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Abstract. The genotype-to-phenotype mapping plays an essential role
in the design of an evolutionary algorithm. Since variation occurs at
the genotypic level but fitness is evaluated at the phenotypic level,
this mapping determines how variations are effectively translated into
quality improvements. We numerically study the redundant genotype-
to-phenotype mapping of a simple Boolean linear genetic programming
system. In particular, we investigate the resulting phenotypic network
using tools of complex network analysis. The analysis yields a number
of interesting statistics of this network, considered both as a directed as
well as an undirected graph. We show by numerical simulation that less
redundant phenotypes are more difficult to find as targets of a search
than others that have much more genotypic abundance. We connect this
observation with the fact that hard to find phenotypes tend to belong to
small and almost isolated clusters in the phenotypic network.

Keywords: Complex networks · Genetic programming ·
Genotype-phenotype mapping · Phenotype networks · Evolvability

1 Introduction

In evolutionary algorithms, the quality of a candidate solution is assessed based
on its phenotype, i.e., how well the phenotype is able to produce a desired out-
come judged by a fitness measure. Yet, the actual EA search occurs in genotype
space, where the encoding of candidate solutions is modified by mutation or
recombination operations. Thus, how genotypes are mapped to phenotypes will
substantially influence the search effectiveness of an evolutionary algorithm [1,2].

Redundant genotype-to-phenotype mappings are common in both natural
[3,4] and computational evolution [5–8], where multiple genotypes can map to
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the same phenotype. Such a redundancy is often unevenly distributed among
phenotypes, where some phenotypes are over-represented by many genotypes,
and some are under-represented by only a few [7,9]. When the target phenotype
is under-represented, its evolutionary search is often more difficult than having
a genotypically over-represented target. This is intuitive since it can be more
difficult to find one of the few genotypes that map to an under-represented
target phenotype.

If the genotype-to-phenotype mapping is redundant, a mutation to a geno-
type may not change the phenotype it encodes, a phenomenon defined as neutral-
ity [10,11], and such mutations are called neutral mutations [12–15]. Neutrality
is facilitated by redundancy, but not guaranteed. For instance, there are cases
where genotypes map to the same phenotype but are not mutationally con-
nected, i.e., one genotype cannot be reached from the other through single point
mutations, thus mutations that need to occur on the way from one to the other
will need to alter the phenotype.

In contrast to neutral mutations, non-neutral mutations connect genotypes
of distinct phenotypes. Such non-neutral mutational connections among pheno-
types might also be heterogeneous [9,16], i.e., a phenotype may not have the
same likelihood of mutating to other phenotypes and thus may tend to “pre-
fer” some phenotypes over others. The difficulty of finding a target phenotype is
thus influenced not only by its genotypic abundance, but also by how mutational
connections are distributed among different phenotypes.

In this contribution, we quantitatively measure the genotypic redundancy of
phenotypes and the mutational connections among them, and take a network
approach to analyze how these properties correlate with the difficulty of finding
a target phenotype. We use a linear genetic programming (LGP) algorithm for
Boolean optimization, and numerically characterize its genotype, phenotype, and
fitness space. Using random sampling and random walks, we construct a pheno-
type network to depict the mutational connections among different phenotypes.
Once a specific target phenotype is chosen, this changes the connectivity of the
phenotype network since only non-deleterious mutations, i.e. mutations that do
not decrease fitness, are allowed. We show that such changes can significantly
influence the difficulty of finding a target.

2 Methods

2.1 A Boolean Linear Genetic Programming Algorithm

We use a linear genetic programming (LGP) algorithm for our empirical analysis.
LGP is a branch of genetic programming and employs a sequential representation
of computer programs to encode an evolutionary individual [17]. Such an LGP
program is often comprised of a set of imperative instructions, which are executed
sequentially. Registers are used to either read input variables (input registers)
or to enable computational capacity (calculation register). One or more registers
can be designated as the output register(s) such that the final stored value(s)
after the program is executed will be the program’s output.
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In this study, we use an LGP algorithm for a three-input, one-output Boolean
function modeling application. Each instruction has one return, two operands
and one Boolean operator. The operator set has four Boolean functions {AND,
OR, NAND, NOR}, any of which can be selected as the operator for an instruction.
Three registers R1, R2, and R3 receive the three Boolean inputs, and are write-
protected in an LGP program. That is, they can only be used as an operand in
an instruction. Registers R0 and R4 are calculation registers, and can be used as
either a return or an operand. Register R0 is also the designated output regis-
ter, and the Boolean value stored in R0 after an LGP program’s execution will
be the final output of the program. All calculation registers are initialized as
FALSE before execution of a program. An LGP program can have any number
of instructions, however, for the ease of simulation in this study, we determine
that an LGP program has a fixed length of six instructions. An example LGP
program is given as follows.

I1 : R4 = R2 AND R3

I2 : R0 = R1 OR R4

I3 : R4 = R4 NAND R0

I4 : R4 = R3 AND R2

I5 : R0 = R1 NOR R1

I6 : R0 = R3 AND R0

2.2 Genotype, Phenotype, and Fitness

The genotype in our evolutionary algorithm is a unique LGP program. Since
we have a finite set of registers and operators, as well as a fixed length for all
programs, the genotype space is finite. Specifically, considering an instruction,
two registers can be chosen as the return, all five registers can be used as the
two operands, and the operator is picked from the set of four possible Boolean
functions. Thus, there are 2 × 5 × 5 × 4 = 200 unique instructions. Given the
fixed length of six instructions for all LGP programs, we have a total number
of 2006 = 6.4 × 1013 possible different programs. Although finite, the genotype
space is enormous and is not amenable to exhaustive enumeration. Therefore,
we conduct a simulation by randomly generating one billion LGP programs
(≈15.6 ppm = 0.00156% of the genotype space) to approximate the genotype
space.

The phenotype in our evolutionary algorithm is a Boolean relationship
that maps three inputs to one output, represented by an LGP program, i.e.,
f : B3 → B, where B= {TRUE, FALSE}. There are thus a total of 22

3
= 256 possi-

ble Boolean relationships. Having 6.4×1013 genotypes to encode 256 phenotypes,
our LGP algorithm must have a highly redundant genotype-to-phenotype map-
ping. We define the genotypic redundancy of a phenotype as the total number of
genotypes that map to it.

The fitness of an LGP program is dependent on the target Boolean rela-
tionship, and it is defined as the dissimilarity of the presented and the target
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Boolean relationships. Given three inputs, there are 23 = 8 combinations of
Boolean inputs. The Boolean relationship encoded by an LGP program can be
seen as a 8-bit string representing the outputs that correspond to all 8 possi-
ble combinations of inputs. Fitness is defined as the Hamming distance of this
8-bit output and the target output. For instance, if the target relationship is
f(R1, R2, R3) = R1 AND R2 AND R3, represented by the 8-bit output string of
00000001, the fitness of an LGP program encoding the FALSE relationship, i.e.,
00000000, is 1. Fitness falls into the range of [0, 8] where 0 is the perfect fitness
and 8 is the worst, and is to be minimized.

2.3 Phenotype Networks

Point mutations to genotypes may change the encoded phenotypes from one to
another. In the context of our LGP algorithm, a point mutation is to replace
any one of the four elements, i.e., return, two operands, and operator, of an
instruction in an LGP program. The mutational connections among pairs of
phenotypes can be modeled using a phenotype network. In such a network, each
node represents one of the 256 phenotypes that can be possibly encoded by the
LGP genotypes. Two nodes (phenotypes) are directly connected by an edge if
there exist at least one pair of underlying genotypes, one from each phenotype,
that can be transitioned from one to the other through a single point mutation.

Since it is infeasible to enumerate all possible genotypes, sampling the muta-
tional connections among phenotypes is also necessary. We assemble one million
randomly generated LGP programs and allow each to take a 1000-step random
walk in genotype space. All the phenotypes each random walker encountered are
recorded in order to estimate the number of point mutations that can transition
one phenotype to another. This random walk simulation yields a undirected,
weighted phenotype network, where the weight of an edge is proportional to
the number of sampled point mutations that can change the genotypes of one
phenotype to that of the other phenotype.

Assigning a fitness to each phenotype and preventing deleterious mutations
changes the reversible feature of point mutations and further transforms the
weighted phenotype network into a directed graph. We pick two target pheno-
types with a considerable difference in their genotypic redundancies, given the
consideration that whether a target phenotype is over- or under-represented by
genotypic encodings may influence the difficulty level of finding that target [7].
The first target is phenotype 11110000 (decimal 240) which has a genotypic
redundancy of 46,729,920, i.e., 4.673% of the one billion sampled genotypes.
The second target is phenotype 10110100 (decimal 180) with only a genotypic
redundancy of 86. Setting such different targets will render the corresponding
directed, weighted phenotype networks different. Thus, we investigate a variety
of network properties to compare these two networks.
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2.4 Complex Network Analysis

Since we need a few concepts and methods from the field of network science [18,
19], we here collect some useful definitions to be referenced and used later.

Strength. This term refers to the generalization of the vertex degree to weighted
networks. It is defined as the sum of weights of the edges from node i to its
neighbors N (i),

si =
∑

j∈N (i)

wij ,

where wij is the weight of the edge connecting nodes i and j.

Disparity. A given value of a node’s strength can be obtained with very different
values of edge weights. The contributing weights could be of about the same size
or they could be very different. To measure the degree of heterogeneity of a
node’s edges disparity can be used. It is defined as follows:

Y2(i) =
∑

j∈N (i)

(
wij

si

)2

.

If all the connections are of the same order then Y2 is small and of order 1/k
where k is the vertex degree. On the other hand, if there is a small number of
high weight connections Y2 is larger and may approach unity.

Average Shortest Paths. We use weighted and unweighted shortest paths
between pairs of vertices. The average values of all two-point shortest paths in
a graph give an idea of the typical distances between nodes.

Clustering Coefficient. The clustering coefficient C(i) of a node i is defined
as the ratio between the e edges that actually exist between the k neighbors of
i and the number of possible edges between these nodes:

C(i) =
e(
k
2

) =
2e

k(k − 1)
.

The clustering coefficient can be interpreted intuitively as the likelihood that
two of node i’s neighbors are also neighbors. The average clustering coefficient
C̄ is the average of C(i) over all N vertices in the graph G, i ∈ V (G): C̄ =
(1/N)

∑N
i=1 C(i).

Degree, Strength, and Weights Distribution Functions. These discrete
distributions give, respectively, the frequency of a given node degree, node
strength, or edge weight in the network. These distributions are useful for eval-
uating whether they are, for instance, homogeneous or heterogeneous, unimodal
or multimodal.
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3 Results

3.1 Sampled Genotype Space and Mutational Connections

When we decode the one billion randomly generated genotypes, we find that 17
of the total 256 phenotypes are never sampled. The distribution of the genotypic
redundancy of the remaining 239 sampled phenotypes is highly heterogeneous
(see Fig. 1a). The most over-represented phenotype is 0, i.e., FALSE, which has
over 108 million genotypes, while phenotype 255, i.e., TRUE, its symmetric coun-
terpart, is the second most abundant with over 93 million genotypes. The asym-
metry in count is due to the initialization of calculation registers, including the
output register R0, to FALSE in all LGP programs prior to execution. In addition
to the 17 phenotypes never sampled, under-represented phenotypes include 105,
231, 24, 219, 189, 36, and 66, none of which has more than 40 sampled genotypic
encodings.

Genotypic redundancy

Fr
eq

ue
nc

y

100 103 106 109

0

20

40

60

80
a

Genotypic redundancy

N
um

be
r o

f n
ei

gh
bo

rs

100 103 106 109

0

50

100

150

200

250
b

Fig. 1. (a) Distribution of the genotypic redundancy of sampled phenotypes using one
billion randomly generated LGP programs. (b) Number of neighbors in relation to the
genotypic redundancy of a phenotype. Their linear-log correlation has a coefficient of
0.9642 (p < 2.2 × 10−16).

Using the assembly of one million 1,000-step random walkers, the mutational
connections among pairs of phenotypes can be approximated. 16 out of 256 phe-
notypes are never encountered, i.e., they are isolated nodes in the phenotype
network, 15 of which belong to the 17 never-sampled phenotypes discussed pre-
viously. This also suggests that under-represented phenotypes are hard to reach
by random walks. Figure 1b shows the correlation of node degree, i.e., the num-
ber of distinct phenotypes accessible from a phenotype through point mutations,
and the genotypic redundancy of a phenotype. We observe a strong and highly
significant positive correlation.

3.2 Properties of the Undirected Weighted Phenotype Network

We first construct an undirected, weighted phenotype network using the sampled
mutational connections among pairs of phenotypes. The network has 240 nodes
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Fig. 2. Distribution of (a) node degree, (b) edge weight, (c) node strength, and (d)
node disparity in the undirected weighted phenotype network.

representing 240 unique phenotypes, since 16 phenotypes were never encountered
in the random walk sampling. See Sect. 2.4 for definitions of the various mea-
sures used. Ignoring edge weights, the network has 14,663 edges, which yields
an average node degree of 122. There is only one connected component in this
network. Its average shortest path is only 1.5 and its diameter is as short as 3,
which means that any pair of phenotypes can be reached from one to another by
point mutations through no more than 3 hops in the phenotype network. The
clustering coefficient is high at 0.75; this is due to the fact that many nodes have
neighbors that are themselves connected, giving rise to many closed triangles.

The degree and edge weight distributions are shown in Fig. 2(a) and (b).
Phenotypes 0 (FALSE) and 255 (TRUE) have the highest node degree of 236, and
phenotypes 22 and 104 only have a degree of 2. The distribution of edge weights
is roughly monotonic, with the majority of edges having a weight of less than
50, while the edge connecting phenotypes 0 and 255 has the highest weight of
5,673,803.

Figure 2(c) and (d) show node strength and node disparity distributions,
respectively. Strength, being a generalization of degree for weighted networks,
has a shape that is qualitatively similar to the degree histogram, with a bi-
modal distribution. The node disparity shows that most phenotypes have a low
disparity, i.e. their links tend to have similar weights, and the distribution decays
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Fig. 3. Node (a) disparity and (b) strength in relation to the genotypic redundancy of
a phenotype. The linear-log correlation in (a) has a coefficient r2= 0.3568 (p < 2.2 ×
10−16), and the log-log correlation in (b) has a coefficient r2= 0.9981 (p < 2.2×10−16).
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Fig. 4. Correlation of node strength and weighted eigenvector centrality. This positive
correlation has a coefficient r2=0.9982 (p < 2.2 × 10−16).

quickly. Since we were only interested in the qualitative aspects of these distribu-
tions, we did not attempt to fit any particular functions to them. Finally, Fig. 3
shows that genotypic redundancy is strongly correlated with node strength.

An important property of phenotypes is their evolvability which is the ability
to generate novel and adaptive phenotypes. Evolvability can be defined quan-
titatively and has been studied in detail in previous work (see, e.g., [9,20,21]).
In particular, it was found in [21] that a phenotypic network centrality mea-
sure called weighted eigenvector centrality was a good predictor for phenotypic
evolvability. In that respect, we note that the simpler node strength is highly cor-
related with this centrality measure, as can be seen in Fig. 4. This means that
a good proxy for phenotypic evolvability is the easily computable phenotype
strength.
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3.3 Communities in the Undirected Weighted Phenotype Network

Communities in a complex network can be loosely defined as collections of ver-
tices that are more strongly linked among themselves than with the rest of the
network. A precise and unique definition cannot be given, which makes com-
munity detection a hard and somewhat ill-defined task. Nevertheless, several
community detection algorithms have been proposed that work well in practice.

Here we use the methods implemented in the igraph R package [22], which
also cover weighted networks. Before submitting our phenotypic network G to a
community detection algorithm some manipulations are necessary. In fact, the
graph has a mean degree of about 122 which makes it a very dense network.
Community detection algorithms typically do not work well, or at all, on such
graphs. However, we note that edge weights in G span seven orders of magni-
tude (see Fig. 2b), which means that many links are comparatively very weak.
Thus we have discarded weak network connections by cutting all edges with
weights below a threshold of wij < 105. As a consequence, some of the original
nodes also become disconnected but we have ensured that all edges of the target
phenotypes are kept, especially for target node 180, which would have become
isolated otherwise, since all its edges have weights lower than the threshold.

Modularity is a measure that estimates the cohesiveness of a partition found
by a community detection algorithm with respect to a graph with the same
degree distribution but with edges placed at random [23]. The community par-
tition found with several community detection algorithms from igraph has a
modularity value of about two, which is not very high but still significantly
different from random. Figure 5 shows the communities found by the Louvain
algorithm. It is important to note that the small community to which vertex 180
belongs is almost always found identically by all the different algorithms tried.
Figure 5 clearly shows that node 180, together with its neighbors belonging to
the same community, appears to be extremely difficult to reach, all the more
taking into account that the intra-community and extra-community edges are
weak. On the other hand, phenotype 240 is at the intersection of two bigger and
well connected communities and thus it is intuitively reasonable that it should
be easier to find. These indications will find a numerical confirmation in the next
section where we shall use random walks to traverse the network.

3.4 Random Walks

Although the GP system searches the genotype space and not the much smaller
phenotype space, it is still interesting to simulate random walk search in the
latter to numerically confirm the above idea that some phenotypes are easy to
find while others are hard. Random walks on networks are reviewed in [24].
In an unweighted network, the probability for going from node i to node j is
pij = aij/ki, where aij is the corresponding entry in the graph adjacency matrix
being 1 if nodes i and j are connected and 0 if they are not. The random walk we
are interested in is biased, since edges of the undirected phenotype network are
weighted. So we have to modify the probabilities accordingly, but the changes are
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Fig. 5. Community structure of the edge-filtered undirected phenotypic network. Phe-
notype 180 clearly belongs to a small community that is very weakly connected to the
rest of the network, while phenotype 240 is located in the center of the network and
belongs to a larger and well connected community.

minor: the transition probability from node i to node j through an edge {ij} with
weight wij ≥ 0 now becomes pij = wij/si, where si is the strength of node i and
is defined as the sum of the weights of the edges from i to its neighbors N (i) (see
definitions in Sect. 2.4). These probabilities are well behaved since a connected
node must have a positive finite strength, pij ≥ 0, and

∑
j∈N (i) pij = 1.

For each of the two target phenotypes 180 and 240, we numerically simulate
biased random walks in the original unfiltered network starting from all network
nodes except the target nodes themselves. For each starting node we perform
105 random walk steps, for a total of (N −1)×105 = 237×105 steps. For each of
the phenotypes 180 and 240 we record the number of times it is found, i.e., the
number of hits, and the mean number of steps to the first hit, when the node is
found.

Results are shown in Table 1. From the number of hits and the first hit times,
it is apparent that phenotype 180 is much harder to find than phenotype 240.
Furthermore, if we exclude the first neighbors of the target node as starting
nodes in the random walk, it becomes even more difficult, comparatively, to
find phenotype 180 (figures after the comma in Table 1). We can also see that
phenotype 240 is very often found directly from a starting node that is a first
neighbor given that 240 has 223 neighbors while 180 only has 41 connections.
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Table 1. Average number of hits and first hitting times for random walks having nodes
180 and 240 as targets. 237×105 random walks steps are performed in total. The figures
after the commas refer to the same quantities when the first neighbors of nodes 180
and 240 are excluded as starting nodes for the walk.

Target phenotype 180 Target phenotype 240

Number of hits 2, 0 97465, 5862

First hitting time 910306, – 10, 10

3.5 In-degree and Out-degree in the Directed Phenotype Networks

When a fitness is assigned to each phenotype based on its Hamming distance
to the target phenotype, the phenotype network becomes oriented since we only
allow non-deleterious point mutations. Note that we only consider simple graphs
in the current study, i.e., self-loops are excluded in our network analysis, in
order to focus on the mutational connections among distinct phenotypes. A
phenotype/node now has edges with two directions, pointing to its neighbors
(out edges) and being pointed from its neighbors (in edges). Subsequently, in-
degree and out-degree can be used to depict how many unique phenotypes can
access or can be reached from a reference phenotype.

Figure 6 shows the correlations of in- and out-degrees with the fitness of a
phenotype in two directed phenotype networks with different targets. Using both
targets, in-degrees are negatively correlated with fitness while out-degrees are
positively correlated with fitness. Note that fitness is to be minimized. Pheno-
types with better fitness will have less edges going out but more edges coming in,
i.e., fitter phenotypes are easier to reach and harder to leave, which is intuitive
and desirable since we hope reaching fitter phenotypes will be more likely leading
to the path to the target. However, when we compare the correlations using dif-
ferent targets, it can be seen that using a relatively harder target (i.e., phenotype
180) results in weaker correlations of in-/out-degrees and fitness. This indicates
that some targets are difficult to find not only because they under-represented
by genotypes, but also because they render the guidance of the fitness gradi-
ent less effective. That is, reaching fitter phenotypes at a current stop does not
necessarily lead to better paths to finding the target.

3.6 Fitness Correlation of Neighboring Phenotypes

Fitness correlation can give statistical information about the fitness assortativ-
ity of neighboring nodes in the network. A practical way for evaluating fitness
correlation is given by the average fitness of neighbors f̄neighbor(i) of a node i

f̄neighbor(i) =
1

|N (i)|
∑

j∈N (i)

fj ,

where fi is the fitness of phenotype/node i.
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Fig. 6. Correlation of node in-degree (a, c) and out-degree (b, d) with fitness in the
directed phenotype networks using an over-represented target 240 (a, b) and under-
represented target 180 (b, d). In (a) and (c), the negative correlations are with a
coefficient of R2 = 0.4623 (p < 2.2 × 10−16), and R2 = 0.2519 (p < 4.6 × 10−16),
respectively. In (b) and (d), the positive correlations are with a coefficient of R2 =
0.4611 (p < 2.2 × 10−16), and R2 = 0.2622 (p < 4.6 × 10−16), respectively.

From this quantity one can compute the average fitness of the neighbors
f̄neighbor(f) for nodes of the phenotypic network having fitness value f which is
a good approximation to the fitness-fitness correlation:

f̄neighbor(f) =
1
Nf

∑

i

f̄neighbor(i),

where Nf is the number of nodes with fitness f .
Remembering that a low fitness value is better in our context, one can see

from Fig. 7 that the neighboring fitness correlations are quite different when
different phenotypes are used as the search target. Specifically, when the over-
represented phenotype 240 is set as the target (see Fig. 7a), the fitness values
of neighboring phenotypes do not correlate, meaning that a phenotype can be
connected to phenotypes with any fitness values. However, as shown in Fig. 7b,
when the target is under-represented, phenotypes having fitnesses greater than
four tend to have neighbors with lower (better) fitness, while good phenotypes



Complex Network Analysis of a Genetic Programming Phenotype Network 61

Fitness

Av
er

ag
e 

fit
ne

ss
 o

f n
ei

gh
bo

rs

0 2 4 6 8

3.0

3.5

4.0

4.5

5.0
a

Fitness

Av
er

ag
e 

fit
ne

ss
 o

f n
ei

gh
bo

rs

0 2 4 6 8

3.0

3.5

4.0

4.5

5.0
b

Fig. 7. Average neighbor fitness versus node fitness in the phenotypic network with
the target phenotype (a) 240 and (b) 180.

below four tend to have as neighbors phenotypes with higher (worse) fitness.
This situation indicates that, in the average, good phenotypes, i.e., those that
have a fitness lower than the average of four, are surrounded by less good ones.

4 Discussion

The genotype-to-phenotype mapping plays a central role in enabling a system
to be evolvable, since the variations characterizing the search occur in the geno-
type space, but the quality or behavior of a system can only be observed and
evaluated at the phenotypic level. We argue that some target phenotypes are
more difficult to find than others, not only because they are most likely under-
represented in genotypic space, but also because the mutational connections
between phenotypes are altered through setting different target phenotypes.

In this study, we took a network approach and quantitatively analyzed the
distribution of mutational connections among phenotypes and how this distri-
bution is changed with different phenotypes set as target. Using a Boolean LGP
algorithm, we sampled the genotypic and phenotypic spaces and constructed a
phenotype network to characterize the distribution of mutational connections
among phenotypes. By setting two different phenotypes as the target, one geno-
typically over-represented and one under-represented, we compared the proper-
ties of the resulting directed, weighted phenotype networks.

Similar to many GP systems, our Boolean LGP algorithm has a highly redun-
dant mapping from genotypes (6.4×1013) to phenotypes (256). Such redundancy
is heterogeneously distributed among phenotypes, with the most abundant phe-
notype possessing about 10% of the entire genotype space while some other
phenotypes never appeared in our samples (Fig. 1a). By examining the undi-
rected, weighted phenotype network, we found that more abundant phenotypes
have more access to different phenotypes (Fig. 1b) and more tendency to mutate
into certain neighboring phenotypes (Fig. 3a).

We chose two phenotypes, 180 and 240, as targets, and observed that in
addition to having considerably different degrees, 41 and 233, the two phenotypes
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have very different community structures (Fig. 5). This suggests that target 180 is
much more difficult to find, not only because it was connected to fewer neighbors,
but also because it is located in a small and distant community. It was also
interesting to see that in the directed phenotype network resulting from setting
180 as target, fitness was less effective at guiding evolution, since fitness and
in-/out-degree of a phenotype are less correlated (Fig. 6), i.e., reaching a fitter
phenotype at a current stop would not necessarily lead to more promising paths
to finding the target.

The search performance of an evolutionary algorithm can vary considerably
with different problem instances. Our study provides a quantitative investiga-
tion into this issue using complex network analysis. That a specific target is hard
to reach can have multiple explanations: (1) the target is under-represented in
genotype space; (2) the target is connected to only a few phenotypes in pheno-
type space; (3) the target belongs to a small community distant from the rest
of the phenotypes in that space; and (4) setting the target has wired the con-
nections among phenotypes in a way that renders following fitter phenotypes in
order to reach the target a less effective strategy. We hope our observations can
be found useful to inspire more intelligent search mechanisms that are able to
overcome these challenges.
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LNCS (LNAI), vol. 2159, pp. 272–281. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44811-X 29

7. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary compu-
tation. Evol. Comput. 11(4), 381–415 (2003)

8. Hu, T., Banzhaf, W., Moore, J.H.: The effect of recombination on phenotypic
exploration and robustness in evolution. Artif. Life 20(4), 457–470 (2014)

https://doi.org/10.1007/3-540-58484-6_276
https://doi.org/10.1007/3-540-58484-6_276
https://doi.org/10.1007/3-540-44811-X_29
https://doi.org/10.1007/3-540-44811-X_29


Complex Network Analysis of a Genetic Programming Phenotype Network 63

9. Hu, T., Payne, J., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple
scales: a quantitative analysis of the interplay between genotype, phenotype, and
fitness in linear genetic programming. Genet. Program. Evolvable Mach. 13(3),
305–337 (2012)

10. Newman, M.E.J., Engelhardt, R.: Effects of selective neutrality on the evolution
of molecular species. Proc. R. Soc. B 265(1403), 1333–1338 (1998)

11. Wagner, A.: Robustness, evolvability, and neutrality. Fed. Eur. Biochem. Soc. Lett.
579(8), 1772–1778 (2005)

12. van Nimwegen, E., Crutchfield, J.P., Huynen, M.A.: Neutral evolution of muta-
tional robustness. Proc. Natl. Acad. Sci. 96(17), 9716–9720 (1999)

13. Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality
affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1149–1156 (2006)

14. Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in lin-
ear genetic programming. In: Proceedings of the 18th Genetic and Evolutionary
Computation Conference (GECCO), pp. 963–970 (2009)

15. Hu, T., Banzhaf, W.: Neutrality, robustness, and evolvability in genetic program-
ming. In: Riolo, R., Worzel, B., Goldman, B., Tozier, B. (eds.) Genetic Pro-
gramming Theory and Practice XIV. GEC, pp. 101–117. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-97088-2 7

16. Nickerson, K.L., Chen, Y., Wang, F., Hu, T.: Measuring evolvability and accessi-
bility using the Hyperlink-Induced Topic Search algorithm. In: Proceedings of the
27th Genetic and Evolutionary Computation Conference (GECCO), pp. 1175–1182
(2018)

17. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-31030-5
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