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Abstract In this essay we shall take a fresh look at the current status of evolving
computer code using Genetic Programming methods. The emphasis will not be so
much on what has been achieved in detail in the past few years, but on the general
research direction of code evolution and its ramifications for GP. We shall begin by
a quick glance at the area of Search-based Software Engineering (SBSE), discuss
the history of GP as applied to code evolution, consider various application sce-
narios and speculate on techniques, that might lead to a scaling-up of present-day
approaches.

1 Search-based Software Engineering

Search-based Software Engineering is a technique within the area of Software En-
gineering that formulates software engineering problems as search problems which
can be addressed by established (meta-)heuristic search methods [20]. More gen-
erally, all kinds of Machine Learning approaches can brought to bear on these
search/optimization problems, and possibly help accelerate the pace of program-
ming, debugging and testing or repairing and repurposing of software. The ultimate
goal of these approaches would be to allow computers to program computers, in
other words ”automatic programming”.

All Engineering disciplines are pragmatic in the approach to their respective ob-
ject of study. Software Engineering (SE) is no exception. When Harman and Jones
wrote their manifesto on search-based approaches to SE in 2001 [20], they wondered
why SE had been so slow to take up the challenges of search/optimization that other
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Engineering disciplines had taken up much earlier. They cite the widespread use of
genetic algorithms and other metaheuristic search techniques in order to find satis-
factory solutions to problems in SE often characterized by competing constraints,
inconsistencies and contradictory goals, multiple solutions of varying complexity
and reachable perfect solutions. Perhaps it was the ”youth” of SE that has been one
of the reasons why this engineering discipline was not yet adopting techniques that
at that time had already made serious in-roads in civil or mechanical, chemical,
biomedical or electric engineering. But a decade after John Koza’s seminal book
[29] on Genetic Programming, the time seemed to have been right to make this bold
suggestion about the possible use of metaheuristics in SE.

A review of the search-based software engineering (SBSE) literature shows the
main current thrusts of this area to be:

• Software testing [43]
• Non-functional property optimization [1, 55]
• Software bug repair [14]
• Requirement analysis [17]
• Software design, development and maintenance planning [9, 2, 3]
• Software refactoring [34]

These techniques are, however, far from a complete list of search methods ap-
plied in software engineering. For example, there is model checking as a way to
provide a quality measure for searching in the space of programs [28, 27], software
duplication (clone) search using various methods [51], semantics-based code search
[50], code completion [46], code refactoring [45], code smell detection [13] and
feature summarization [42], to name a few more examples where search techniques
are or can be applied.

2 History of Genetic Programming as applied to Code Evolution

The core idea of Genetic Programming has, of course, always been to program
computers using inspiration from the theory of natural evolution [29]. However, for
the first two decades of its application, GP mostly was used to evolve algorithms that
could model systems (symbolic regression) [30] or classify data (a typical machine
learning task) [12].

When we wrote our textbook for GP in 1998 [6], the ambition of writing larger
pieces of software with GP - and thus to automatically program - was considered
to be far from being realistic. Though the vision was upheld and we claimed that
we live, as far as programming computers is concerned, in an age similar to the
Middle Ages before the invention of printing with movable letters, we did not see
an easy path to achieving this goal. But why would one have to put code together
by hand? Wouldn’t an automatic method, just taking the specification of program
behavior in a suitable form be enough to instruct a GP-driven process to fulfill these
expectations? We also claimed that programmers are acting in a similar way as one
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would have to expect from a GP method [6], by writing code in pieces, copying and
pasting, inserting changes, i.e. mutating, by recombining and adapting functions that
were originally designed for different purposes or in different contexts.

While GP had successfully evolved small pieces of code from scratch, the method
could not easily scale up to large program packages or anything beyond 100-200
lines of code. So scalability was a big problem, along with the need to specify com-
plex behavior for a multi-faceted application with many different use cases.

Nevertheless, researchers examined the search spaces of programs, often making
use of radical simplifications, like examining GP’s behavior in the search space of
Boolean functions. In a series of works, W.B. Langdon and R. Poli examined these
search spaces and the behavior of GP in it [37]. And while this led to the recognition
of important factors, like the complexity of a solution [32], or the different effects
of operators when searching in this space [33], or the advantages of neutrality [25],
the question of how to scale up GP to large search spaces remained unresolved [7].

In the domain of symbolic regression and classification/supervised learning, it
was again John Koza who has demonstrated how to scale up to more complex prob-
lems. Using a method devised by Gruau [18] for neural networks akin to a devel-
opmental process, Koza and co-workers were able to demonstrate the ability of GP
to solve more complex problems [31]. Development and the rewriting of code was
also at the center of self-modifying Cartesian GP (SMCGP) [19]. In that case, rather
than complexity, the issue was generalization ability.

As mentioned, these latter developments took place in the classical GP applica-
tion spaces of regression/modeling and classification/learning. In the second half of
the last decade, however, important steps were taken that ultimately led to the re-
alization that we might not be so far away from using GP systematically for code
evolution.

One of the most important was the demonstration of bug repair capabilities of
a GP system later called GenProg [54]. A program is taken that performs well un-
der many test cases, but fails under a few (the bug), and repaired by patching the
bug. Three key innovations allowed this step, (i) operation in a high-level search
space provided by the abstract syntax tree (AST) of programs; (ii) assuming that
the correct program behavior is hidden somewhere in the program, and thus no new
code needs to be generated, only already existing code of that program is used; (iii)
variation operators focus on code executed on the failed test cases only. In a series
of demonstrations, the authors showed convincingly that GP can be applied to this
domain, even when the programs consist of hundreds of thousands of lines of code
[40].

Another important step was what has become known as ”evolutionary” or ”ge-
netic improvement” of programs. Again, existing programs were taken as input, and
subjected to evolutionary/genetic optimization processes for non-functional features
like energy consumption, execution time etc, functions that sometimes are under the
influence of compiler flags [5]. In this case, test cases that could assure correct pro-
gram behaviour were either used or co-evolved with the program. The goal was
to keep the functionality of the program while optimizing for other features (non-
functional). One of the main issues in these approaches is the seeding of the popula-
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tion. One wants to start with a semantically correct program, and move through the
search space in a way that allows to keep the semantic validity of program variants,
while at the same time optimizing one or more non-functional goals.

Arcuri et al. [5] solve this problem by applying variations to the program, then
filtering - based on test cases that are taken from a test case population - only those
program variants that behave correctly. In their study, which took 8 algorithms writ-
ten as C functions of a maximum of 100 lines of code, they found that thousands
of improved code versions were generated with various trade-offs. Many times, GP
exploited features of the code that were on the semantic level and could not be ad-
dressed by a regular compiler.

Harman et al. [23] approach the improvement of code using a BNF grammar for
decomposing the program to be improved. Again, non-functional features, like com-
plexity or speed of execution are targeted, but also an improvement in the accuracy
of the program behavior is selected for, so the process is multi-objective. The BNF
grammar extracted is a representation of the program that can be subjected to vari-
ations via mutation and crossover, and the programs that can be generated by those
modifications are subjected to test cases, with their behavior compared to the origi-
nal program. While this works well for correct programs, the authors point out that
often it is beneficial to have additional information at hand that allows to judge the
functional properties of a program. The original program as well as other sources
of information can be used as an oracle for testing whether the variant program is
working correctly or not. In order to scale up to reasonable code examples, the au-
thors focus the search on heavily used parts of the program and their corresponding
BNF grammar parts. As for the non-functional criteria, again the pieces of code that
are critical for their fulfillment are most targeted by variation operators [35].

In summary, we can see techniques being developed to improve or repair existing
programs with a focus on instructions that play a role in the behavior to be repaired
or improved. Methods are also developed to either co-evolve test cases, or distribute
test cases such that more difficult tests are sufficiently represented in the set. More
generally, all kinds of Machine Learning approaches can brought to bear on these
search/optimization problems, and possibly help accelerate the pace of program-
ming, debugging and testing or repairing and repurposing of software. I shall briefly
indicate this research direction in the next section.

3 Machine Learning

The field of program synthesis is clearly much bigger than genetic programming.
Learning programs from examples, a task frequently posed to Genetic Program-
ming, is known in Machine Learning as ”oracle-based” program synthesis [26].
Integer Logic Programming (ILP) and other classical machine learning approaches
have been applied on program synthesis [39].

For example, code completion is a task that can be approached from the lan-
guage perspective. By analyzing usage patterns and building probabilistic models



Code Evolution with GP 149

of patterns in code, it is possible to complete code in constrained applications with
high precision [46]. So instead of the programmer being forced to type out all lines
of code completely, a less tedious approach could be used. While this does not al-
low really automatic programming, the transition between manual and automatic
programming becomes continuous.

Machine learning has also been applied to predict a correct program from a set
of programs on the behavior of input/output pairs. The task here is to rank programs
that are correct vs those that are not, based on their behavior. Programming-by-
example tasks [44] are becoming more widespread and the ranking of correct pro-
grams is at the border between machine learning and formal methods in computing
[53].

While Genetic Programming is a pioneer in the field of code synthesis, other Ma-
chine Learning paradigms have taken notice. We can expect, over the next decade,
that a number of interesting developments in the area of automatic programming
and code synthesis will emerge.

4 The Use of Genetic Programming in Code Evolution Tasks

4.1 An overview of the tasks approachable by GP

Before we discuss a few principles that shine through previous successes in applying
GP to code evolution, let’s first have a look at the different tasks that GP could be
applied to. This list is not exhaustive as I am sure I have overlooked possibilities.

1. Code Adaptation
Starting from working code for one processor type, how can we evolve code for
another?
The simple answer would be to say that if we have an abstract language con-
struct, we can compile it to different target processors, so the compiler takes
care of the adaptation. This is fine in general, but does not allow to take advan-
tage of the functionality of the target architecture.
A typical example would be code developed for a CPU (of any kind) needing
adaptation to a GPU architecture. See Langdon et al. [36] for an example.

2. Code Synthesis
Given a behavioral description of a program, how can we synthesize it from a
source code base?
We need to search in the semantic space of programs to find relevant functions
or code to use and adapt, or at least snippets that can be put together to produce
the overall code looked for.
Semantic search is an active area of research in Software Engineering and its
methods could be brought to bear on this problem [50].
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3. Code Generation / Code Creation
Given a behavioral description of a program, how can we generate the code to
produce that behavior?
This was the original question for GP. One uses test (fitness) cases to define the
input/output relation of a program, to define its behavior. It normally starts from
a population of random programs to produce the desired behavior. A description
is sometimes called I/O oracles. It could also be done on a higher ”specification
level”.

4. Code Optimization
Given code, how can we optimize it with respect to certain (non-functional or
functional) criteria?
Those criteria might be efficiency, speed of execution, robustness, assurance
and security criteria, resilience, or accuracy. This has been proposed under the
title of Genetic Improvement (GI), with the GISMOE approach being a prime
example [49].

5. Code Repair
Given buggy code and a behavioral description, how can we repair the code to
make sure it functions properly?
This task sometimes overlaps with Task 4. Evolving bugs is a very successful
application for GP, as exemplified by the GENPROG system [54, 14].

6. Code Grafting
Given the need to add some functionality to a program that already exists in
another piece of code for a different purpose, how to graft this piece?
Examples of this task have been examined in [48, 8] under the name ”program
transplantation”.

7. Code Testing
Given a working program, how can we evolve tests that lead to its failure (in
order to remove those conditions that lead to the failure)?
The production/evolution of test cases is an active area of research in Software
Engineering [11]. With GP, it could be considered as the evolution of test cases,
or the co-evolution of program code and test cases, as already the work of White
et al. have shown [55].

4.2 Main Aspects of Code Evolution

The above applications have a couple of overlapping aspects that are studied in
connection with GP in code evolution. Those can be grouped into three categories:

(a) Population seeding
(b) Search bias
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(c) Test case application

(a) refers to the question of how to initialize a population of programs at the
beginning of the search. The most common procedure in GP so far, but probably
not the method to be used in difficult programming problems, is to start the search
with a random population. Similar to other engineering problems, it might be better
to start from an existing solution and to evolve away from that solution in search of
one that is better in regard to different criteria. Incorporating expert knowledge via
the seeding strategy has been examined in the past [52], however, we believe there
is much to be done to come up with efficient methods for programming.

(b) refers to the fact that not all search directions in a large search space are
equally promising. For that reason, most researchers in SBSE adopt a strategy where
they first examine which parts of the code are used (at all or frequently) under the
conditions required (i.e. of input/output pairs, or for non-functional criteria). Once
those code segments have been found, they are subjected to intense search modifi-
cations, while other parts which are not used at all, or used only infrequently, are
left aside as probably not relevant. An inquiry into similar questions has occupied
Biology since a long time under the heading of hyper-mutations [41].

(c) has been an ongoing discussion in Genetic Programming. To evaluate test
cases is expensive, so the question is whether we have to run all test cases on all
individuals in the population all the time. There have been various scenarios how
to avoid this approach. Sampling techniques have been proposed, both based on
difficulty of the test case, or on the prior frequency of its use [16, 38, 10]. The co-
evolution of test cases has been a topic at least since the early work of Hillis [24]
and has been applied very early in bug fixing [4, 5].

All three categories of questions aim at improving the scalability of GP search in
programming spaces which for any reasonable program is of enormous size. In what
follows we shall provide a few speculative thoughts of how these key questions will
develop over the next few years, and where, to my mind, possible solutions could
be found.

5 How to Scale Up?

The current section is not a comprehensive review of work in SBSE and what has
been achieved (a good survey is [21, 22]), but an attempt at pointing to a number of
key areas where progress can be expected in the future.

The reader might have noticed that we haven’t discussed program representation
for GP at all so far. How is the code represented such that GP can search efficiently
and come up with functional code versions without having to wait until the end of
the universe? We know that program spaces are notoriously large, so search effi-
ciency is of tantamount importance. So we can safely add

(d) code representation

for GP into the list above.
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The original work on evolutionary improvement of existing software used ab-
stract syntax trees (ASTs) of the source code written in a computer language like C
or JAVA. This representation is also commonly used in program analysis and pro-
gram transformation, and a set of tools exist to extract ASTs from source code, as
they are an intermediate step in compiling code. However, it turns out that work-
ing on the ASTs of program source code and manipulating it directly by genetic
operations does not scale well when trying to improve programs of larger sizes.

As a result, most recent work is done with a differential representation where an
input program remains the reference point for a collection of changes that comprise
the GP individual. This approach scales much better than the non-differential rep-
resentation. A sequence of insert/delete and replace operations on the AST - or in
the case of a BNF grammar, changes to lines of code represented in the grammar
- comprise the individual, again always requiring the input program as a reference
point. This is in line with the idea of ”improvement” of an existing program and
could be termed a linear GP system for code improvement.

Clearly, this approach is only useful for improvements of working programs, or is
it? I think that the very same approach can be used to evolve programs more or less
from scratch. The idea is to consider a sequence of program improvements just like
the evolution from a primitive cell (primitive working program) to a sophisticated
and specialized cell (functional program for an arbitrary task). What would need to
happen is that the reference input program is, at certain moments we can call ”epoch
ends”, replaced by the best program so far. In other words, the reference program is
replaced by a (usually) more complex one that has made progress toward the task
enshrined in fitness test cases. At the beginning of a new epoch, the GP individuals
of earlier epochs are set aside and replaced by newly initialized very short programs
(perhaps simple mutations to the now new reference individual). As changes accrue
during an evolutionary epoch, individuals grow in length until again an epoch comes
to an end and the reference individual is replaced.

This way, a very simple (stem cell type?) program at the beginning of a run, could
be used to evolve in different directions, guided by test cases, and end up in different
behavioral spaces that represent different functionalities. This type of programming
would therefore require a very general and simple input program, that will gradually
be augmented and specialized into different directions, depending on the test case
specification. Is code evolvable in this way? I suspect so.

At first sight, this strikes as a complicated way to produce complex code, how-
ever, there are shortcuts. In this connection it is helpful to recall that, according to a
statistical examination of code bases, most small segments of code (up to a length
of approximately 6 or 7 lines of code) have already been written somewhere [15].
If there is a way to harness from the environment this code already existing, this
would greatly facilitate the task of assembling a complex program. This will require
to traverse the feature space of existing code to find relevant segments [42].

A well-known mechanism useful for building up complexity could be put to use
as well: duplication and divergence of modules. Natural evolution seems to have
proceeded through a number of repeated steps of duplication and divergence [47]
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and there is no reason to doubt that the same method couldn’t be used with benefit
when building up program complexity.

Another question: Are there other programmers (or programming agents) that
have faced a similar task, and how did they proceed in the source language (or in
another language) to write the code necessary to achieve the goal?

Finally: Is the task decomposable into smaller parts that have been addressed
elsewhere in the programmer’s own work or in that of others? If that is the case, the
evolution could be split into independent parts run on the simpler tasks.

In summary: Besides the tricks of complexity handling indicated in [7], we would
use a differential code representation that would undergo epochs of evolution un-
der the control of test cases. Even the test cases could be switched at the changes
of epochs, for instance, to provide more detailed guidance on the desired program
behavior. Much of what is described here might be categorized as a developmen-
tal approach, though there are key ingredients of real computational development
still missing from the picture. However, it is reasonable to expect that evo-devo ap-
proaches could become very successful.

6 Conclusion

In this chapter we have looked at code evolution and discussed a few recent devel-
opments in this area. We saw that the scalability of code evolution approaches is an
important obstacle. However, I believe that in the last decade breakthroughs have
been made that have fundmentally altered the playing field for the use of GP in code
evolution. This application of GP has moved from a dream in the 1990s to a realistic
opportunity in the last 10 years. It is time to invest huge research efforts in this area
and to harness the continuing growth in speed of our computer hardware.

To give one example where the interaction of GP code evolution and new de-
velopments in Computer Science could be very useful is in the area of ”big code”.
Following von Neumann’s lead for using the same physical representation for data
and code, the term ”big code” has been coined in equivalence to the earlier term
”big data”. Big code refers to collections of code, like on GitHub, which can be
scoured or exploited for other tasks, if the appropariate tools are available to find
the right entries [56]. This brings to attention the need for tools for semantic search
in program spaces [50].

In this contribution we have discussed a number of research questions that might
be fruitfully addressed in the application of GP to code evolution. Besides the dif-
ferent tasks mentioned in Section 4, key areas of investigation should be the topics
(a) to (d) raised in the same Section later. As well, research about a good way to
construct complexity, in particular in connection with an approach that makes use
of the ”natural” complexity of the environment - how to find the right function, how
to integrate it with the existing program - are pertinent to code evolution.

Code evolution is of enormous economic importance. Genetic programming has
posed new kinds of questions and opened up new ways to think about this problem.
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Exciting new avenues are before us. I believe that GP has a good opportunity to
make serious contributions to this area.
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