
Modelling Evolvability in Genetic Programming

Benjamin Fowler(B) and Wolfgang Banzhaf

Memorial University of Newfoundland, St. John’s, Canada
{b.fowler,banzhaf}@mun.ca

Abstract. We develop a tree-based genetic programming system capa-
ble of modelling evolvability during evolution through machine learning
algorithms, and exploiting those models to increase the efficiency and
final fitness. Existing methods of determining evolvability require too
much computational time to be effective in any practical sense. By being
able to model evolvability instead, computational time may be reduced.
This will be done first by demonstrating the effectiveness of modelling
these properties a priori, before expanding the system to show its effec-
tiveness as evolution occurs.

Keywords: Genetic programming · Evolvability · Meta-learning ·
Artificial neural networks

1 Introduction

Genetic Programming (GP) [17] would be more effective and efficient if we could
select based on how individuals may contribute to evolutionary processes, not
solely based on their fitness. In other words, it would be useful to select individ-
uals that may contribute more to the fitness of future generations, individuals
that are more evolvable. Evolvability indicates the capacity of an individual
to improve its fitness [1]. We opt to define evolvability as the probability of a
mutation operation resulting in a strictly positive fitness change, the reasoning
for which is detailed in Sect. 3. However, it is expensive to measure; it is com-
putationally impractical to measure evolvability for individuals and then use
evolvability to aid selection processes.

Biologically, evolvability has been defined as the ability of a population to
respond to selection [5]. In his review of other works, Pigliucci [23] comes the
conclusions that evolvability, however it may be defined, itself evolves, but there
is a lack of evidence to see if this is caused by natural selection or other evo-
lutionary mechanisms. Wilder & Stanley [32] show adaptive processes in gene
regulatory networks produce evolvability individuals, but divergent processes
produce evolvable populations. Altenberg [2] notes that evolutionary computa-
tion brought about more biological-based evolutionary interest in evolvability;
evolvability in organisms was simply presumed to exist. Altenberg further notes
that there were 170 papers published in 2013 alone that mention the evolution
of evolvability. Evolvability in genetic programming refers to the ability of an

c© Springer International Publishing Switzerland 2016
M. Heywood et al. (Eds.): EuroGP 2016, LNCS 9594, pp. 215–229, 2016.
DOI: 10.1007/978-3-319-30668-1 14



216 B. Fowler and W. Banzhaf

individual or population of programs to produce higher fitness individuals [1].
To encourage more evolvable programs, it would be beneficial to quantify evolv-
ability, and exploit these quantities when judging fitness. Kattan & Ong [16]
use Bayesian inference to adjust fitness functions in order to encourage evolv-
ability. Using genotype-phenotype or genotype-fitness mappings could also prove
beneficial to the study of these properties [19]. Properties related to evolvabil-
ity and robustness, such as self-repair, may emerge in artificial systems without
modifying the underlying systems to encourage their emergence [22].

We model evolvability using GP properties that are computationally inex-
pensive to generate, and, once such models are developed, evolvability may be
calculated and utilized in the GP selection process to improve evolution. This is
accomplished by generating properties related to evolvability, as well as evolv-
ability itself, a priori for a specific problem, then developing a machine learning
model for evolvability. Evolvability may then be calculated during evolution. GP
may be utilized to solve the problem while predicting evolvability values for indi-
viduals, which may then be used to influence selection. Section 2 reviews related
literature, Sect. 3 describes the problem domain, the system to be used, and the
risks in regard to the applicability of the method. Section 4 describes the specific
problem parameters that are examined, the design of the experiments that are
conducted, presents the results, and discusses the results and future work.

2 Related Work

In genetic programming, to maximize fitness, we favour programs that currently
have greater fitness. There are various selection methods [17,24] that apply vary-
ing amounts of selection pressure. However, selection is inherently driven by
differences in fitness. This process does not directly consider structural proper-
ties of programs, such as bloat [25]. Instead, selection is meant to allow more
desirable structural properties, which allow greater fitness, to emerge [3]. The
process further ignores how changes in genotype changes the phenotype [7],
how this affects fitness, and how this might skip optima in the fitness search
space [27]. Evolvability is related to these structural properties; by analyzing
their interrelatedness, we should gain insight to improve genetic programming
by accommodating them, in lieu of ignoring them, by measuring and selecting
for evolvability. Basset et al. [4] postulate bloat occurs because offspring are not
effectively inheriting the phenotype traits from their parents. The notion is that
ideally, we want to perform a cross-over on the phenotype, not the genotype.

Altenberg [1] describes a method of measuring evolvability through a trans-
mission function, deriving a formula that describes the probability that a popu-
lation (not an individual) will produce an individual that has greater fitness than
any in the existing population. Essentially, one considers all possible results of
genetic operations on all individuals in a population, and computes the probabil-
ity that an individual will be produced whose fitness surpasses that of the existing
population. This is an intuitive method of measuring evolvability; an individ-
ual is highly evolvable if its potential offspring are more likely to be more fit.



Modelling Evolvability in Genetic Programming 217

It also requires extensive computations; instead of conduction one genetic oper-
ation on an individual, we need to conduct all possible operations, on each
individual. Then, each fitness case needs to be evaluated for each such oper-
ation. Thus, measuring evolvability in this way would require many orders of
magnitude more computational effort than standard GP.

Pragmatically, exhaustive searches to measure evolvability can be improved
upon by using sampling or estimation [29]. This is much more computationally
feasible, but the same question is posed when using exhaustive search; why not
simply keep the resulting most fit individual? Sampling still adds a significant
computational burden, as sufficient samples are required to estimate evolvabil-
ity, but even adding a single sample doubles the computational time required in
standard GP. As such, evolvability is too computationally expensive to measure
directly. Instead, current literature efforts to exploit evolvability do so indirectly,
without having to measure it, such as defining new evolvability metrics [28] and
characterizing evolvability’s relatedness to other properties [12]. There has been
some success in determining how much to select for evolvability, but only under
limited circumstances [30]. Li et al. [18] have had success balancing fitness selec-
tion with diversity metrics, using multi-objective optimization. Multi-objective
approaches using Pareto dominance or hypervolume indicators, with various
objective criteria, are well-studied in the literature, generally targeting concepts
related to evolvability, such as diversity, rather than evolvability itself [9,26].

3 Approach

An extendible synthetic domain will be most useful for this work. White et al.
[31] propose a set of benchmark problems to replace ageing, simple problems.
Among the list of new synthetic, extendible problems is the order tree problem
[13]. A synthetic, extendible problem such as the order tree problem allows for
tunable problem difficulty, thus the conditions under which the use of evolvability
is most beneficial may be more easily examined.

An order tree domain may be defined as having a size of n. Function nodes
and terminal nodes take on values of whole numbers on a range of [0, n − 1].
Function nodes all take two arguments. The fitness of a solution is calculated
in a top-down fashion. A node will add 1 to the total fitness of the solution if
its numeric value is strictly greater than its parent’s numeric value, and, in the
restricted version of the order tree problem, only if the parent is also adding to
the total fitness of the solution. Thus, the optimal solution is an ordered tree,
where the root is the functional node valued at 0, its children are valued at 1,
and so on. The order tree problem is useful because the difficulty is tunable
to n, where difficulty may be increased by increasing n, thus increasing our
functional and terminal set. Furthermore, node dormancy is easily determined
as a by-product of fitness evaluation. Problem difficulty may be further tuned
by adjusting how much fitness is contributed by each node; by weighing higher-
valued nodes more greatly (i.e., by increasing fitness greater than 1 for any given
node) the fitness structure may be changed. This alters the fitness landscape, and



218 B. Fowler and W. Banzhaf

encourages higher-valued nodes to be selected, even though this interferes with
finding the optimal solution. A more evolvable solution would still favour lower-
valued nodes. This allows for tuning the desirability of evolvability. Tuning the
order tree problem in these two ways will demonstrate the problem conditions
for the effectiveness of the proposed system.

This work will focus on one representation of GP, tree-based representation,
and the modelling of evolvability a priori. This will indicate if modelling evolv-
ability is viable, and may be extended to dynamically built models, and data
and model sharing between related problems. Eventually, the goal is apply the
system to real-world problems where GP is known to excel relative to other
algorithms or human efforts, in order to obtain better solutions more quickly.
There are many ways to expand after initial efforts in controllable problems are
shown to be functional; it may be certain classes of problems are more receptive
to the methodology, alternate GP representations may be preferred, or certain
structural properties are much more significant than others, and each of these
may not be independent with another.

As we are concerned with modelling evolvability, structural properties of
individuals in GP which may be easily measured (that is, without a significant
increase in computational resources) are of interest. There can be significant sec-
tions of individuals in GP which, in addition to not affecting fitness, provide no
change in output, regardless of input. These sections are referred to as introns
in GP literature. Introns may be categorized by their behaviour; Nordin et al.
[21] propose several categories. They are categorized based on whether their
lack of contribution of fitness is due to the fitness cases themselves, or apply to
the entire problem domain, and whether cross-over operations can introduce a
change in fitness. Identifying all introns is computationally expensive. However,
it is computationally inexpensive to identify a certain type of intron, that occurs
when a code section is never executed for any fitness case; these are dormant
sections [14]. In tree-based or cartesian GP, these nodes are referred to as dor-
mant nodes, and can account for the majority of the nodes, around 90 %-95 %
[14,20]. Despite the apparent uselessness of dormant sections of code, dormancy
is helpful; if dormant nodes are detected and removed, performance actually
suffers, and more generations are required to reach comparable solutions [14].
Locality is another structural property in GP, relating to evolvability, robustness,
and genotype-phenotype mappings. A problem has high locality if neighbouring
genotypes correspond to neighbouring phenotypes [7]. High locality problems
are generally easier to solve. Low locality indicates a more rugged search space,
which indicates a more difficult search. Furthermore, the ruggedness describes
how robust and evolvable the search space is [8,15,27,29]. Neutral genetic oper-
ations represent plateaus on the search space. Evolvability and robustness act as
counterparts; steep inclines indicate great fitness gains moving toward optima,
but also great fitness losses moving away from optima. There is motivation to
organize all the structural properties together, to analyze their interactions, for
they all affect problem difficulty, the efficiency of the search, and the efficacy of
the search.



Modelling Evolvability in Genetic Programming 219

We propose a narrower scope of tree-based GP. We further limit to algo-
rithms available in the Waikato Environment for Knowledge Analysis (WEKA),
an accessible machine learning software suite [10]. This would allow for rapid
experimentation on a number of different algorithms, as well as some convenient
visualization and analytical tools that may yield insight into the nature and
relatedness of the structural properties of the individuals. The predicted evolv-
ability of an individual shall be used to guide the selection process in various
ways, to find the most beneficial usage of evolvability. Such a system would only
indicate that, with enough data generated a priori for a specific problem, models
for structural properties could be built which can benefit evolution.

4 Experimental Design and Results

We design and implement a tree-based GP system that records measurements of
evolvability by sampling, along with records of other structural properties, such
as dormancy, per every generation that occurs during evolution. Further, we
model evolvability using these records, then exploit their predicted values dur-
ing evolution, in order to develop a faster and more efficient GP system. This
shall be accomplished by modifying an existing tree-based GP system to track
and record additional structural elements, for specific problems. Once generated,
evolvability will be modelled using machine learning algorithms. These models
will be incorporated into the existing tree-based GP system, to predict evolvabil-
ity without the need to sample them. Then, the predicted values will be used to
guide selection beyond the standard fitness measurements. Initially, we consider
the various structural properties of solutions generated by genetic programming
for a small parity problem, and a contrived regression problem consisting of
a single input variable. Once this system is verified to yield improvements in
solution accuracy and efficiency for these simpler problems, the system will be
modified further to develop models for evolvability as evolution actually occurs.

We modify a minimalist version of Open BEAGLE, referred to as BEAGLE
Puppy [6]. Open BEAGLE is an evolutionary computation framework, developed
in C++. BEAGLE Puppy utilizes the core GP algorithms of Open BEAGLE,
but is simpler to modify for our purposes, since it is minimalist. It contains
a tree-based GP implementation of simple parity and regression problems. Our
methodology requires editing the selection process, additional tracking of various
statistics (such as dormancy), sampling for evolvability, and eventually, dynamic
modelling of evolvability. These are easier to implement by editing core GP algo-
rithms. Furthermore, we are afforded more flexibility by working with a lesser
amount of code. Another advantage is working with an efficient object-oriented
language. To sample for evolvability, more fitness cases need to be evaluated,
which is already the most computationally intensive part of GP. Object-oriented
code allows for more easily reusable code; as we expand into more difficult prob-
lem domains, we can reuse our efforts building simpler ones.

Modelling evolvability, however, requires faster machine learning algorithms
than evolutionary computation provides. These are provided by a machine learn-
ing suite, the Waikato Environment for Knowledge Analysis (WEKA) [10].



220 B. Fowler and W. Banzhaf

This implementation can be expanded to allow models to be generated by WEKA
as evolution occurs. The accuracy of these models can be monitored until they
are sufficiently accurate, in order to stop sampling evolvability, and instead, pre-
dict it. Sampling may still be interleaved to ensure the models remain accurate.

4.1 Sampling Accuracy

This subsection describes the effectiveness of altering the fitness mechanism of
standard GP to consider evolvability in various ways. This will demonstrate the
effectiveness of using sampled evolvability to improve GP. The significance of
evolvability on selection will be monitored, so the optimal amount of selection can
be used. Once the necessary conditions for the effectiveness of using evolvability
in selection has been determined, it can be used to gauge the effectiveness of
modelling evolvability.

Calculating precise evolvability is computationally infeasible for practical
genetic programming. Instead of calculating all possible results of all possible
genetic operations for any given individual genetic program, we elect to instead
conduct sampling, where a random subset of all possible genetic operations are
applied. Sampling can approximate the precise calculation of evolvability for a
fraction of the computational cost. How many samples are necessary to produce
a reasonable approximation of the correct evolvability, such that selection errors
will occur less than 5 % of the time? How accurate must the approximation be
to achieve an improvement when using evolvability to guide selection?

In order to answer these questions, we must first define more experimental
parameters. Several evolvability metrics exist. We opt to define evolvability as the
probability of a mutation operation resulting in a strictly positive fitness change.
This may differ from other metrics in two ways: probability of change instead of
magnitudes of change, and excluding neutral changes. Preliminary experiments
indicated that selecting for the probability of a positive fitness change were more
productive than when neutral changes were included. Similarly, they indicated
that using probabilities instead of average magnitude of fitness change were more
productive. Mutation operations are considered, in order to evaluate evolvability
of individuals without considering how the gene pool of the population would
affect measurements, as it would measuring evolvability using cross-over opera-
tions. More samples are required to achieve a good approximation if we consider
the average magnitude of change of fitness. Furthermore, selecting for greater
positive magnitude of fitness change will heavily bias evolution toward lower
fitness individuals, as they have the greatest capacity for fitness improvement.
We discount neutral changes, as this encourages a bias toward large trees in the
order tree problem, as they have many possible neutral mutations. Considering
neutral changes to be equivalent to positive ones encourages robustness, but not
evolvability.

To determine how many samples are necessary to achieve a reasonable
approximation of evolvability, we conduct the following experiment. We vary
the number of samples while keeping other experimental conditions consistent,
and compare the sampled evolvability to the strongest approximation (using the



Modelling Evolvability in Genetic Programming 221

Table 1. Evolutionary parameters for varying the number of samples.

Population Size 50 Crossover Probability 0.9

Tournament Size 3 Probability of Non-Terminal Crossover 0.9

Min Initial Depth 3 Standard Mutation Probability 0.05

Max Initial Depth 6 Mutation Max Regen Depth 2

Max Depth 6 Swap Mutation Probability 0.05

Initial Grow Probability 0.5 Probability to Mutate a Function Node 0.5

largest sample size). Even for a smaller order tree problem, it is still computa-
tionally infeasible to calculate the correct evolvability. By selecting for fitness,
higher fitness individuals are more likely to occur. If we select for evolvability,
more evolvable individuals are likely to occur.

The experimental parameters are shown in Table 1. 10000 runs with different
random seeds are completed for standard GP, and 1000 runs for everything
else. The max depth was raised for the 7th and 8th order tree problems. These
parameters are consistent throughout the experiments in this work. We define
the mean absolute error of evolvability as follows:

MAE =
1
n

∗
n∑

k=1

|e′
k − ek| (1)

where n is the number of runs, e′
k is the measured evolvability for 1000 samples,

and ek is the measured evolvability of the indicated number of samples.
Figure 1 shows that a reasonable approximation for evolvability occurs when

the number of samples is about 100. Similar experiments for higher order tree
problems show that holds true. Since the purpose of evolvability for this system
is to be used with an altered fitness function in order to guide selection, the
required accuracy of sampling and modelling evolvability is proportional to the
actual influence evolvability has on selection. Therefore, it is necessary to choose
precisely how evolvability will guide selection in order to determine how many
samples are sufficient to ensure accurate selection. This can be evaluated by

Fig. 1. Mean Absolute Error of Evolvability for number of samples compared to 1000
samples.



222 B. Fowler and W. Banzhaf

using the modified fitness function, and compare which individuals are selected
when using a reduced number of samples (or a model) for evolvability with
individuals selected using a large number of samples. Discrepancies indicate that
an individual was incorrectly selected.

4.2 Selection of Evolvability

We need to determine how to select for evolvability. To determine the optimal
selection amount, we conduct the following experiment. We vary the standard
GP selection mechanism by using the sampled evolvability in various ways, while
keeping other experimental conditions consistent. There are several methods to
guide selection with evolvability. One is a threshold for fitness; if fitness of two
individuals falls within a specific threshold, then we select the one with greater
evolvability. Another is a weighted sum; we sum the fitness and evolvability,
each weighted by a specified amount, and select individuals according to their
weighted sum. We can allow a generational modifier for using a weighted sum;
as the number of generations increase, we select less strongly for evolvability.
Using a weighted sum and a generational modifier, we have, formally:

F ′ =

[
(f + e∗p(gmax−g)

gmax
) if g < gmax

f otherwise

]
(2)

where F ′ is the adjusted fitness function, f is the standard fitness function, e is
evolvability, p is the weight parameter, gmax is the maximum generation para-
meter, and g is the current generation. This translates to the fitness function
being modified by the probability of a change being positive multiplied by the
weight parameter for the initial population, and where this modifier linearly
approaches zero as the generation increases. Upon reaching zero, the modifier
becomes zero for the remaining generations, rendering evolvability uninfluen-
tial. This is desirable because evolvability should become less significant as the
number of generations increase, as standard fitness approaches optimal values.
Maximizing standard fitness becomes the only goal when evolution completes.
Eventually, we would just want to select for standard fitness. We conduct experi-
ments for different Order Tree problems under varying selection pressures (vary-
ing the weight and maximum generation parameters). The other experimental
parameters are identical to the previous experiment, as shown in Table 1.

Figures 2, 3, and 4 shows the average maximum fitness as the generation
increases, for a subset of the tested problems, for clarity. This indicates that
using modified fitness functions that use evolvability in addition to standard
fitness outperform using standard fitness functions alone. They indicate the gen-
eral appropriate proportion of evolvability to use for selection, indicated by the
better performing selection pressures. Furthermore, using a greater weight para-
meter is still useful, provided that a maximum generation parameter is specified,
so fitness becomes more dominant as individuals approach higher fitness values.
Using extreme values for a weight parameter, even tempered by small maximum



Modelling Evolvability in Genetic Programming 223

Fig. 2. Fitness over generation for varying selection pressures, for the Order Tree 4
(left) and 5 (right) problem. ‘p’ indicates the evolvability weight, and ‘g’ indicates the
gmax value. Error bars indicate the 95 % confidence interval of standard error of the
mean. SGP refers to standard genetic programming.

Fig. 3. Fitness over generation for varying selection pressures, for the Order Tree 6
problem.

Fig. 4. Fitness over generation for varying selection pressures, for the Order Tree 8
problem.

generation parameter, did not produce fit results. For the higher difficulty prob-
lems, a greater emphasis on evolvability improves the results. We also note that
selection based on pareto-dominance, where fitness and evolvability are the two



224 B. Fowler and W. Banzhaf

Table 2. Probability of an incorrect selection comparing 100 samples with 1000 samples
under various modified fitness functions over 100 runs.

Order p g Mean selection error

4 7 10 0.34495 %

5 10 N/A 2.6304 %

6 5 N/A 3.6288 %

7 10 N/A 4.338 %

8 20 40 0.34230 %

objectives, produces worse results than standard GP. A subset of all the tested
values for varying selection pressures are shown, for clarity.

We see in Table 2 that under the varying selection pressures, that using 100
samples for evolvability differs from using 1000 samples less than 5 % of the time.
The tested selection pressures were some of the top performing selection methods
for their order of problem, as shown in the previous experiments. Establishing a
performance baseline for evolvability selection pressure allows us to proceed to
modelling evolvability.

4.3 Modelling of Evolvability

Once the effectiveness of using sampled evolvability has been demonstrated and
the evolvability selection methods have been evaluated, we must now build a
model for evolvability and demonstrate its effectiveness. Firstly, we must describe
the attributes we use to build the machine learning models for evolvability. We
record a number of attributes associated with individuals. These include gen-
eration, tree height, tree size, functional & terminal frequency, number of dor-
mant nodes, dormancy ratio, previous standard fitness, fitness change, and stan-
dard fitness. These may all be recorded for each individual without significant
computational costs beyond standard fitness calculation. These attributes were
subjected to attribute significance testing using WEKA, using the correlation-
based filter method Correlation-Based Feature Selection [11], and further tests
on WEKA classifiers. The most significant attributes were determined to be gen-
eration, size, function frequency, terminal frequency, number of dormant nodes,
previous fitness, and fitness.

WEKA offers rapid use of many machine learning classifiers. In order to build
a model, we must provide training data and choose a classifier. We can generate
training data by running standard GP with the addition of evolvability sam-
pling and selection; this will produce individuals which will be similar to those
that will occur when using the model system, ensuring the models will be more
accurate in practice. We can evaluate the effectiveness of the different models
for evolvability by comparing the mean absolute error between them, also com-
paring this with the mean absolute error of the evolvability by varying number
of samples. Various experiments indicated that a number of machine learning



Modelling Evolvability in Genetic Programming 225

Table 3. Probability of an incorrect selection comparing a multilayer perceptron model
constructed with a varied number of training instances (themselves constructed under
a varied number of evolvability samples) with 1000 evolability samples under the 4th
Order Tree problem using the p7 g10 fitness function over 1000 runs.

Samples Training instances Mean selection error

1000 2000 0.487524 %

1000 4000 0.488446 %

1000 8000 0.483173 %

1000 40000 0.460605 %

models were appropriate for this task, having similar mean absolute error rates.
We select the multilayer perceptron (an artificial neural network) for verifying
the effect of the number of training instances and number of evolvability samples
are required for acceptable mean absolute error rates. Acceptable mean absolute
error rates are those which indicate that erroneous selection will occur less than
5 % of the time. We do this by varying the number of training instances, and the
amount of evolvability samples used to generate those instances, and measuring
the frequency of selection error compared with 1000 samples of evolvability.

Once the conditions required for acceptable selection error rates have been
determined, we test the system by comparing the top performing selective condi-
tions in each order tree problem, compared with standard GP and the improve-
ments made by using sampled evolvability, to indicate that modelling evolvabil-
ity and modifying the standard fitness function, we can improve GP. This will
indicate that modelling evolvability is viable.

We see in Table 3 that relatively few training instances are required to build
an accurate model of evolvability. Very few selection errors are made when the
evolvability used to train the model is accurate; that is, when a large number of
samples of evolvability are taken to generate the model. We see in Fig. 5 that the
models perform sufficiently well in practice. They are a statistical improvement
over standard GP, and fare about as well as sampled evolvability. Even as few as
1000 training instances can build a successful model. Since a training instance
is generated for each individual in the population for each generation, a single
run with these settings generates 5000 training instances.

In Figs. 6, 7, 8 and 9 we see that this trend holds in higher Order Tree
problems; modelling evolvability offers a statistically significant improvement
over standard GP, and performs about as well as using samples to calculate
evolvability. Using models built 1000 samples of evolvability even performs better
than continually sampling evolvability 100 times for each individual.

In conclusion, we have demonstrated the necessary amount of evolvability
sampling to generate a sufficiently accurate calculation of evolvability. We have
further demonstrated how evolvability may be used to modify the standard
fitness function, in order to encourage the selection of evolvable individuals,
and how this may generate an overall increase in standard fitness. We have



226 B. Fowler and W. Banzhaf

Fig. 5. Fitness over generation for ANN models built from various amounts of training
instances and various amounts of evolvability samples for the Order Tree 4 problem. ‘s’
indicates the number of evolvability samples, and ’I’ indicates the number of training
instances.

Fig. 6. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 5 problem.

Fig. 7. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 6 problem.

Fig. 8. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 7 problem.



Modelling Evolvability in Genetic Programming 227

Fig. 9. Fitness over generation comparing standard GP, using sampled evolvability &
modelled evolvability with a modified fitness function for the Order Tree 8 problem.

demonstrated how many instances and samples are required to build a suffi-
ciently accurate model of evolvability, in order to predict it to guide selection.
Finally, we have shown that modelling evolvability and using it in selection allows
for a similar improvement in overall fitness than simply sampling for evolvability.
The additional number of evaluations required to sample evolvability to guide
selection is prohibitive. The extra computational time required to predict evolv-
ability using an external program is prohibitively computationally expensive, as
well. Furthermore, its use is limited in this experiment by gathering training
instances a priori. However, the results demonstrate that predicting evolvability
from relatively few training instances with a relatively few number of samples
still leads to improved fitness. This indicates the viability of modelling evolvabil-
ity in order to improve genetic programming. In future work, the system will be
modified to generate training instances for evolvability periodically while evolu-
tion occurs, in order to build and update models for evolvability periodically, so
that more performance gains can be achieved. This work lays a foundation for
the success of such a system.

References

1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances
in Genetic Programming, pp. 47–74 (1994)

2. Altenberg, L.: Evolvability and robustness in artificial evolving systems: three per-
turbations. Genet. Program. Evolvable Mach. 15(3), 275–280 (2014)

3. Banzhaf, W.: Genetic Programming and Emergence. Genet. Program. Evolvable
Mach. 15(1), 63–73 (2013)

4. Bassett, J.K., Coletti, M., De Jong, K.A.: The relationship between evolvability and
bloat. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation. GECCO 2009, NY, USA, pp. 1899–1900. ACM, New York (2009)

5. Flatt, T.: The evolutionary genetics of canalization. Q. Rev. Biol. 80(3), 287–316
(2005)

6. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools:
principles and case study. Int. J. Artif. Intell. tools 15(2), 173–194 (2006)

7. Galván-López, E., McDermott, J.: Defining locality as a problem difficulty measure
in genetic programming. Genet. Program. Evolvable Mach. 12(4), 365–401 (2011)



228 B. Fowler and W. Banzhaf

8. Galván-López, E., Poli, R., Kattan, A., ONeill, M., Brabazon, A.: Neutrality in
evolutionary algorithms. What do we know? Evolving Syst. 2(3), 145–163 (2011)

9. Hadka, D., Reed, P.: Borg: an auto-adaptive many-objective evolutionary comput-
ing framework. Evolutionary Comput. 21(2), 231–259 (2013)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

11. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning
(1998)

12. Heywood, M.I.: Evolutionary model building under streaming data for classification
tasks: opportunities and challenges. Genet. Program. Evolvable Mach. 16(3), 283–
326 (2015)

13. Hoang, T.H., Hoai, N.X., Hien, N.T., McKay, R.I., Essam, D.: ORDERTREE:
a new test problem for genetic programming. In: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation. GECCO 2006, vol. 1, pp.
807–814 (2006)

14. Jackson, D.: The identification and exploitation of dormancy in genetic program-
ming. Genet. Program. Evolvable Mach. 11(1), 89–121 (2009)

15. Jones, T.: Evolutionary algorithms, fitness landscapes and search. Ph.D. thesis,
The University of New Mexico (1995)

16. Kattan, A., Ong, Y.S.: Bayesian inference to sustain evolvability in genetic pro-
gramming. In: Handa, H., Ishibuchi, H., Ong, Y.S., Tan, K.C. (eds.) Proceedings
of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems. Pro-
ceedings in Adaptation, Learning and Optimization, vol. 1, pp. 75–87. Springer,
Heidelberg (2015)

17. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

18. Li, K., Kwong, S., Cao, J., Li, M., Zheng, J., Shen, R.: Achieving balance between
proximity and diversity in multi-objective evolutionary algorithm. Inf. Sci. 182(1),
220–242 (2012)

19. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

20. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian
genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

21. Nordin, P., Francone, F., Banzhaf, W.: Explicitly defined introns and destructive
crossover in genetic programming. In: Advances in Genetic Programming, pp. 111–
134. MIT Press, Cambridge, MA, USA (1996)

22. Öztürkeri, C., Johnson, C.G.: Self-repair ability of evolved self-assembling systems
in cellular automata. Genet. Program. Evolvable Mach. 15(3), 313–341 (2014)

23. Pigliucci, M.: Is evolvability evolvable? Nat. Rev. Genet. 9(1), 75–82 (2008)
24. Poli, R., Langdon, W., McPhee, N., Koza, J.: A field guide to genetic programming

(2008)
25. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic

programming and a survey of bloat control methods. Genet. Program. Evolvable
Mach. 13(2), 197–238 (2011)

26. Sindhya, K., Miettinen, K., Deb, K.: A hybrid framework for evolutionary multi-
objective optimization. IEEE Trans. Evol. Comput. 17(4), 495–511 (2013)

27. Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolv-
ability. Evol. comput. 10(1), 1–34 (2002)

28. Tarapore, D., Mouret, J.B.: Evolvability signatures of generative encodings: beyond
standard performance benchmarks. Inf. Sci. 313, 43–61 (2015)



Modelling Evolvability in Genetic Programming 229

29. Wang, Y., Wineberg, M.: Estimation of evolvability genetic algorithm and dynamic
environments. Genet. Program. Evolvable Mach. 7(4), 355–382 (2006)

30. Webb, A.M., Handl, J., Knowles, J.: How much should you select for evolvability?.
In: Proceedings of the 2015 European Conference on Artificial Life, pp. 487–494.
MIT Press (2015)

31. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger,
G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community sur-
vey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

32. Wilder, B., Stanley, K.: Reconciling explanations for the evolution of evolvability.
Adapt. Behav. 23(3), 171–179 (2015)


	Modelling Evolvability in Genetic Programming
	1 Introduction
	2 Related Work
	3 Approach
	4 Experimental Design and Results
	4.1 Sampling Accuracy
	4.2 Selection of Evolvability
	4.3 Modelling of Evolvability

	References


