellular
(e.g. a synaptic structure in a network of neurons), or symbolic (e.g. a program
composed of legitimate statements in some programming language).

2. The structure a can act as an algorithm when executed on some suitable machine
M, where M may be either separate from A (e.g. a computer running a model
of an economic system), or some part of A (e.g. a bacterial cell running the
behavioural model coded in its DNA);
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3. The output of the algorithm corresponds to or consists of some characteristics
of A. Specifically:
(a) Given a suitable environment, a running on M can create a new instance of
A (e.g. in the environment provided by a warm egg, the DNA being run by the
egg cell containing the DNA can create a new instance of the kind of organism
that produced the egg).
(b) a can guide the behaviour of A in response to certain changes in the state
of the environment (e.g. on the arrival of night, go to your nest; if inflation is
greater than 3 percent, raise the interest rate).

4. 3(a) and 3(b) are evolved (or in human World 3 systems, designed) capabilities
or functions that in general serve to maximise the chance of survival of A.

5. If A is a living organism, r is an emergent property of the underlying physical
and chemical systems.

First (and higher) order models are essentially predictive. Although the output
of a when executed on M is literally a response to a current condition c which
represents input to a, because of the evolutionary history of a that brought it into
existence, the behaviour of A in response to a is actually a response to a future,
potentially detrimental, condition c’ predicted by a; in other words, on the basis of
the current condition c, a predicts that c’ will occur, and as a consequence produces
a response in A intended to prevent the occurrence of c’ or mitigate its impact. Thus
a acts as a predictive algorithm, and guides the behaviour of A on the basis of its
predictions.

The model a is thus rich in time. It involves both past time (the time in which it
evolved) and future time (the time of its prediction), as well as, during execution,
the natural time of the present. This reminds us of Bergson’s [4, p.20] observation
regarding natural (”concrete”) time: ”the whole of the past goes into the making
of the living being’s present moment.” Only if we know already about evolution as
a process can we see the three times present in a. Only by virtue of being such a
system ourselves do we have the ability to perceive its purpose.

In this three-time aspect, a as it represents A is fundamentally different from a
purely chemical or physical phenomenon in the conventional sense. It has semantic
content which would be eliminated by any possible reduction to the purely mechan-
ical causation of chemical and physical events. From a reductionist standpoint we
would see only chemical reactions, nothing of representation, purpose, past, or an-
ticipation. On the other hand, since a does actually have this semantic content, that
content must emerge in the chemical system itself. It does so by virtue of the re-
lationship between the part of the system that constitutes a and the larger system
that is being modelled, just as a molecular property like solubility in water emerges
from interactions among the atoms making up the molecule. In this sense Rosen
was correct that life represents a radical extension of chemistry and physics: at no
point do we require a vital principle or a soul to breathe semantics, or even life, into
chemistry.

In the specific case of DNA, as a molecule it is essentially fixed from the point of
view of the organism: over that timescale, as a molecule, it is timeless. But natural
time appears as the organism develops following conception, when various genes
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are turned on or off, and this behaviour continues in the fully developed organism
as its interactions with the environment are guided by various contingently activated
combinations of genes. In that sense DNA acts as a model that changes as a result
of its interactions with the modelled system of which it is a part. This is reminiscent
of the chained Turing machines proposed by Turing to permit creativity. Neural
models, in contrast, lack a comprehensive fixed structure analogous to that of DNA;
they are open ended and develop or change continually as a result of interactions
with their host organism and the environment. But in both cases, as a computational
system, life is essentially a case of open ended computation.

2.4.2 Information

The model of a system represents information, and its role in the functioning of the
system depends on its being treated as information by the system. Note that this is
information in the sense of semantics, or meaningful information, rather than Shan-
non information, which is semantics-free and represents information capacity or
potential information. In other words, we could say that while semantics represents
the content or meaning of information, Shannon information represents its quan-
tity, and syntax represents its structure. Shannon information is maximised when a
system is in its maximum entropy state. In the case of a self-organized system, the
macro-scale pattern constrains the behaviour of the constituent particles so that the
system’s entropy and hence its Shannon information is less than it would be if its
particles were unconstrained by the self-organized structures.

We do not know of a measure of semantic information; it seems unlikely that
such a measure could even be defined. Nevertheless, it seems that the model is the
means by which semantic content emerges from syntax. We speculate that it is ul-
timately the teleonomic nature of living systems that populates the vacant lands of
Shannon information with the semantics of meaning-laden information. A model
embedded in a living system does not simply represent some aspect of another sys-
tem; it does so purposefully. In living systems, the function of the model is to guide
the behaviour of the system of which it is a part, and it does this by predicting future
states of both the system and its environment. System behaviour thus depends to
some degree on the anticipated future state of the system and its environment —
i.e. the behaviour is goal directed. In contrast, in the case of traditional feedback
systems, behaviour depends on the current state of the system and its environment.
We note the apparent irony that life, a system that depends for its origin and evo-
lution on uncertainty, nevertheless depends for its survival on an ability to predict
future states. In fact, it requires a balance of predictability and unpredictability. In
Langton’s [9] terms, it exists on the boundary between order and chaos.
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2.4.3 Agency

First order models emerged with life in an evolutionary process, one in which the
model both depends on and facilitates the persistence of the system of which it is
a part. The model thus necessarily has a teleonomic quality — its purpose is ul-
timately to enhance the likelihood of its own survival and that of the host system
that implements it. To this end, the model endows its host system with agency —
i.e. it transforms the system into an agent that can act independently. The relation-
ship between model and evolutionary process, the basis of strong emergence, seems
fundamental: each seems to be necessary for the other. This is in a sense the basic
assumption of the theory of biological evolution. In contrast, a self-organized sys-
tem, the result of weak emergence, does not act independently to ensure its own
persistence. Living systems, by virtue of their agency, act to maintain themselves in
a state of low entropy.

2.5 Creative Algorithms

The models that guide the generation and behaviour of living systems are necessar-
ily self-referential, since they are models of a system of which they are an essential
part. This means that they cannot be represented purely as mathematical structures.
However, if the mathematical structures are appropriately embedded in algorithms
being executed in natural time, the problem disappears. Nevertheless, the definition
of algorithm remains crucial. Rosen, with deep roots in mathematics, was never
quite able to resolve the problems arising from self-reference because he worked
with Turing’s definition of algorithm; this is clear when he claims, repeatedly, that
life is not algorithmic. But as we have noted, the Turing machine was defined in
such a way as to produce only results that are consistent with time-free mathemat-
ics. To generate that mathematics, the Turing machine must be supplemented by a
source of learning or creativity. Learning and creativity are essential characteristics
of living systems, as is the appearance of new entities with agency, which learn-
ing and creativity make possible. Consequently, a formal understanding of life must
include a formal treatment of learning, creativity and strong emergence. That re-
quires algorithms that transcend Turing’s definition. It requires algorithms that are
able to model their own behaviour and alter themselves on the basis of their models
of themselves. Using a computer operating in natural time to execute only Turing
algorithms is like insisting on using three dimensional space to do only two dimen-
sional geometry: it is a colossal waste of capacity as well as a refusal to consider the
unfolding world of possibilities that emerge in natural time.
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3 FURTHER EXPLORATIONS ON THE ROLE OF TIME IN
SCIENCE

We have gotten so used to the concept of creativity and completely new solutions to
problems, or to inventions that make our life easier and are introduced the first time,
that we tend to overlook the principle aspect of creating new things.

In the daily processes of synthetic chemistry, for example, new molecules are
generated every day by combining existing molecules into new combinations. Given
the enormous extent of the combinatorial space of chemistry, we have to presume
that some of those are created the very first time.

If some of these compounds are stable and created today in the Universe for the
first time – note we speak of actual realization of material compounds, as opposed
to the mere possibility of their existence being “discovered” – they come with a time
stamp of today. Thus, every material substance or object has in some way attached
to it a time stamp of when it or its earlier copies first appeared in the Universe.
Time, therefore, is of absolute importance to everything that exists and is able to
characterize it in some way.

Can we make use of that in the Sciences? Here, we want to look at the two
sciences that provide modeling tools for others to use in their effort to model the
material universe, mathematics and computer science.

3.1 Mathematics

We have already mentioned that mathematics uses the concept of time (if at all)
in a spatial sense. This means, time can be considered as part of a space that can
be traversed in all directions. Notably, it can be traversed backward in time! But
mathematics is actually mostly concerned about the unchanging features of the ob-
jects and transformations it has conceptualized. Thus, it glosses over, or even ig-
nores changes in features, as they could prevent truth from getting established. For
instance, a mathematical proof is a set of transformations of a statement into the
values “true” or “false”, values that are unchanging and not dynamic. This reliabil-
ity is its strength. Once a statement is established to be true, it is accepted into the
canon of mathematically proven statements, and can serve as an intermediate for
other proof transformations.

But what about a mathematics of time? How would such a mathematics look
like? We don’t know yet, perhaps because the notion of time is something many
mathematicians look at with suspicion, and rather than asking how such a mathe-
matics would look like, they ask themselves whether time exists at all and how they
can prove that it does not exist — except as an illusion in our conciousness [3]. Al-
though Science has always worked like that — ignoring what it cannot explain and
focusing on phenomena it can model and explain — we have reached a point now
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where we simply cannot ignore the nature of time any more as a concept that is key
to our modeling of natural systems.

So let’s offer another speculation here. We said before that every object in the
universe carries a property with it we can characterize as a time stamp, stating when
it first appeared. This is one of its unalienable properties, whether we want to con-
sider it or not. So how about imagining that every mathematical object and all the
statements and transformations in mathematics would come with the feature of a
time stamp? In other words, besides its other properties, an object, statement or
transformation would carry a new property, the time when it was first created. This
would help sort out some of the problems when trying to include the creation of
mathematics into mathematics itself. It would actually give us a way of character-
izing how mathematics is created by mathematicians. The rule would be that new
objects, statements and transformations can only make use of what is already in
existence at the time of their own creation.

Once we have achieved such a description, can we make a model of the pro-
cess? Perhaps one of the natural things to ask is whether it would be possible to
at least guess which objects, statements or transformations could be created next?
The situation is a reminder of the “adjacent possible” of Kaufmann who proposed
that ecological systems inhabit a state space that is constantly expanding through
accessing “adjacent” states that increase its dimensionality. What this includes is a
notion that only what interacts with the existing (which we can call “the adjacent”)
could be realized next. Everything else would be a creatio ex nihilo and likely never
be realized.

Here is an example: Suppose we have a set of differential rate equations that
describe a system at the current state. For simplicity, let’s assume that all the vari-
ables of the system carry a time stamp of this moment. Suppose now that we want
to introduce a new variable, for another quantity that develops according to a new
differential rate equation. Would it make sense to do that even without any coupling
of this new variable to the existing system? We don’t think it would. In fact, the very
nature of our wish to introduce this variable has to do with its interaction with the
system as it is currently described. Thus, introducing a variable that can describe the
adjacent possible has at least to have some interaction with the current system.

Dynamic set theory [11] is an example of how this could work. Dynamic set
theory was inspired by the need to deal with sets of changing elements in a software
simulation. Mathematically, normal sets are static, in that membership in a set does
not change over time. But dynamic sets allow just that: Sets can be defined over time
intervals T , and might contain certain elements at certain times only. For example,
if you have a set of elements

X = {a1,a2,a3,b1,b2,b3,c1,c2,c3}

we can assign specific dynamic sets to a time interval T as follows

AT = {(t1,{a1,b1,c1}),(t2,{a2,b1}),(tT , /0)}

and
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BT = {(t1,{a1,a2}),(t3,{a3,c1,c3}),(tT , /0)}

We can then manipulate these sets using set operations, for instance:

AT ∩BT = {(t1,{a1}),(tT , /0)}

or

AT ∪BT = {(t1,{a1,a2,b1,c1}),(t2,{a2,b1}),(t3,{a3,c1,c3}),(tT , /0)}

We can see here that each of these elements is tagged with a particular time at which
they are part of the dynamic set, and can take part in set operations for that particular
moment.2 A generalization of set theory is possible to this case. Our hope is that —
ultimately — mathematics will be able to access the constructive, intuitional aspects
of its own creation. Once we have assigned the additional property of time/age to
mathematical objects, perhaps its generative process can be modeled.

Another example of mathematical attempts at capturing time in mathematics is
real-time process algebra [25]. The idea of this approach is to try to describe for-
mally what a computational system is able to do, in particular its dynamic behavior.
This project of formalization was generalized under the heading of “denotational
mathematics” [26, 27].

These are all interesting attempts to capture the effect of time within the frame-
work of Mathematics, but they fall short of the goal, because they are descriptive in
nature, i.e. they are not generative and able to create novel structures, processes or
variables themselves.

3.2 Computer Science

Computers allow the execution of mathematical models operationalized as algo-
rithms. But as we have seen from the discussion in this chapter, mathematics cur-
rently deals with spatialized time, not real, natural time. Thus, if we were to only
aim at simulating mathematical models, we do not need natural time. This is indeed
Turing’s definition of an algorithm, restricted exactly in the way required to make
sure that it cannot do anything that requires natural time, so that the computer ex-
ecuting a Turing algorithm is only doing what, in principle, timeless mathematics
can do. Here, instead, we aim for algorithms to execute on machines that need to go
beyond traditional mathematical models.

We need to provide operations within our algorithms that allow for modification
of models. Let us briefly consider how variables (potential observables of the behav-
ior of a [simulated] model) are realized in a computer: They are handled using the
address of their memory location. Thus if we allow memory address manipulations

2 Note that we have skirted the issue of how to measure time, and how to precisely determine
a particular moment and its synchronous counterparts in other regions of the Universe. For now,
we’d stick to classical time and assume a naive ability to measure it precisely.
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in our algorithms, like allocating memory for new variables, or garbage collection
(for variables/memory locations that have fallen out of use), we should be able to
modify at least certain aspects of a model (the variables). Since the address space of
a computer is limited, memory locations can be described by integer numbers in a
certain range, so we are able to modify them during execution.

Of course, variables are but one class of entities that need to be modified from
within the code. Reflective computer languages allow precisely this type of manipu-
lation [21]. Reflection describes the ability of a computer language to modify its own
structure and behavior. Mostly interpreted languages have been used for reflection,
yet more modern approaches like SELF offer compiling capabilities, based on an
object-oriented model. As Sobel and Friedman write: “Intuitively, reflective compu-
tational systems allow computations to observe and modify properties of their own
behavior, especially properties that are typically observed only from some external,
meta-level viewpoint” [23]. What seems to make SELF particularly suitable is its
ability to manipulate methods and variables in the same framework. In fact, there is
no difference in SELF between them. Object classes are not based on an abstract col-
lection of properties and their inheritance in instantiation, but on prototype objects,
object copy and variation. We believe that SELF allows an easier implementation of
an evolutionary system than other object-oriented languages.

Susan Stepney’s work [24] in the context of the CoSMoS project provides a good
discussion of the potential of reflective languages to allow to capture emergent phe-
nomena through self-modification. In order for a self-modifying system not to sink
into a chaotic mess, though, we probably shall need again to time stamp the gener-
ation of objects.

However, the open-ended power of those systems might only come into its own
when one of the key aspects of natural time is respected as well — the fact that one
cannot exit natural time. This calls for systems that are not terminated. Natural open-
ended processes like scientific inquiry or economic activity or biological evolution
do not allow termination and restart. While objects in those systems might have a
limited lifetime, entire systems are not “rebooted”. Instead, new objects have to be
created and integrated into the dynamics of the existing systems.

We return here to a theme already mentioned with Turing machines: The tra-
ditional idea of an algorithm, while having to make use of natural time during its
execution as a step-by-step process, attempts to ignore time by requiring the algo-
rithm to halt. Traditional algorithms are thus constructed to halt for their answer
to be considered definitive. This, in fact, makes them closed system approaches to
computation, as opposed to streaming processes, that analyze data continuously and
provide transient answers at any time [6]. We might want to ask: What are the re-
quirements for systems that do not end, i.e. do not exit natural time? [2]
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3.3 OTHER SCIENCES

In this contribution we do not have enough space to discuss in detail how natural
phenomena as encountered in simple and complex systems can inform the corre-
sponding sciences — which attempt to model those phenomena (physics, chemistry,
biology, ecology and economy) — about natural time. But we believe it is important
to emphasize that a clear distinction should be made between our modeling attempts
and the actual phenomena underlying them. In the past, there were times when the
model and the reality were conceptually not separated. For instance, the universe
was considered like clockwork, or later as a steam engine, and even later as a giant
computer. All of these attempts to understand the universe mistook the underlying
system for its metaphor.

4 CONCLUSION

Our argument here is not that the Universe is a giant computer [7], preferably run-
ning an irreducible computation [28]. This would interchange the actual system with
the model of it. Rather, our argument is that time is so fundamental to the Universe
that we need tools (computers) and formalisms (algorithms) that rely on natural time
to be able to faithfully model its phenomena. We believe that there are many phe-
nomena in the natural and artificially made world making use of novelty, innovation,
emergence, or creativity, which have resisted modeling attempts with current tech-
niques. We think those phenomena are worth the effort to change our concepts in
order to accommodate them into our world view and allow us to develop models. As
hard as it might be to do that, what would Science be without taking stock of what
is out there in the world and attempting to incorporate it in our modelling efforts?
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60th birthday. It is dedicated to Susan, whose work has been so inspiring and deep.

References

1. Amrine, F.: The Metamorphosis of the Scientist, vol. 5, pp. 187–212. North American Goethe
Society (1990)

2. Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J., McMullin, B., de Melo, V.,
Miconi, T., Spector, L., Stepney, S., White, R.: Defining and Simulating Open-Ended Novelty:
Requirements, Guidelines, and Challenges. Biosciences 135, 131–161 (2016)

3. Barbour, J.: The End of Time: The Next Revolution in Our Understanding of the Universe.
Oxford University Press (2001)

4. Bergson, H.: Creative Evolution, vol. 231. University Press of America (1911)
5. Dobzhansky, T.: Nothing in biology makes sense except in the light of evolution. American

Biology Teacher 35, 125–129 (1973)



Natural Time 21

6. Dodig-Crnkovic, G.: Significance of Models of Computation, from Turing Model to Natural
Computation. Minds & Machines 21, 301–322 (2011)

7. Fredkin, E.: An introduction to digital philosophy. International Journal of Theoretical Physics
42, 189–247 (2003)

8. Irvine, A., Deutsch, H.: Russell’s paradox. The Stanford Encyclopedia of Philosophy, E. Zalta,
ed. https://plato.stanford.edu/archives/win2016/entries/russell-paradox Winter (2016)

9. Langton, C.: Computation at the edge of chaos: Phase transitions and emergent computation.
Physica D 42, 12–37 (1990)

10. Latour, B.: Enquête sur les modes d’existence. Une anthropologie des Modernes. Découverte
(La) (2012)

11. Liu, S., McDermid, J.A.: Dynamic sets and their application in vdm. In: Proceedings of the
1993 ACM/SIGAPP symposium on Applied computing: states of the art and practice, pp.
187–192. ACM (1993)

12. Miller, E.: Vegetative Soul, The: From Philosophy of Nature to Subjectivity in the Feminine.
Suny Press (2012)

13. Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems : From Dissipative
Structures to Order Through Fluctuations. Wiley, N (1977)

14. Popper, K.: The Open Universe. Rowman and Littlefield, Totowa, NJ (1982)
15. Prigogine, I.: From being to becoming: Time and complexity in the physical sciences. W.H.

Freeman and Co., New York (1981)
16. Prigogine, I.: The end of certainty. Simon and Schuster (1997)
17. Prigogine, I., Stengers, I.: Order out of chaos: man’s new dialogue with nature. Bantam Books

(1984)
18. Rosen, R.: Life Itself: A comprehensive inquiry into the nature, origin, and fabrication of life.

Columbia University Press (1991)
19. Rosen, R.: Essays on Life Itself. Columbia University Press (2000)
20. Schemm, E., Gannon, W., Wishne, C., Halperin, W., Kapitulnik, A.: Observation of broken

time-reversal symmetry in the heavy-fermion superconductor upt3. Science 345(6193), 190–
193 (2014)

21. Smith, B.: Behavioral reflection in programming languages. Ph.D. thesis, Dept. of Electrical
Engineering and Computer Science, MIT (1982)

22. Smolin, L.: Time reborn: From the crisis in physics to the future of the universe. Houghton
Mifflin Harcourt (2013)

23. Sobel, J.M., Friedman, D.P.: An introduction to reflection-oriented programming. In: Pro-
ceedings of reflection, vol. 96 (1996)

24. Stepney, S., Hoverd, T.: Reflecting on open-ended evolution. In: Proceedings of the 11th
European Conference on Artificial Life (ECAL-2001), pp. 781–788. MIT Press, Cambridge,
MA (2011)

25. Wang, Y.: The real-time process algebra (rtpa). Annals of Software Engineering 14, 235–274
(2002)

26. Wang, Y.: Software science: On the general mathematical models and formal properties of
software. Journal of Advanced Mathematics and Applications 3, 130–147 (2014)

27. Wang, Y.: A Denotational Mathematical Theory of System Science: System Algebra for For-
mal SystemModeling and Manipulations. Journal of Advanced Mathematics and Applications
4, 132–157 (2015)

28. Wolfram, S.: A new Kind of Science. Wolfram Science Inc. (2002)
29. Yanofsky, N.S.: The Outer Limits of Reason: What Science, Mathematics, and Logic cannot

tell us. MIT Press (2013)


