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Abstract. This paper presents a proof-of-concept for an Epigenetics-
based modification of Genetic Programming (GP). The modification
is tested with a traffic signal control problem under dynamic traffic
conditions.

We describe the new algorithm and show first results. Experiments
reveal that GP benefits from properties such as phenotype differentiation,
memory consolidation within generations and environmentally-induced
change in behavior provided by the epigenetic mechanism. The method
can be extended to other dynamic environments.
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1 Introduction

Because of the flexibility of its representation and its context independent
methodology, GP can be used to generate solutions to problems in different
areas of application in science and technology. However, in real world problems,
the goal is often not fixed and can change during the evolutionary process. In a
dynamic environment GP needs to be able to adapt to constant changes of the
goal and fitness evaluation criteria. One approach to face these challenges is to
generate variable locally adaptable solutions.

Biological evolution has different mechanisms to deal with environmental
perturbations. Recently, Epigenetics, defined as phenotypic modifications with-
out requiring changes in the nucleotide sequence (DNA), has been discovered
to have important influences on the development of adaptation mechanisms at
cellular, individual and species levels [13,16]. These imply a more active role for
epigenetic mechanisms on the cellular, individual and species development.

In this paper an Epigenetics-based mechanism is presented and integrated
into the Genetic Programming algorithm using a decision tree forest represen-
tation. A proof-of-concept in a dynamic environment is presented and future
experiments are described.
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In this paper, the term decision tree is used in a loose sense. By decision tree
we mean a tree that evaluates to an integer value with a conditional statement
as the first node.

We use a traffic signal control problem as our testbed. Urban traffic network
control is a complex nonlinear problem and traffic congestion affects daily life
of millions of citizens. Furthermore, the rapid increment of metropolitan pop-
ulations makes control of traffic signals a challenging task. Most of the traffic
controller systems currently in use are pre-timed and cannot handle the dynamic
nature of the problem. However, in the last decades, different adaptive methods
have been implemented in simulated environments, reducing the delay during
rush hours.

This paper is organized as follows: Sect.2 describes one of the biological
epigenetic mechanisms named DNA methylation and gives an overview of the
different approaches followed to integrate epigenetic mechanisms into Evolu-
tionary Computation. Section 3 introduces the Traffic Signal Control Problem
and explores different Evolutionary Algorithm methods implemented for its solu-
tion. Section 4 describes the simulator and the traffic network used in this paper.
Section 5 defines the chromosome representation and genetic operators used in
the GP environment. Section6 describes the epigenetic mechanism introduced
in this paper. Section 7 provides details on the experimental configuration used.
Results are presented and discussed in Sect. 8. Section 9 presents conclusions.

2 Epigenetics

Epigenetics is the study of cellular and physiological phenotypic trait variations
that are caused by external or environmental factors affecting how cells read
genes. This could be seen in contrast to the modifications caused by changes in
the DNA sequence.

One of the clearly heritable mechanisms of Epigenetics is DNA methylation
[16]. Methylated DNA has a methyl group (CHs) attached to some of its bases.
It is found in vertebrates, plants, and even in many invertebrates, fungi and
bacteria [11]. A methyl group is normally attached to the cytosine (C) nucleotide.
Methylated cytosine doesn’t change its role in the genetic code. It is still paired
with guanine. However, the methyl group affects protein transcription by binding
with special proteins and preventing Ribonucleic acid (RNA) polymerase to work
on it, or by interfering with the binding of regulatory factors to the gene control
region. In other words, cytosine methylation is a mechanism to silence DNA
sections. During development, methylation marks can change and the modified
(methylated) DNA sequence is transferred from cell to cell during cell division.

Even though the importance of epigenetic inheritance in cell differentiation
and memory processes has been recognized, its influence on macroscopic phe-
nomena has been discovered only recently. Some examples are environmentally
induced epigenetic modification of behavior [10], the influence of Epigenetics
on memory consolidation within generations [5], the inherited propensity for
learning [2], the role of Epigenetics in morphological differentiation (Honeybee
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reproductive queen differentiation mediated by royal jelly consumption [8]) and
even species differentiation through morphological specializations (for instance
phenotypic changes in the modern human brain and behavior compared to other
hominids [13]).

The Evolutionary Algorithm (EA) community has recently started to con-
sider the discoveries in the area of Epigenetics. Different approaches have been
used to represent the phenotypic mechanism, but it has normally been imple-
mented as extra optimization to accelerate the adaptation of the EA.

Tanev and Yuta [22] worked with a modification of the predator-prey pursuit
problem. GP is used to define a set of stimulus-response rules to model the
reactive behavior of predator agents. The implementation includes active and
inactive histones in the representation and uses age-based predators moving
through different life stages (birth, development, survival and death). An extra
step called Epigenetic Learning (EL) is included in the fitness evaluation. EL is
basically a hill climber acting through epi-mutations of the histone activation
signals.

It was found that the probability of success is larger when the Epigenetic
Learning mechanism is included. The authors ascribe the difference to the
robustness gained with the representation by preserving the individuals from
the destructive effects of crossover by silencing certain genetic combinations and
explicitly activating them only when they are most likely to be expressed in
corresponding beneficial phenotypic traits.

Fontana [6] used other multi-cellular morphogenic models for development
with an integer number genetic representation controlled by a regulatory net-
work with epigenetic activation and deactivation signals in different development
phases. A two-dimensional cellular grid and a Genetic Algorithm running on the
genome allow the model to generate predefined 2-dimensional shapes.

In [21], Sousa and Costa present an epi-genetically controlled agent system
for Artificial Life. The agents wander around a 2D environment with walls and
different attributes -temperature, light and food- that can vary over time. The
goal of the agents is to survive and to reproduce.

The behavior of the agents is coded on binary strings. Activation of genes
is controlled by methylation marks. An Evolutionary Algorithm controls the
survival and reproduction of the different organisms. Several experiments were
performed with different levels of epigenetic transfer between parents and off-
spring. The results show a significant improvement: Non epigenetic populations
found it hard to thrive in dynamic environments, while epigenetic populations
were able to regulate themselves under dynamic conditions.

Chikumbo et al. [3] proposed a Multi-Objective Evolutionary Algorithm with
epigenetic silencing for the land use management problem. The goal of the farm
was to reduce the environmental footprint whilst maintaining a viable farming
business through land use and/or management option changes.

The chromosome encoded each paddock land use and the system emulated
gene regulation with epigenetic silencing based in histone modification and RNA
editing mechanisms. A Pareto front visualization tool was developed composing
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the 14 fitness criteria into 3 super-objectives. However, the approach was not
compared against a classical Multi-Objective Evolutionary Algorithm. There-
fore, the improvement of the epigenetic variation could not be estimated.

In 2014, the same authors [4] extended their previous work using a similar
epigenetic based modification. The main modification is the use of Hyper Radial
Visualization, 3D Modeling and Virtual Reality to reduce the 14 fitness functions
and display the solutions in a understandable way to a group of experts. Again,
the approach is not compared with a classical EA.

Turner et al. [23] used an Artificial Gene Regulation model with an epige-
netic mechanism based on DNA methylation and chromatin modifications. The
inclusion of epigenetic information gave the network the ability to allocate dif-
ferent genes to different tasks, effectively regulating gene expression according
to the environment in which it was operating.

The goal of the model was to follow specific trajectories in a chaotic system
(Chirikov’s standard map). The network was evolved using a Genetic Algorithm.
The epigenetic mechanism improved performance of the model in a dynamic
system. With the ability to inactivate genes came the ability to increase the effi-
ciency of the network. Hence, with each inactive gene for an objective, there was
less computational effort required to complete a single iteration of the network
simulation.

La Cava et al. [15] included an Epigenetic Hill Climber into the Linear
Genetic Programming algorithm by the addition of a binary array equivalent in
length to the genotype of each individual. This array, referred to as an epiline,
indicated the active genes. The algorithm was used to solve different symbolic
regression problems and performed better than the non-epigenetic one. Even
when there was no statistically significant improvement in Mean Best Error, the
authors reported improvements in effective program size and beneficial genetics
(genetic operations that resulted in fitter offspring).

The same research group used a similar epigenetic mechanism in [14] to
solve symbolic regression and program synthesis problems. Stack-based GP rep-
resentations are used for both types of problems. The binary epiline is used
to deactivate nodes. Epigenetic hill climber and epigenetic mutation variations
are compared against a GP method were all the nodes are active. The epige-
netic methods outperformed the GP baseline implementation in terms of fitness
minimization, exact solutions, and program sizes.

3 Traffic Signal Control

Urban traffic network control is a complex nonlinear problem and traffic conges-
tion affects daily life of millions of citizens. Furthermore, the rapid increment of
metropolitan populations makes the control of the traffic signals a challenging
task. Different traffic signal control methods have been implemented over time
to try to reduce the negative effects of traffic congestion.

A basic fixed traffic signal has static phase lengths based on historical infor-
mation for each intersection. However, traffic doesn’t behave in the same way
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during different hours of the day. An engineer can analyze the behavior of the
traffic during the day and define different phase lengths for specific intervals.
This method is called pre-timed control. It presents an improvement over the
fixed control depending on human expertise and the correct modeling of traffic
conditions, but requires constant surveillance and constant update, but cannot
adapt to sudden modifications in traffic behavior.

Actuated control or traffic-responsive control consists of phase length sets
that are extended in response to vehicle detectors. Detection is used to pro-
vide information about traffic demand to the controller. Each phase length is
determined by a detector input and corresponding controller parameters.

Different traffic units have been used in the literature to measure traffic:
average car speed, average intersection delay, average queue length, total system
delay, etc. Total system delay is defined as the sum of the stop time of all vehicles
in the system for a defined interval of time.

Traffic-control systems are affected by many factors: infrastructure, vehi-
cles, drivers, pedestrians, weather, seasonal effects, etc. Each factor has its own
characteristics, which makes the entire traffic system a large complex nonlin-
ear stochastic system which poses many interesting problems and challenges for
researchers and engineers.

Wang [24] proposed a general “parallel” control model, where parallel implies
parallel interactions between a real transportation system and its corresponding
artificial or simulated counterpart. The approach consists of three steps: (1)
generation of a simulated model; (2) analysis and evaluation by computational
experiments; (3) control and management through parallel execution of the real
and artificial system.

This general framework can be used with different simulation, control and
learning algorithms, with the constant feedback of differences between real world
events and simulated environments as one of its main benefits.

In [25], Zhang et al. proposed a real-time online urban traffic signal control
approach using a multi-objective discrete differential evolution modification to
optimize the light phase periods of a three-lane, single intersection road includ-
ing left-turn phases. The authors compared their algorithm with a pre-timed
controller using a Poisson distribution to regulate the traffic flow. The proposed
approach behaved better in the single intersection problem.

Sénchez-Medina et al. [20] used a Cellular Automaton based traffic simulator
and a Genetic Algorithm to simulate and optimize the traffic light phase periods
of a section of Saragossa city. The section has seven intersections, 16 input nodes,
18 output nodes and 17 traffic signals. Individuals were represented as an array
containing light phase periods of all traffic signals. Four different parameters
were used as fitness function. The algorithm was tested with different traffic
situations and limited results were obtained. The methodology does not provide
a significant improvement for regular traffic conditions of the network; however,
it increases the performance for more congested scenarios.

Nie et al. [18] used a two-dimensional Cellular Automaton and a 1 + A Evo-
lutionary Strategy to update the time parameters of CA rules in a 20 x 20 cell
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network. The authors performed experiments with different traffic densities and
the results demonstrated a better performance of the evolutionary approach com-
pared to previous work done with the same Cellular Automaton. However, the
simulated environment was too rigid and was not able to represent all conditions
of a real environment.

In [1], Braum and Kemper modified an open source area-wide traffic light
signal optimizer, called BALANCE [7]. They replaced the hill-climbing algo-
rithm used on the tactical level of BALANCE with a Genetic Algorithm. The
chromosome representation used is similar to the one used in [20]; however, the
optimization was done online with a real system. The architecture used is similar
to the parallel control model defined in [24].

Several experiments were performed with the traffic network of Ingolstadt,
Germany. The results demonstrated a better performance of the GA over the
Hill Climber (HC) in almost all (different) traffic density tests. The authors
conclude that as the network becomes larger and more complex, the evolutionary
algorithm provides larger advantages. Once the system started operating in the
real world, daily average delays were reduced by 21 % compared to the standard
10 % expected using the traditional HC algorithm of BALANCE.

In [19], Padmasiri and Ranasinghe used a GP and fuzzy logic hybrid app-
roach to define a single fine-tuned fuzzy rule for a single intersection using a
Poisson distribution to control the vehicle arrival rate under different traffic
volume scenarios. The set of evolved rules use traffic parameters as input and
decide to extend or terminate the current green lapse. The results present an
improvement compared to previous work. However, solutions lack adaptability
to changes in the traffic conditions and the method was tested only with a single
intersection.

4 The Traffic Simulator

Microscopic traffic simulation models study individual elements of transportation
systems, such as individual vehicle dynamics and individual traveler behavior.
The model depends on random numbers to generate vehicles, to select routes
and to determine the behavior of the system. In a microscopic simulator the
dynamic variables of the model represent microscopic properties like the position
and velocity of single vehicles.

Even though several commercial and open source simulators are available,
we decided to create a microscopic model simulator in order to have full control
of the environment. It allows the parallel execution of experiments in a multi-
processor environment, and to simulate different dynamic traffic conditions by
the hour.

The simulator works in a similar way to the Cellular Automaton described
in [12,20], but operates in a two-dimensional environment. It can represent
roads with multiple-lanes and two directions. An extra Object-Oriented layer
was incorporated to update only the cells containing vehicles and to reduce
simulation time. Instead of using a toroidally closed environment, the network
entries are controlled by a Poisson distribution described in Sect. 4.2.
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4.1 Traffic Network

The size of the network, its number of connections, geometry, number of lanes
and type of intersections can be modified before running the simulator. For this
paper, the experiments were performed in a 10 intersections network with 9
input/output nodes and 31 traffic signals. All the nodes are connected by two-
lane bi-directional roads. The network is presented in Fig. 1.
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Fig. 1. Traffic network used for the experiment

4.2 Vehicle Insertion

The Poisson distribution correctly models arrival of vehicles, on one or multi-
ple lanes [17]. The flexibility of the Poisson distribution allows the simulation of
changes in the traffic densities. In order to simulate real-world similar conditions,
the scenario simulates 16.5h of traffic. The traffic densities change during the
simulated day and each entry point to the network follows a different distribu-
tion.

The first hour is considered a training step where all the entries follow a
standard Poisson distribution going from zero traffic conditions to the maxi-
mum saturation peak and declining again to zero traffic. During the remaining
15.5h of the scenario, two traffic waves are executed. The first one initiates from
south-west entries between 7 and 11 am. The second one from north-east entries
between 4 and 7pm. Figure2 presents the probability distributions generated
corresponding to the defined behavior for the network presented in Fig. 1.

Even when the complete scenario covers more than 16 h of traffic, each simu-
lation runs only for one hour of traffic. A time window is used during the exper-
iments. The window moves 5 min after each execution. Using this approach, the
full scenario is covered with 200 simulations.
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Fig. 2. Traffic input probability distributions

5 Representation

We used a forest of decision trees as the GP representation. Each decision tree
is employed to evaluate a set of intersections with similar characteristics; i.e.,
same number of intersecting roads and equivalent proximity to entry points. For
example, the network in Fig.1 requires a forest of 4 decision trees: (E, F, H),
(B, D, G, I), (A, J) and (C).

The terminal set is formed by integer numbers, between —10 and 10, and
traffic parameters listed in Appendix A. The function set is formed by mathe-
matical operators (addition, subtraction, multiplication and protected division),
logical operators (conjunction, disjunction and negation), comparison operators
(equal to, bigger than and smaller than), and a conditional operator.

During the simulation, a decision tree is executed for each intersection twice
in every light cycle with current traffic parameters. The resulting integer number
is added to the vertical green phase period, subtracted from the vertical red
phase period, added to the horizontal red phase period and subtracted from the
horizontal green phase period.

Figure 3 presents a single decision tree. This tree represents a human designed
solution. The idea is to increase the mobility (increase the green phase in 1s
and reduce the red phase in 1s) of the vertical or horizontal directions if the
corresponding queue is larger than the opposite direction queue for more than 5
vehicles.

Two different crossover operations are available: Tree exchange and sub-tree
exchange. The former occurs in 10 % of all crossover operations and exchanges
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Fig. 3. Decision tree

one tree between two chromosomes. The trees exchanged are in the same position
of the two different forests. The latter operator selects a random crossover point
of a specific decision tree in both chromosomes and exchanges the two sub-trees
selected only if both are of the same type; otherwise, it selects a new crossover
point.

Two different mutation operations are available: New tree mutation and node
mutation. The former occurs with a probability of 0.1 %, selects a random tree
of the forest and replaces it with a newly generated tree. The latter replaces a
single node with a node of the same type.

Strong typing is performed through evaluation of the selected points before
the application of the reproduction operators. These GP parameters and those
presented in Table 1 were selected based on a set of preliminary experiments.

6 The Epigenetic Mechanism

The epigenetic mechanism proposed is based in DNA methylation. Each condi-
tional node is associated with an activation index in analogy to the concentration
of methyl groups attached to cytosine nucleotides along the DNA structure. As
in the biological counterpart, the evolutionary process of chromosomes is not
affected by the activation index. However, during the evaluation step, if the
activation index is smaller than an activation threshold, defined as 50 % for this
experiment, the conditional node is ignored and the else sub-tree is executed,
deactivating with that action the conditional sub-tree and the then sub-tree.

The activation indices are initialized randomly between 0% and 100 % for
the first generation. However, they are transferred to the offspring as part of the
crossover operation in the same way methylated DNA is transferred between gen-
erations. The collection of activation indices is stored in an epigenetic vector for
easy manipulation. The epigenetic vector is included as part of the chromosome,
but it is not affected by the genetic operators.

Figure 4 presents the effect of the activation thresholds in a forest of decision
trees. The branches in gray are inactive. This change modifies the behavior of
the decision tree without modifying the chromosome.

Since methylation marks change during development, it was decided to mod-
ify the epigenetic vector during the simulation process using the following proce-
dure: For each intersection that uses a tree expression the traffic balance, defined
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Fig. 4. Decision trees under influence of activation thresholds and epigenetic vector

as the difference between the traffic congestion in vertical directions and the traf-
fic congestion in horizontal directions, is calculated using (1), where ¢ represents
an intersection evaluated through the tree expression e, and t represents the
current time step.

Be, (t) = verticalQueue,, (t) — horizontalQueue, (1) (1)

Every 5 light cycles, a mean traffic balance of the interval is calculated per
intersection with (2), where T' is the number of time steps of the interval.

Be, == (2)

The interval mean is then compared to the last element of the time interval
in order to get the adaptive factor of the expression as it is defined by (3).

Aei = ‘Bei (T) - Eei| (3)

The goal of the adaptive factor is to identify differences between the interval
mean congestion levels and the current state for each intersection in the system.
A large difference between the current congestion level and the mean behavior
of the intersection indicates a change in the environment. In that case, a modifi-
cation in the behavior of the intersection could help the system to adapt to this
environmental change.

Therefore, the adaptive factor of the expression is used as a mutation prob-
ability to modify the activation indices of the expression tree. A mutation is
performed on the local activation indices. This step is performed as an internal
mutation during the simulation process for each intersection. The mechanism
works in a similar way to the epigenetic mutation variations presented in [14]
and has the purpose to adapt the intersection behavior to environmental changes.
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The conceptual idea behind this process is to keep the system behavior stable
under environmental perturbations, one of the roles of Epigenetics at the cellular
level in Nature. At the end of the simulation, the final activation indices are
stored in the epigenetic vector of the chromosome and transferred to the next
generation.

7 Experiments

Five different algorithms were tested with the traffic network of Sect.4: (1) a
fixed static control, (2) an actuated control using a human designed fixed decision
tree, (3) a pre-timed control evolved using a Genetic Algorithm (GA), (4) an
actuated control using the GP representation described in Sect.5 and (5) an
actuated control using the GP representation including the epigenetic mechanism
described in the previous section.

The baseline is a fixed control with synchronization of all the intersections.
For this method, all the lights are synchronized and the lapses are fixed (15s
for the green light, 5s for yellow light, 10s for red light and 10s for a left turn).
The system behavior keeps static for the 16 h of traffic.

The decision tree of Fig. 3 is the human designed actuated control used for
the second algorithm. In each simulation, the lights start with the fixed con-
figuration used in the static method, but the decision tree is executed at each
intersection twice every light cycle. Therefore, the lapses of each intersection can
be modified depending on traffic conditions. The same decision tree is used for
all intersections in every simulation.

A pre-timed control is evolved using a GA similar to those presented in
[1,20]. The length of the lapses for each intersection in the system is stored as
an integer chromosome. An online optimization approach is used with the GA
for 200 generations to approximate an optimal pre-timed configuration for the
16.5h of traffic as it is described in Sect. 4.2.

The GP actuated control and the GP actuated control including the epige-
netic mechanism evolve a forest of decision trees (see Sects.5 and 6) using an
online approach.

During the evolution process each individual is evaluated with 20 indepen-
dent simulation runs. Total system delay, defined in Sect. 3, is used as objective
function.

For the fixed control and fixed tree actuated control, 20 independent simula-
tion runs are effectuated for each of the 200 simulation configurations. The total
system delay is calculated for each of them and the objective function is defined
as the average total system delay of the 20 simulations.

The parameters employed for the Genetic Programming are presented in
Table 1. A similar configuration in terms of population size, number of genera-
tions, selection method, mutation probability and crossover probability is used
for the Genetic Algorithm.
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Table 1. Summary of the configuration parameters for the Genetic Programming
Model

Configuration parameters Selected values
Population size 50 individuals
Number of generations 200

Mutation probability rate per node | 5%

Crossover probability 80%

Initial size limit 5 levels

Maximum size limit 7 levels

Selection operator Tournament selection with group size of
7 individuals

Elitism 1 individual
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Fig. 5. Fitness curves of fixed control, tree actuated control, GA pre-timed control,
GP and epigenetic modification of GP for the experiment

8 Results and Discussion

15 independent runs were performed for each algorithm. Figure 5 presents the com-
parison of the fitness obtained by the five methods. For GA, GP and the epigenetic
modification of GP the fitness value of the best individual per generation is dis-
played.



A Genetic Programming Approach for the Traffic Signal Control Problem 145

Table 2. Vehicle waiting time differences of the four methods

Compared methods | Vehicle waiting time | Relative difference with
difference (seconds) |static method
Static - GA 13.85 3.33%
Static - GP 61.82 14.91%
Static - EpiGP 98.29 23.71%
GP - GA 47.58 11.57%
GA - EpiGP 84.45 20.37 %
GP - EpiGP 36.47 8.80 %

From the first generation, the learning curve of the evolutionary actuated
control methods starts to provide better solutions than the fixed control app-
roach for almost all evaluation steps. This behavior can be caused by the high
variability of traffic densities used in the experiment. Further experiments should
be performed with lower variability to analyze the behavior of the methods in
more detail.

The epigenetic modification of GP has a lower delay than the standard GP
algorithm for almost all the evaluation points. The difference between both meth-
ods is more drastic during rush hours. A possible explanation is the adaptive
ability provided by the activation-deactivation of code of the epigenetic method
during the simulation.

Table 2 presents pairwise comparisons of the vehicle waiting time for com-
binations of the methods. The second column indicates the difference of the
average waiting time per vehicle for the different algorithms. The third column
is that difference divided by the average vehicle waiting time of the pre-timed
experiment.

It is noteworthy that the epigenetic modification outperformed the other four
methods used in the experiments, providing an improvement of more than 20 %
compared to the fixed control and the pre-timed control. However, an evaluation
of the methods with different variability in traffic conditions needs to be con-
ducted to provide a better understanding of the behavior of the methods. For
now, this set of experiments is a proof-of-concept.

9 Conclusions and Future Work

The GP modification described in this paper is an epigenetic approach specifi-
cally designed to work on traffic signal control problems. A basic set of experi-
ments was performed and the results demonstrate an increase in the performance
compared to the basic GP method and other methods previously used.
Extensive experimentation is required to give statistical significance to the
results. To achieve that, statistical tools should be used to perform analysis of
the data generated by the independent runs. Scenarios of different sizes should be
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evaluated to analyze the behavior of the method under different circumstances.
It would be ideal to acquire data from a real world network.

Furthermore, the modification needs to be compared against traditional
methods used in Traffic Signal Control. An example of these methods is the green
wave algorithm described in [9]. Because the architecture developed can be easily
transformed into an online real-virtual parallel system as the one described in
[24], it can be used in real world traffic optimization.

Moreover, the epigenetic modification can be used to solve other problems.
Problems were some elements of the domain vary with the progression of time
(dynamic environments) can benefit of the short term memory mechanism pre-
sented in this paper. The key elements to implement the epigenetic modification
are: the identification of a variable independent to the objective function (traffic
balance in our experiment) to calculate the adaptive factor, the insertion of acti-
vation indices in nodes of a specific type and the code activation-deactivation
process described in Sect. 6.

A Traffic Parameteres

Traffic parameters included in the terminal set:

— topStatus: Status of the north-south direction light of the current intersec-
tion (returns 0 if the light is red, 1 if the light is yellow, 2 if the light is green
and 3 if the turn left right is on).

— bottomStatus: Status of south-north direction light of the current intersec-
tion (same output configuration that topStatus).

— leftStatus: Status of west-east direction light of the current intersection
(same output configuration that topStatus).

— rightStatus: Status of east-west direction light of the current intersection
(same output configuration that topStatus).

— verQueue: Sum of the number of vehicles stopped in the north-south direc-
tion and the number of vehicles stopped in the south-north direction in the
current intersection.

— horQueue: Sum of the number of vehicles stopped in the west-east direction
and the number of vehicles stopped in the east-west direction of the current
intersection.

— 1stTopNeighborQueue: Number of vehicles stopped in the north-south
direction of the first intersection in the north direction of the current crossing.

— 1stBottomNeighborQueue: Number of vehicles stopped in the south-north
direction of the first intersection in the south direction of the current crossing.

— 1stLeftNeighborQueue: Number of vehicles stopped in the west-east direc-
tion of the first intersection in the west direction of the current crossing.

— 1stRightNeighborQueue: Number of vehicles stopped in the east-west
direction of the first intersection in the east direction of the current
crossing.

— 2ndTopNeighborQueue: Number of vehicles stopped in the north-south
direction of the second intersection in the north direction of the current
crossing.
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2ndBottomNeighborQueue: Number of vehicles stopped in the south-
north direction of the second intersection in the south direction of the current
crossing.

2ndLeftNeighborQueue: Number of vehicles stopped in the west-east direc-
tion of the second intersection in the west direction of the current crossing.
2ndRightNeighborQueue: Number of vehicles stopped in the east-west
direction of the second intersection in the east direction of the current crossing.
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