
 
 

 

 

During the legal investigation of Enron Corporation, the 
U.S. Federal Regulatory Commission (FERC) made public a 
substantial data set of the company’s internal corporate emails.  
This work presents a genetic algorithm (GA) approach to social 
network analysis (SNA) using the Enron corpus.  Three SNA 
metrics, degree, density, and proximity prestige, were applied 
to the detection of networks of high activity and presence of 
important actors with respect to email transactions.  
Quantitative analysis revealed that density and proximity 
prestige captured networks of high activity more so than 
degree.  Subsequent qualitative analysis reveals that there are 
trade-offs in the selection of SNA metrics.  Examination of the 
discovered social networks revealed that density and proximity 
prestige isolated networks involving key actors to a greater 
extent than degree.  In particular, density picked out 
interesting patterns in terms of email volume, while proximity 
prestige better isolated key actors at Enron.  The roles of the 
particular actors picked out by the networks as reasons for 
their prominence are also discussed. 

I. INTRODUCTION 

nron corporation filed for bankruptcy in December 2001 
due to a mixture of corruption, fraudulent accounting, 

and poor regulation.  Once one of the world’s largest 
electricity and natural gas companies with over 22 000 
employess worldwide [1], its stock plummeted from heights 
of over $90 a share to $0.05 (Sept. 2003) during the ensuing 
scandal [2].  The Enron data set of emails was made public 
by the U.S. Federal Regulatory Commission (FERC) during 
the legal investigation of Enron.  This original corpus 
disclosed to the public included over 619 446 email 
messages belonging to 158 users that were sent or saved in 
folders during the collapse of Enron [3], spanning from 1998 
to 2002 [4].  The corpus is now considered a valuable 
resource for research in link analysis, social network 
analysis, and natural language processing.  This paper 
presents a genetic algorithm (GA) approach to analysis of 
emails during the fall of Enron that uses fitness metrics from 
the field of social network analysis (SNA) to rank the email 
activity of Enron employees and examine the possible key 
players at Enron.  This work thus presents the first use (to 
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the authors knowledge) of the Enron corpus in the field of 
evolutionary computation (EC), and the first instance of 
social network analysis (SNA) used with an evolutionary 
algorithm.  Through the use of a GA with a SNA-based 
fitness measure, all senders and receivers of the Enron data 
set can be examined for relationships.  Previous techniques 
have largely restricted SNA analysis of the Enron data set to 
the 151 employees who had sent or stored the emails. 

The following section examines related previous work.  
Section 3 explains the creation and composition of the data 
set used in our experiments, and Section 4 describes the 
SNA measures used by the GA for examination of the 
emailing activities of the Enron employees.  Section 5 
provides details on the SNA-based GA and experiment 
parameterization.  Section 6 provides quantitative results, 
and visualizations of the final networks corresponding to the 
highest value for each SNA metric are then examined in 
Section 7. Conclusions follow in Section 8. 

II.  PREVIOUS WORK 

The Enron data set has been used extensively for research 
including data mining, text analysis, and natural language 
processing.  To provide a few examples, Berry and Browne 
[5] detected topics and clustered messages using sparse 
term-by-message matrices and a low rank non-negative 
matrix factorization algorithm.  Priebe et al. [6] used a 
technique called “scan statistics,” which slides a moving 
window over portions of data to find outlying points 
corresponding to deviations from normal communications 
among individuals.  Keila and Skillicorn [7] examined 
structural features of emails, such as message length and 
word usage and frequency, to detect patterns of unusual 
communication. 

The Enron corpus has also been subject to SNA analyses 
of varying rigor.  Shetty and Abidi [4] produced a social 
network from their cleaned version of the data set involving 
the 151 employee accounts possessing the email accounts, 
where a link was only established between employees if 5 or 
more emails were exchanged and the exchange of emails 
was reciprocal.  Chapanoid et al. [8] produce both a directed 
and undirected social network from the data set where a link 
is only considered if 30 or more emails have been exchanged 
between any of 150 employees with the accounts where the 
emails were stored.  (Cleaning or relevance-based design 
decisions cause the number of main employees considered to 
range from 147 to 151 throughout the literature.)  Chapanoid 
et al. provide particular SNA measures on the graphs 
including degree, distance, and betweenness.  McCallum et 

Discovery of Email Communication Networks from the Enron 
Corpus with a Genetic Algorithm using Social Network Analysis 

Garnett Wilson and Wolfgang Banzhaf 

E



 
 

 

al. [9] describe an ART (Author-Recipient-Topic) model 
based on a Bayesian network to simultaneously model 
message content and the directed social network in which 
the messages are sent.  The authors only consider a social 
network among pre-selected employees in particular 
divisions of the Enron company, with those being a subset of 
a total of 147 from the main 151 employees.  Duan et al. 
[10] use a social network only involving 150 of the 
employees that were the original focus of the dataset, with 
edges weighted according to the emails sent between users.  
They use a link analysis algorithm to rank those 150 
employees according to their implied importance based on 
email communication.  Diesener et al. [11] provided a more 
in-depth social network-based examination of the network 
across the time frame of the emails included in the corpus.  
Expanding on previous work, they included some senders of 
emails as graph nodes even if they were not members of the 
list of Enron employees whose emails constituted the data 
set. In particular, they added 525 previously unaccounted 
employees of Enron and Andersen (the accountancy firm 
associated with the Enron scandal) and their associated 
email addresses to raise the number of email addresses 
considered from 151 to 1 234.  As in some previous work, 
they also weighted the edges according to the number of 
emails sent and used a directed graph (digraph).  They found 
that during the actual crisis period, communication across 
employees became more diverse in terms of contacts and 
corporate roles and previously disconnected employees 
established ongoing mutual communication.  The authors 
also found that interpersonal communication generally 
intensified and spread widely throughout the network as the 
collapse of the company progressed, leading to increased 
density of the network.  Frantz and Carley [12] examine 20 
000 actors in the Enron database using 165 weekly snapshots 
of their activity.  The authors report on the five SNA metrics 
of betweenness, degree (in and out), closeness, and 
eigenvector. 

This work goes beyond previous SNA-based analyses of 
the Enron corpus, as the work introduces intelligent search 
appropriate for very large search spaces.  Most researchers 
[4, 8, 9] only analyze a social network based on the 
approximately 151 primary employees of the Enron data set.  
Deisener et al. [11]  and Frantz and Carley [12] were the 
only researchers to use more than the primary 151 
employees in the data set.  Deisener et al. added only a select 
number of extra individuals they felt were pertinent, whereas 
Frantz and Carley examined 20 000 email addresses, but 
produced manageable social networks by only examining 
weekly snapshots of the emailing behaviour.  Rather than 
addition of arbitrary individuals to the social network or 
using short windows of time, the SNA GA introduced in this 
work uses an evolutionary approach to intelligently add 
appropriate individuals selected from the entire set of sender 
or recipient addresses in the Enron database to a selected 
social subnetwork.  That is, the GA search mechanism is 
efficient at exploring the search space of possible networks 
by retaining the most relevant partitions of account networks 
(called “building blocks” in evolutionary computation 

models) and then attempting to add associated accounts of 
interest in an intelligent search.  The algorithm builds 
networks of interest by keeping interesting sub-graphs as 
building blocks in the evolutionary process and applying 
mutation to explore other connections to produce a sub-
graph of even greater interest.   

A computational intelligence approach such as this is an 
appropriate alternative to exhaustive search or selection of 
arbitrary accounts to determine SNA networks of interest 
given the size of the data set when all senders and receivers 
are considered.  The search space corresponding to the 
Enron data set used in this work (that of Shetty and Adibi 
[4]) involves 17 568 unique addresses and 252 759 emails 
which link them.  For instance, in this work we examine 
networks of interest featuring 50 unique emails (up to 100 
nodes) in a GA individual.   Given a total of 252 759 unique 
emails, this is a search space of 252 759 choose 50, or 
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 , which is greater than 10300.  The SNA GA 

approach of this work provides a way of isolating areas of 
the entire network of the Enron database participants 
(senders and recipients) for further inspection, as the data set 
in its entirety could not be searched exhaustively , let alone 
comprehended or analyzed for patterns by a user.  By using 
evolutionary computation, all participants in the Enron data 
set and their behaviour can be examined.   

While Langdon et al. [13] and Luthi et al. [14] have both 
used social network analysis metrics to examine the 
relationship among authors in the genetic programming (GP) 
community, to the authors’ knowledge evolutionary 
computation techniques themselves have not yet been 
applied to social network analysis.  Graph theory and link 
analysis, however, are well-established tools for the 
detection of fraud across a number of domains.  For 
instance, Galloway and Simoff [15] describe the use of the 
NetMap commercial software tool to determine an actual 
case of insurance fraud.  Data mining techniques have been 
used along with link analysis search for fraud detection.  
Cortes et al. [16] developed a method to analyze large 
dynamic graphs of telecommunications transactions to 
identify fraud by examining small subgraphs of interest 
called “communities of interest.”  Rather than using social 
network analysis metrics to determine subnetworks of 
interest, the authors examine subgraphs consisting of nodes 
connected by the highest-valued edges to a central node 
within some low radius.  This work is the first instance of a 
GA using SNA measures as a fitness metric.  

III. DATA SET 

The Enron corpus used in this work is that provided by 
Shetty and Adibi [4].  The dataset was cleaned by the 
authors to remove duplicate emails, messages determined to 
contain junk data, blank messages, and emails generated by 
the mail system as email transaction failures.  A MySql 
database was formed from the cleaned corpus, and contained 
four tables for the entities of employees, messages, 
recipients, and reference information.  For the purposes of 



 
 

 

reproducibility, the names used to denote tables and fields 
are those used in the MySQL database Shetty and Abidi [4] 
provide for download on the associated web site.  In total, 
the dataset contained 252 759 messages (in the message 
table) stored in the folders of 151 Enron employees 
(employeeList table), with a total of 17 568 distinct senders 
for all messages (including the 151 employees in the 
employeeList table). 

For the purposes of the SNA-based GA algorithm, a 
particular employee ID (eid) is select by a GA instruction to 
specify an employee from the employeeList table containing 
151 employee entities.  From the recipientInfo table, all 
messages (mid) for which the employee email (Email_id) 
address corresponding to eid was the recipient (rvalue) are 
retrieved, that is, messages are retrieved where rvalue = 
Email_id.  Finally, from these emails, a particular email 
from the message table is specified by the GA (as an 
algorithm defined value of mid).  The sender of this message 
(sender) is then retrieved from the message table to provide 
an employee, sender pair joined by an email transaction.  
The selection of the relevant database entities specified by 
the GA is depicted in Figure 1.  For faster retrieval, a hash 
table with recipient emails (Email_id) as keys, and a vector 
of the sender email addresses (sender) for each message as 
values, is created.  This hashtable is kept in memory during 
execution.  The additional details of the interpretation of a 
GA instruction are provided in Section 5. 
 

 
 
Fig. 1. Database entities used by the SNA GA system to create an employee 
recipient email address, sender email address pair connected by an email 
message.  Only table columns relevant to this analysis are shown in the 
diagram. 

IV. SOCIAL NETWORK ANALYSIS 

Three SNA metrics are used to identify networks of 
interest from the larger social network corresponding to the 
Enron email corpus: degree, density, and proximity prestige.  
Degree and density are rooted in the identification of the 
importance of agents in an interacting network using the 
SNA concept of centrality.  Centrality assumes that 
important actors usually occupy strategic locations in the 
network without relation to the direction of the transactions 
(edges).  While directed edges are displayed in the network 
so end users are aware of direction of emails sent, 
calculations for both these metrics (described in this section) 
are based on undirected number of messages sent in either 
direction between two email accounts.  Proximity prestige, 
in contrast, provides the study with a metric that involves the 
direction of edges in its calculation.   

A. Degree 

Degree is the average number of edges incident with each 
node in the graph [17].  For the purpose of AML, it is a 
measure of the overall transaction-based activity of the 
nodes in the network.  While valued versions of this metric 
are possible, the non-valued version is used in these 
experiments to contrast the valued alternative of the density 
metric (explained immediately in the next section).  The 
mean degree of the network is given by the equation 
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where g is the number of nodes in the network, n is a node in 
the graph, and d(ni) is the degree of a node (number of lines 
incident with that node).  To provide a visualization of the 
concept of degree in a graph, hypothetical networks of high 
and low degree are shown in Figure 2. 
 

 
 

Fig. 2. Hypothetical networks of high and low degree. 

 

B. Density  

Density is the proportion of possible lines that are actually 
present in the graph [17].  For a valued graph, as is the case 
here where number of emails are construed as edges 
connecting the accounts construed as nodes, the density () 
is measured as 
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where vk are the values over all k for the values {v1, v2, …, 
vL} attached to the set of lines (edges) L, and g is the number 
of nodes.  The density metric was expected to perform well 
in detection interesting email networks, as it measures the 
interconnectedness of a network while incorporating the 
number of email transactions.  Note that for a non-valued 
graph the value of the density will fall in the range [0, 1]; 
however, there is no such restriction on the valued version of 
the density metric.  Hypothetical networks of high and low 
density are depicted in Figure 3. 
 

 
 
Fig. 3. Hypothetical networks of high and low density. 
 

C. Proximity Prestige 

The proximity prestige measure is used to determine what 
is known as the account’s influence domain, where the 
influence domain of an actor is the set of actors who are both 
directly and indirectly linked to that actor.  This set includes 
all actors that are reachable to i, where two nodes are 
reachable from one another if there exists a path between 
them. A path is a walk in which all nodes and lines are 
distinct, where a walk is a sequence of nodes and lines, 
starting and ending with nodes, where each node is incident 
with lines preceding and following it in the sequence.  The 
influence domain for actor i consists of all actors whose 
entries in the ith column of a distance matrix are finite; the 
number of actors in the influence domain for an actor i is 
denoted Ii.   

In practice, proximity prestige is used to measure 
closeness using distances to, rather than from, each actor in a 
directed graph.  The proximity measure for the problem 
domain of this work, from [17], is the ratio of the proportion 
of actors who can reach i to the average distance of these 
actors from i.  This proximity prestige measure is  
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where Ii is the number of actors in the influence domain of 
node ni, g is the total number of nodes in the graph, and d(nj, 
ni) is the distance that actor j is from actor i.  Distance, or 
more precisely geodesic distance, between nodes ni and nj is 
found by using power matrices.   Distance from one node to 

another is simply the length of the shortest path between 
them, where in a directed graph distances from ni to nj and nj 
to ni can be different.  The length of the shortest path (the 
distance) from ni to nj is the first integer power p of the 
original sociomatrix (with p = 1) for which the (i,j) element 
is non-zero: 
 

,   0 , p > 0 

 
When actors who can reach actor i become closer, then 

the Pp ratio becomes larger and actor i has greater prestige.  
Pp has a maximum value of 1 when all actors are adjacent to 
ni, and a minimum value of 0 when ni is unreachable.  A 
group level measure of proximity prestige is simply the 
average of actor proximities: 

 

   

 
A network with individual members of high and low prestige 
is shown in Figure 4 to provide a visualization of the 
concept. 
 

 
 

Fig. 4. A hypothetical network containing members of high and low 
proximity prestige. 

V. GENETIC ALGORITHM AND EXPERIMENTAL SETUP  

A. Individual Representation 

The individuals in the genetic algorithm consist of binary 
strings composed of 50 instructions, with each instruction 
consisting of 22 bits.  The first 8 bits of an instruction 
correspond to the database entity that is to be queried, which 
is one of the employees in the employee list table.  The 
binary number corresponding to the first 8 bits is interpreted 
as its integer equivalent, modulo the number of entities 
(primary keys) in the database (151).  The largest number of 
emails sent to an individual in the employee table is 9 052, 
which can be specified by 14 bits (214 = 16 384).  The 
following 14 bits thus map to an email sent to the individual 
specified in the first portion of the instruction, modulo the 
number of emails present for that entity.  In particular, for 
the purpose of building the SNA network, the main sender of 
the received email is of interest: all individuals CCed are not 
considered per individual instruction.  (However, an 
individual that receives an email in virture of being CCed 
can appear in an SNA graph by being specified as the 
receiver in the first segment of an instruction.)  Each 



 
 

 

instruction thus corresponds to a receiver, sender pair in the 
real world.  The entire GA individual is a list of such pairs, 
which represents a network of possibly interacting email 
accounts (nodes) connected by sent emails (edges). 

The 50 instructions comprising an individual are 
converted to a sociomatrix to allow fitness evaluation by the 
GA in terms of the SNA metrics.  A sociomatrix is a matrix 
indexed by the set of originating actors (rows) and the set of 
receiving actors (columns). The total unique emails between 
the originating accounts and receiving accounts are the 
sociomatrix values for the ties between the actors.  The 
actors in rows or columns can be any of the 151 employees 
(receivers) from the main employee table or any of the other 
total 17 417 senders who emailed messages to the 151 
employees (for a total 17 569 email addresses).   

Once an individual sociomatrix of interest is found by the 
GA, it is displayed as its equivalent graph of nodes and 
edges.  The set of actors (all sending or receiving accounts) 
are used as the nodes of the graph, and the set of email 
messages is used as the collection of edges.  Edges are 
weighted according to number of unique emails sent from 
one actor to the other, where edge thickness grows in integer 
increments of one email.  The interpretations of a simplified, 
hypothetical GA individual are shown in Figure 5. 
 

 
 
Fig. 5. Interpretation of a GA individual as bit string, sociomatrix, and 
network of email senders and recipients. 

 

B. Algorithm Details 

 Tournaments were steady state and consisted of 1500 
rounds, which was determined to be of reasonable duration 
across all three chosen SNA metrics based on preliminary 
experiments.  During each tournament round, four 
individuals were chosen to compete.  In the competition, 
each binary string individual is interpreted by querying the 
database and producing a sociomatrix corresponding to 
transactions as described in the previous section.  The top 
two individuals’ sociomatrices are declared winners, and the 
binary strings (genotype) of the last two individuals are 
replaced with the winning individuals’ genotype (becoming 
the children).  Following selection, mutation was applied 
using an XOR mask on an individual instruction segment of 
the binary string.  Mutation occurred with a threshold of 0.9, 
after choosing a particular instruction from the individual’s 
instruction set using a uniform random distribution.  
Crossover was not performed, as retaining groups of related 
instructions as a sequence is not appropriate for this domain: 
In this representation, each instruction represents potentially 
unique emails for particular email accounts.  Mutation serves 

to explore new account, email pairings in the candidate 
networks.  At the end of the tournament, the individual with 
the highest value for the SNA metric based on its 
sociomatrix is displayed to the user as a directed, cyclic 
graph with edges weighted to reflect the number of email(s) 
sent between them.  A similar random, greedy search was 
conducted where the best two of four individuals in a 
tournament round were kept and the two losing individuals 
were replaced with randomly generated candidate networks. 

Fifty trials were performed using an Apple IMac with an 
Intel Core 2 Duo CPU 2.8 GHz and 4.00 GB of RAM, 
running OS X Leopard version 10.5.4.  The solution was 
implemented using Java version 1.6.0 and MySQL.  The 
JAMA library [18] was used for the matrix manipulations 
required for the evaluation of social network-based fitness 
metrics.  All visualizations were produced using a 
customized version of the Prefuse framework [19].  The GA 
parameters used are summarized in Table 1. 
 

TABLE I 
EXPERIMENTAL GENETIC ALGORITHM PARAMETERS 

 
Experimental Trials 50 
Tournament Rounds 1500 per trial  
Instruction format 22 bits total (8 bits account, 14 bits transaction) 
Genotype structure    50 instructions per individual 
Mutation instruction-level XOR mask, threshold = 0.9 
Fitness metric degree, density, proximity prestige 
Objective  Find network that maximizes metric.  

 

VI. QUANTITATIVE SNA PERFORMANCE 

 

It should be noted that the quantitative metrics used in 
these networks due not necessarily measure “success” per 
se. The actual benefit of the SNA-based GA search is 
actually qualitative in nature, where the aim of the search is 
to provide the end users with subnetworks of interest 
whereby highly connected or active accounts can be 
discovered (discussed in Section 7).  The quantitative results 
provide a feel of the performance of the GA, SNA metric 
combinations in general, and confirm that GA search finds 
networks corresponding to higher SNA values than a 
random, greedy alternative (thus GA provides a means of 
intelligently searching the space).  Greedy, exhaustive (as 
opposed to random) search is not a viable option due to the 
enormous size of the search space (see Section 2). 

The results shown in Figures 6, 7, and 8 indicate the best 
final degree, density, and proximity prestige measures at the 
end of each trial for fifty trials of 1500 generations 
comparing GA and random greedy search.  In the boxplot 
figures, each box indicates the lower quartile, median, and 
upper quartile values.  If the notches of two boxes do not 
overlap, the medians of the two groups differ at the 0.95 
confidence interval.  Points represent outliers to whiskers of 
1.5 times the interquartile range.  To accompany the 
boxplots, Table 2 provides precise measures for the GA and 
random greedy search algorithms.   



 
 

 

TABLE II 
ALGORITHM MEAN, MINIMUM, AND MAXIMUM SNA METRICS 

 

 
Genetic Algorithm Greedy Search 

Mean Min Max Mean Min Max 

Degree 1.36 1.19 1.61 0.68 0.70 0.67 
Density 0.055 0.040 0.087 0.010 0.011 0.0098 
Prestige 0.37 0.32 0.42 0.034 0.041 0.030 

 

 
Fig. 6.  Boxplot of highest degree found by the GA at the end of 1500 
rounds over 50 trials for a social network of up to 100 nodes. 

 
Fig. 7.  Boxplot of highest density found by the GA at the end of 1500 
rounds over 50 trials for a social network of up to 100 nodes. 

 
Fig. 8.  Boxplot of highest proximity prestige found by the GA at the end of 
1500 rounds over 50 trials for a social network of up to 100 nodes. 

 

Examining Figures 6, 7, and 8 it is evident that the SNA-
based GA search outperforms random, greedy search with 
very high statistical significance (no notches of the boxplots 
overlap or are even in close proximity).  Examining Figure 
6, we see that the degree measure indicates that, on average, 
approximately 1.19 to 1.61 edges (Table 2) are attached to 
each node.  This means that the degree metric is finding 
sparse networks.  Density in Figure 7 ranges from 0.040 to a 
maximum 0.087 (Table 2), indicating that the GA can 
choose networks that possess up to 9% of all possible email 
connections among nodes.  Even though density is valued, 
the proportions can roughly be construed as percentages 
when edges represent single emails (as is the case for the 9% 
best network, Figure 11).  In practical terms, this means that 
the density networks represent high email volume and active 
communication among individuals.   Given that proximity 
prestige, Figure 8, reflects what proportion of actors can 
reach a particular actor, 0.32 to 0.42 (Table 2) in the 
networks discovered by the GA indicate the likely presence 
of key actors.  We now complement these quantitative 
observations with qualitative analysis of the networks.  

VII. QUALITATIVE ANALYSIS: EMAIL NETWORKS  

A. Degree 

The network interpretation for the best individual (highest 
fitness level) for the degree metric is shown in Figure 9.  The 
degree metric expresses the overall activity in the network.   
A high degree (non-valued in this work) network is 
composed of accounts that are involved in a large number of 
incoming or outgoing emails to different individuals, 
independent of number of emails sent between those 
individuals.  The edges are weighted in Figure 9 as an 
indication of the number of emails sent, but the degree 
metric is left as non-valued to provide greater contrast with 
the valued version of the density metric used (see Section 4). 

 

 
Fig. 9.  Highest degree network found by the GA.  Thickness of edges 
reflects number of emails sent.  



 
 

 

While this network represents a good attempt at detecting 
employee email accounts that are quite active, we can see 
that the metric only picks up one edge that involves more 
than one email between two parties.  While degree can pick 
up accounts with much activity, it is by chance that it will 
find individuals that are sending large numbers of emails 
between one another.  That is, the fact that thicker edges are 
detected in a non-valued degree-based network is a matter of 
chance. 

B. Density 

The network interpretation for the best individual (highest 
fitness level) is shown in Figure 10 for the density metric.  
This network represents a balance between the number of 
emails sent among individuals and the overall activity of the 
email accounts.    

 

 
Fig. 10.  Highest density network found by the GA.  Thickness of edges 
reflects net amount of transaction. 

 
 Comparing Figures 9 and 10, it is readily evident that the 
density metric finds a network incorporating thinker edges.  
This corresponds to a network where it can be seen that 
particular employees are sending larger volumes of email 
between one another.  Since each GA individual / final 
network consists of a fixed number of email transactions, the 
presence of the thicker edges for the density metric (Figure 
10) results in a network of less nodes compared to degree 
(Figure 9).  In both degree and density, the degree of an 
individual node ranges from 1 to 4, and there does not 
actually appear to be a great deal of difference in the average 
level of email activity per node expressed in each of the 
networks.  (That is, while degree simply has more nodes 
than density, the individual nodes are not more active in 
their email activity.) 

C. Proximity Prestige 

The network interpretation for the highest proximity 
prestige group is shown in Figure 11. The network features a 
number of nodes that are connected by to a high number of 
other nodes with (incoming or outgoing) emails (edges) 
compared to the density and degree networks.  Whereas 
other networks have nodal degrees of up to 4, there are 
nodes in this network with nodal degee 5 

(eric.bass@enron.com), nodal degree 6 
(mike.grigsby@enron.com), and nodal degree 10 
(veronica.espinoza@enron.com).  Proximity prestige finds a 
network composed of high activity (individual) nodes, but it 
does not necessarily pick up large volume connections 
between individuals as occurs with the density metric 
(compare Figures 10 and 11).  Proximity prestige appears to 
be the best metric for locating individuals of interest in terms 
of high degree (active emailing behavior), even better than 
the degree metric (compare Figures 9 and 11).  It is likely 
that this occurs because the presence of high degree 
individuals in a GA’s candidate network is rewarded 
implicitly by the group level proximity prestige metric, 
whereas the group level degree metric rewards a network 
with high degree overall while not necessarily favoring 
networks where a few individuals have very high degree.   

 

 
Fig. 11.  Highest proximity prestige network found by the GA.  Thickness 
of edges reflects net amount of transaction. 
 

D. Key Actor Analysis 

 In terms of relevant of individuals picked up by the 
network, the job titles associated with the email addresses 
are provided as available from [4] and additional 
information about employees is otherwise cited.  The density 
metric picks up a number of important actors, one being 
mike.grigsby@enron.com.  Grigsby was a manager at Enron, 
and McCallum et al. [9] in their topic analysis note that he 
was an active emailer in virtue of being involved in the 
“sports pool.”  The density network also picks up two of 
Enron’s directors, matt.motley@enron.com and 
keith.holst@enron.com and two Vice Presidents 
(joe.stepenovitch@enron.com and scott.neal@enron.com).  
In contrast, the degree network picks up less nodes of 
interest.  No directors are present, but one vice president 
(jane.tholt@enron.com) is present in the density network. 
However, the presence of the vice president is only due to a 
single email connection to a key actor 



 
 

 

(veronica.espinoza@enron.com). 
 The proximity prestige network involves the presence of 
three key actors, plus an additional two traders 
(tori.kuykendall@enron.com and kevin.ruscitti@enron.com) 
and a director (keith.holst@enron.com).  Proximity prestige 
is the only metric to pick up any traders in the best network, 
where this was an important role at Enron.  The key players 
mike.grigsby@enron.com (nodal degree 6) and 
eric.bass@enron.com (nodal degree 5) are present in virtue 
of their participation in the sports pool.  As mentioned, Mike 
Grigsby was a manager who was also prominent in the 
density network.  Eric Bass seems to have been the 
coordinator of a fantasy football league for Enron employees 
[9].  The highest nodal degree of 10 in the proximity prestige 
network belongs to veronica.espinoza@enron.com.  Her 
email account is actually present in all three networks 
(Figures 9, 10, and 11).  She is mentioned in the study of 
Frantz and Carley [12] as one of the top five key actors in 
their weekly snapshots. Although her official job title was 
not readily discernable, examination of her emails reveals 
that she seems to have been active in the administration of 
“credit worksheets” involved in Enron’s trading activities. 

VIII. CONCLUSION  

This work presents the analysis of three SNA-based 
metrics for the examination of the Enron email dataset: 
degree, density, and proximity prestige.  The quantitative 
results for each SNA metric were compared between a GA 
and random greedy search.  It was found that GA 
definitively outperformed a random greedy search, meaning 
that GA is an appropriate application of computational 
intelligence to search the large Enron emails dataset space.  
It was expected, based on quantitative analysis, that density 
and prestige metrics would provide the most useful networks 
compared to degree, and this was evidenced by qualitative 
analysis.  The social networks corresponding to the highest 
measure for each SNA metric in the GA were then examined 
using a visualization tool.  Particular SNA metic-based 
networks provided specialized information, sometimes to the 
detriment of other metrics.  For instance, high measure of 
the group-level degree metric came at a cost of the absence 
of individual nodes with higher nodal degree or edges 
reflecting large numbers of emails transferred.  Also, while 
higher measures of the proximity prestige metric provided 
nodes of high nodal degree, there were also an absence of 
edges with multiple email transfers.  Overall, the density and 
proximity prestige SNA metrics were found be useful in 
isolating the most interesting email accounts and their 
associated activities.  Future work will examine in greater 
detail the relationship among the three metrics as GA 
evolution is directed by a particular metric.  Also, consensus 
building using multiple SNA metrics will be explored to 
mitigate the trade-off costs of one metric over another in 
order to isolate networks of increased interest. 
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