
1

Evolutionary Computation and Genetic Programming

Wolfgang Banzhaf

Department of Computer Science, Memorial University of Newfoundland, St. John’s,

A1B 3X5, CANADA

Abstract

We discuss Evolutionary Computation, in particular Genetic Program-

ming, as examples of drawing inspiration from biological systems. We set the

choice of evolution as a source for inspiration in context, discuss the history

of Evolutionary Computation and its variants before looking more closely at

Genetic Programming. After a discussion of methods and the state-of-the-

art, we review application areas of Genetic Programming and its strength in

providing human-competitive solutions.

Keywords

Bio-inspired computing, Evolutionary Computation, Genetic Algorithms,

Evolution Strategies, Evolutionary Programming, Genetic Programming, Ar-

tificial Intelligence, differential evolution, machine learning, automatic pro-

gramming, natural selection, breeding, population, reproduction, mutation,

Bioinspiration, Biomimetics and Bioreplication 19 July 2012



2

crossover, generation, search space, human-competitive.

1 Bio-inspired Computing

One of the more prominent examples of taking bio-inspiration is the ap-

plication of this philosophy to the development of new ways to organize com-

putation. Life can be paraphrased by describing it as “information processing

in a body”. Hence biology, the science of the living, has long been concerned

with these two key aspects of life: structure and dynamics. The structure of

the body, from a single-celled organism like a bacterium to extended, highly

complex, multi-cellular, intelligent beings like mammals 1 , is a study object

of evolutionary, developmental, and molecular biology, among others. Other

branches of biology are concerned with the dynamics of behaviour of organ-

isms, in relation to an inanimate environment as well as in relation to other

organisms that often provide an important and dynamically changing part of

their environment. Ultimately, behaviour requires intense processing of infor-

mation, both for survival and for the benefit of an organism. Behaviour of

individuals is studied in a branch of biology called ethology, the behaviour of

species in their interaction with the environment is studied in ecology, while

1 The spatially largest organism is a fungus, Armillaria solipides, with an extension

of 8.9 km2, whereas the largest genome of a vertebrate is that of a fish, Protopterus

aetiopicus, with a size of 130 Giga bases (as compared to the 3.2 Giga bases of

Homo sapiens). A base is one of four nucleotides in the alphabet of DNA.



3

the dynamics of species over time is the subject of evolutionary biology. Molec-

ular biology considers the regulation of behaviour on the molecular level. From

the lowest level of molecules to the highest level of evolution of species, this

dynamics is about reception and processing of information, and the appropri-

ately executed actions following from the results of such computation.

Given this context, it is no wonder that computer scientists and engi-

neers have embraced the paradigms of biology and tried to extract ideas from

the living world to apply them in man-made computing environments such

as computers and robots. Robots are actually the application area of bio-

inspiration closest to actual living organisms, as they can be said to possess

a body, a structure that has to act in the real world. Less obvious, yet very

active, is the area of bio-inspired computing, where researchers try to extract

more or less abstract principles and procedures from living organisms, and

realize them in a computational (algorithmic, software) setting.

There is full agreement in the sciences now that the generation of succes-

sive sequences of species in what has been called the tree of life is a product of

evolution, governed by the principles of Darwin’s theory of natural selection

[1]. Evolution and its models are the source of bio-inspiration that we shall

discuss in this chapter in more detail. In a way, this is the most fundamental

part of Biology, because it is the driving mechanism for the diversity of life

on our planet. However, to set this in context, we want to at least mention

in the remainder of this section a number of other examples of bio-inspired



4

computing, not necessarily in the temporal order of their development.

All aspects of adaptation of organisms to their environment, including

the appearance of intelligent behaviour have been used as (bio-) inspiration.

The field of neural networks [2], for example, has taken inspiration from the

structure and function of nervous tissue in higher-order animals, including

the brains of humans. The field of fuzzy logic [3] took inspiration from hu-

man cognitive processes with the ability to think in non-crisp terms. The

field of artificial immune systems [4] has taken inspiration from the elabo-

rate adaptive systems within higher-order beings that enables them to defend

themselves against intruders. The field of ant colony optimization [5] has taken

inspiration from the distributed nature of ant colonies and their apparently

purposeful molding of the environment. The field of swarm intelligence [6] has

taken inspiration from different sorts of animals organizing their behaviour in

swarms, flocks or schools, in order to achieve macro-effects (on the level of

the entire swarm) from micro-causes (behaviour of individuals). The field of

artificial life [7] has taken inspiration from the very beginnings and basics of

life, to find ways to produce behaviour akin to living behaviour for the benefit

of, e.g., computer games or for the simulation of alternatives to living matter,

in order to better understand Life on Earth.

May this list suffice for the moment. It is not exhaustive, and year af-

ter year new ideas are being proposed for computation derived from biologi-

cal systems. Probabilistic reasoning, machine learning, emergence of novelty,



5

complex adaptive systems, social behaviour, intelligence, sustainability and

survival are all terms that can be related to and studied in models of bio-

inspired computing. Essential to these models is the idea that a distributed

system of interacting entities can bring about effects that are not possible to

produce by single entities or entities isolated from each other.

In this chapter let us focus, however, on one particular paradigm within

the area of bio-inspired computing, an area which is very intimately con-

nected to all signs of life: evolution. After a general discussion of algorithms

derived from evolution (Evolutionary Algorithms or Evolutionary Computing),

we consider in more detail the most modern branch of this area, Genetic Pro-

gramming.

2 History and Variants of Evolutionary Computing

Evolutionary Algorithms or Evolutionary Computing is an area of Com-

puter Science which applies heuristic search principles inspired by natural

evolution to a variety of different domains, notably to parameter optimiza-

tion or other types of problem solving traditionally considered in Artificial

Intelligence.

Early ideas in this field developed at a time when computers were barely

commercially sold. Alan Turing was one of the first authors to correctly iden-

tify the power of evolution for the purpose of solving problems and exhibiting



6

intelligent behaviour. In his 1950 essay “Computing Machinery and Intelli-

gence” [8] Turing considered the question whether machines could think. He

was concerned that digital computers - despite their power and universality

- would only be capable of executing programs deterministically. He felt that

this would not be sufficient to produce intelligent behaviour. “Intelligent be-

haviour presumably consists in a departure from the completely disciplined

behaviour involved in computation, but a rather slight one, which does not

give rise to random behaviour ...” ([8, p. 457]). Computation here refers to

the only known form of digital computation at the time: deterministic com-

putation. Turing pointed out that a digital computer with a random element

would be an interesting variant of such a machine, especially, “when we are

searching for a solution of some problem.” It was clear to Turing that ma-

chines at some point would need to be able to learn in a fashion similar to

children - a very clear indication of him taking inspiration from biology. “Now

the learning process may be regarded as a search [...]. Since there is probably

a large number of satisfactory solutions, the random method seems to be bet-

ter than the systematic. It should be noticed that it is used in the analogous

process of evolution.” [8, p. 459]

So, already in 1950 several ideas were voiced that would lead the way to

evolutionary algorithms. The notion of a soft kind of randomness, which would

later become mutation and crossover, the notion of intelligent behaviour as

the goal of these algorithms, the notion of a search process to achieve learning



7

and problem solving, and the notion of kinship to evolution in Nature were

all entertained in this article by Alan Turing already.

In 1962, a budding computer scientist 2 from the University of Michigan

published a paper entitled “Outline for a Logical Theory of Adaptive Sys-

tems” in which he proposed most of what later became known as Genetic

Algorithms [9]. Holland wrote: “The study of adaptation involves the study of

both the adaptive system and its environment”, thus foreshadowing the ne-

cessity to define a fitness function as a stand-in for the environment. He then

proposed to look at the adaptive system as a “population of programs”, and

emphasized the advantage of looking at adaptation from the viewpoint of a

population: “There is in fact a gain in generality if the generation procedure

operates in parallel fashion, producing sets or populations of programs at each

moment rather than individuals.”[9, p. 298] Here, Holland correctly identified

the strength that populations of solutions bring to a problem, when applied

and tested in parallel. “The generated population of programs will act upon a

population of problems (the environment) in an attempt to produce solutions.

For adaptation to take place the adaptive system must at least be able to com-

pare generation procedures as to their efficiency in producing solutions.” What

Holland called generation procedures were later termed - in the context of su-

2 Computer Science as a discipline did not yet even exist. It is only in hindsight

that we call it like that; officially, it was called “Communication Science” at the

time.



8

pervisory programs, that is programs that allow a system to adapt to different

environmental conditions - mutation. After introducing differential selection

as a key driving force for adaptation ”Adaptation, then, is based upon dif-

ferential selection of supervisory programs. That is, the more “successful” a

supervisory program, in terms of the ability of its problem-solving programs

to produce solutions, the more predominant it is to become (in numbers) in a

population of supervisory programs. [...] Operation of the selection principle

depends upon continued generation of new varieties of supervisory programs.

There exist several interesting possibilities for producing this variation.”[9, p.

300/301] “The procedure described [...] requires that the supervisory program

duplicate, with some probability of variation or mutation [...].” [9, p. 309]

Thus, as early as 1962, a sketch of evolutionary algorithms was in place,

that could only become more pronounced over the years [10]. The random-

ness of Turing’s paper, later still reflected in Friedberg’s work [11], gave way

to a variation-selection loop, with accumulation of beneficial variations in a

population and the regular information exchange between individuals.

Other paradigmatic developments in evolutionary algorithms at the time

include Evolutionary Programming [12], and Evolutionary Strategies [13]. For

a more thorough review of early work in Evolutionary Computing the reader

is pointed to Ref. [14], discussing a selection of papers from the “fossil record”

of evolutionary computing.



9

All Evolutionary Algorithms follow the Darwinian principle of differen-

tial natural selection. This principle states that the following preconditions

must be fulfilled for evolution to occur via (natural) selection:

a) There are entities called individuals which form a population. These en-

tities can reproduce or can be reproduced.

b) There is heredity in reproduction, that is to say that individuals of this

population produce similar offspring.

c) In the course of reproduction there is variety which affects the likelihood

of survival and, therefore, the reproducibility of individuals. This variety

is produced by stochastic effects (like random mutation and recombina-

tion) as well as by systematic effects (like mating of like with alike, etc.).

d) There are finite resources which cause the individuals to compete. Due

to overreproduction of individuals, not all can survive the struggle for

existence. Differential natural selection is a result of this competition

exerting a continuous pressure towards adapted or improved individuals

relative to the demands of their environment.

In Evolutionary Algorithms, there is a population of individual solutions.

Usually, this population is initialized as a random population, i.e., from ran-

dom elements determined to be potentially useful in this environment. Next

is a determination of fitness in the process of evaluation. This could take any

form of a measurement or calculation to determine the relative strength of an

individual solution. The outcome of this measurement or calculation is then



10

Figure 1

The general process of an evolutionary algorithm: A cycle of evaluation, selection

and variation that accumulates beneficial changes. Variation operators could be mu-

tation, duplication or crossover/recombination.

used in the selection step to determine which individual solutions are to sur-

vive the competition for resources, and which are to be replaced by copies or

variants of the surviving individual solutions. The last step is to apply vari-

ation to these individual solutions so that the population is complete again

and ready for the next round of evaluation. Figure 1 summarizes the general

process.

Now that we have discussed the general approach, it is time to turn our

attention to Genetic Programming.



11

3 Genetic Programming - History, Principles, and Methods

While John Holland became known for the Genetic Algorithm [10], he

already had spoken of programs in his seminal 1962 paper. It was, however,

the long held mainstream view in Computer Science, that subjecting computer

programs to the random forces of mutation and recombination would not

yield viable programs. The notion was that computer code is too brittle to be

improved by randomness recruited in evolution.

The term Genetic Programming (GP) [15] describes a research area

within the field of Evolutionary Computation that deals with the evolution of

computer code. Its algorithms aim either to approximate solutions to problems

in machine learning or to induce precise solutions in the form of grammatically

correct (language) structures for the automatic programming of computers.

Again, the same general process as depicted in Figure 1 is applied, but this

time to structures that determine the behaviour of a computer.

It took a long time to realize that it is not impossible to evolve com-

puter code. This exciting development needed a number of different (smaller)

intermediate steps, starting from the original Genetic Algorithms using fixed-

length bit strings to represent numbers in optimization problems. The first

realization was that rule systems, instead of numbers representing problem

solutions, could be subjected to evolution. In another seminal paper, Holland

and Reitman introduced the classifier system [16] which allowed if-then-rules



12

under evolution. Classifier systems have since taken on a life of their own [17],

but the key contribution to the future field of Genetic Programming was that

if-then-rules are a hallmark of programming languages and execution of more

complex computer code. However, a classifier system cannot be regarded as

a system for evolutionary program induction, because there are no program

individuals under evolution. 3

Not long after Holland and Reitman, Smith introduced a variable-length

representation allowing it to concatenate rules into rule-based programs which

can solve a task defined by a fitness function [18]. In 1981, Forsyth [19] pub-

lished a logical rule system with parameters that allows us to classify examples

into different classes. Here, a training set of data samples can be used to train

the classifier. The programs would logically and numerically evaluate data

samples to conclude on the class of the example. Forsyth summarized in won-

derful prose: ”I see three justifications for this kind of exercise. Firstly, it is

interesting in its own right; secondly, the rules behave in an interesting fashion;

and thirdly, it seems to work. In the first place it is fun to try a little abstract

gardening, growing an orchard of binary trees. And it might be fruitful in an-

other sense. After all, we are only here by courtesy of the principle of natural

selection, AI workers included, and since it is so powerful in producing natu-

ral intelligence it behooves us to consider it as a method for cultivating the

artificial variety.” [19, p.163/164] One cannot escape the impression that the

3 Note that Holland’s first paper [9] already discussed programs!



13

author of these lines couldn’t at first believe that his method was so effective

at classifying samples.

In the second half of the 1980s, the number of early GP systems prolifer-

ated. Cramer introduced in 1985 two evolutionary programming systems based

on different simple languages he designed [20]. Hicklin, and Fujiki & Dickinson

wrote precursor systems for particular applications, using the standard pro-

gramming language LISP [21, 22] before Koza in 1989 finally documented a

method that both used a universal language and was applied to many different

problems [23]. Genetic Programming came into its own with the publication

of John Koza’s book in 1992 [15]. It is his achievement to have recognized

the power and generality of this method, and to document with numerous

examples, how the approach can be used in different application areas. In the

introduction to his book he wrote: “In particular, I describe a single, unified,

domain-independent approach to the problem of program induction - namely

genetic programming.”

After going through the gradual development of ideas, it is now time

to discuss the principles of Genetic Programming. GP works with a popula-

tion of computer programs that are executed or interpreted in order to judge

their behavior. Usually, fitness measurements sample the behavioural space of

a program to determine the degree to which the outcome of the behaviour of

a program individual is what it is intended for. For instance, the deviation

between the quantitative output of a program and its target value (defined



14

through an error function) could be used to judge the behaviour of the pro-

gram. This is a straight-forward procedure if the function of the target pro-

gram can be clearly defined. Results may also be defined as side-effects of a

program, such as consequences of the physical behavior of a robot controlled

by a genetically developed program. Sometimes, an explicit fitness measure

is missing altogether, for instance in a game situation, and the results of the

game (winning or loosing) are taken to be sufficient scoring for the program’s

strategy. Again, very much following the original intuition of Holland, a variety

of programs is applied to the same problem and their performances relative

to each other are used to determine which programs are to be conserved for

future generations, and which ones are to be discarded.

The outcomes of fitness evaluation are used to select programs. There are

several different methods for selection, both deterministic and stochastic. Se-

lection determines (a) which programs are allowed to survive (overproduction

selection), and (b) which programs are allowed to reproduce (mating selec-

tion). Once a set of programs has been selected for further reproduction, the

following operators are applied:

• reproduction

• mutation

• crossover

Reproduction simply copies an individual to an offspring population (the next



15

generation), mutation varies the structure of an individual under control of a

random number generator, and crossover or recombination mixes the struc-

tures of two (or more) programs to generate one or more new programs for

the offspring population. Additional variation operators are applied in differ-

ent applications. Most of these contain knowledge in the form of heuristic

search recipes which are adapted to the problem domain.

The material under evolution is, as we said, computer code. However,

the representation of this code and the implementation of variation operators

is important in order to avoid the brittleness of the code. 4 The two most

popular representations for computer programs under evolution nowadays are

expression trees of functional programming languages and (linear) sequences

of instructions from imperative programming languages [24]. Figure 2 shows

how these two representations can be subjected to a crossover or recombination

operation. There are many other representations for GP, notably those that

make use of developmental or generative processes that grow programs, see

for instance, Refs. [25, 26]

Once programs have been generated, they are interpreted or compiled to

produce behaviour, which is subsequently measured in terms of its fitness. In

this way, fitness advantages of individual programs are exploited in a popula-

4 Brittleness of computer code refers to the fact that it can be easily broken, even

with the slightest (possibly random) variation, with the result that it doesn’t work

at all.



16

(a) Exchanging subtrees.

(b) Exchanging blocks of code.
Figure 2

Tree-based and sequence-based representation of programs and their respective re-

combination.



17

tion to lead to better solutions. In Genetic Programming, as well as in other

Evolutionary Algorithms, differential selection can be realized in a number of

different ways.

The simplest approach is a generational selection scheme called fitness-

proportional or roulette-wheel selection. The fitness of all individuals in the

population is summed up. The fitness fi of each individual i is then nor-

malized by the sum of all fitness values found, and this normalized value

determines the probability pi of the individual i of being selected for repro-

duction/mutation/crossover. Thus, pi = fi/
∑

j fj. Based on the stochasticity

of random events, fitness proportional selection also allows weak individuals

to succeed in reproduction some of the time.

Another selection method is called tournament selection. A subset of

individuals of the population is drawn randomly, and are compared to each

other in fitness. The individuals with higher fitness are allowed to replace

(directly as in reproduction, or with a variation as in mutation and crossover)

the individuals with lower fitness. Normally, tournament selection is done with

a minimum number of k = 4 individuals, which carries the lowest selection

pressure. Larger tournaments, however, have been used in the literature, up

to the extreme of holding tournaments among the whole population at which

point the selection scheme is called truncation selection.

Ranking selection is another selection scheme introduced to address some



18

weaknesses of fitness proportional selection. Each individual is assigned a rank

in the population, and selection proceeds by selecting either by a linearly or

exponentially associated probability based on the rank of an individual. A

detailed comparison of different selection schemes is given in Ref. [27].

The entire process of selection can be seen in close analogy to breeding

animals. The breeder has to select those individuals from the population which

carry the targeted traits to a higher degree than others. 5

All selection schemes rely on a sufficiently accurate determination of

fitness to work properly. Therefore, one of the most important ingredients in

Genetic Programming is the definition of a fitness measure to determine the

appropriateness of a program individual’s behaviour. Sometimes the fitness

measure has to be iteratively improved in order for the evolved solutions to

actually perform the function they were intended for.

Fitness calculation is actually one of the areas where Genetic Program-

ming and other Evolutionary Algorithms differ. GP has to judge the behaviour

of a program, a structure that determines the behaviour of a computer under

different inputs, i.e., an active entity. This executed program has to produce

outputs that adhere as closely as possible to a prescribed behaviour. Thus,

while a GA (or another optimization technique) is used to optimize a partic-

5 Darwin’s original theory of evolution was inspired by breeding animals, especially

pigeons and cattle.



19

Figure 3

Finding the highest point in a fitness landscape of a function z = z(x, y): A typical

GA task.

ular instance of an optimization problem, Genetic Programming has to find

behaviour in a larger search space, providing the correct behaviour under a

multitude of input/output pairs. The situation can be depicted by considering

the difference between (i) optimizing a function, i.e. finding the minimum or

maximum of a function as in finding the center (x = y = 0) as the function

maximum in Figure 3 in the GA task, and (ii) constructing the function whose

samples are provided by the data points in Figure 4 in a typical GP task.

Fitness measurement is thus a more extended affair in Genetic Program-

ming, and cannot usually be completed with one sample measurement in the

behavioural space. Instead, multiple instances of input/output pairs are pre-

sented to the program population, and the results for all pairs are usually



20

Figure 4

Finding the function z = z(x, y) fitting the data points: A typical GP task.

averaged to arrive at a fitness value for programs which subsequently forms

the basis for selection.

A few more words on the difference between GA tasks and GP tasks

are in order. One might argue that the GP task is nothing more than an

optimization task, looking to minimize the error of the function approxima-

tion for Figure 4. If one were to have a fixed-sized genome, consisting of, say

coefficients of a polynomial in x and y, assuming an expression of the type

z =
n∑

i,j=0

aijx
iyj (1)

with aij being the genetic variables(alleles) that are subject to a GA, this can

be legitimately considered a GA. Note, however, that the functional dependen-

cies need to be determined beforehand, both in terms of the dimensionality

as well as in terms of the order (in this case, dependency on x and y with



21

terms up to order n). Some of these terms might still be close to aij = 0,

which would indicate either no or only a minute contribution of the term to

the overall outcome z.

Conversely, though, one could argue that searching for the maximum in

Figure 3 could be construed as a GP task. This could be done by assuming a

growing set of fitness cases through probing the landscape for the maximum,

based on a model of the landscape. By then trying to find a symbolic expression

for the function, based on the existing points probed, calculating its first- and

second-order derivatives, and solving for appropriate conditions to find the

maximum, a new prediction could be made. This new point would be visited,

but with an initially inaccurate model for the function it can be assumed that

it would be off somewhat from the real maximum of the function. By using this

kind of modeling approach (where GP is in charge of developing and refining

the model), it can be easily imagined that such a process could yield a faster

approach to the maximum than just sampling the space.

The difference between a GA approach and a GP approach to optimizing

fitness of respective solutions is thus best tied to the representation used for the

task. Is it a length-changing representation (like in the foregoing example, the

expression for a function), or is it a fixed-length representation like in Eq. (1)?

Does it use multiple fitness cases or is there only one fitness measurement?

The former is a GP approach, the latter a GA approach. Naturally, a GP

approach will search a larger space of possibilities, because the combinatorics



22

Table 1

Comparison of GA vs GP

GA GP

Representation fixed-length variable-length

Individual passive active

Genome parameters program/algorithm

Input none input values

Fitness one value many fitness cases

Typical application function optimization function approximation

Typical size of search space 10100 10100,000

of its structures is much larger, with typical GP search spaces 101,000 times

larger than typical GA search spaces. Table 1 summarizes the issues.

4 Advances and State-of-the-Art

In his seminal work of 1992, Koza established the field of GP by argu-

ing convincingly that manipulation of structures of symbolic expressions is

possible with evolutionary algorithms and that the resulting technique would

have a wide variety of applications. In subsequent years, the field experienced

both broadening and deepening [24]. Many different representations for GP



23

were studied, among them other generic data structures such as sequences of

instructions or directed graphs, as well as more exotic data structures such as

memory stacks or neural networks. Today, different approaches are considered

as GP, from the evolution of expression trees to the evolution of electronic

circuits or even architectural designs (structures, for short). The overarching

principle is to subject all these kinds of structures with variable complexity to

forces of evolution by applying mutation, crossover and fitness-based selection.

The results must not necessarily be programs, but could be descriptions for

designs (like structures of bridges) or other manipulatable elements.

An ever present difficulty with GP is that the evolution of structures

of variable complexity (e.g., program code) often leads to individuals with a

large number of elements, often with considerable redundancy. Notably it was

found that variable complexity often leads to inefficient code that requires

a lot of memory space. Several researchers subsequently observed that the

evolutionary forces seem to exert a pressure toward more complex solutions,

parts of which could be removed after evolution without doing any harm to

the behavior of the evolved solution. By drawing an analogy from biological

evolution of genomes, this phenomenon was originally called ”code bloat”,

“intron growth”, or growth of ineffective code [28]. It was found that code

growth is not the only unintended result of evolutionary processes, but it

has been the most examined emergent phenomenon to date [29]. 6 At least

6 Another emergent phenomenon in Genetic Programming is the emergence of



24

three different influences are at work promoting the growth of complexity

during evolution. The most important influence has to do with the protection

effect of redundant code if subjected to the action of crossover or mutation.

Redundant code is more resistant to crossover and mutation and allows its

carrier solution to survive better, compared to other individuals which do not

possess this redundancy [31]. Removal bias in crossover operations [32] which

describes the fact that code can grow to infinity from any size, but only be

reduced to zero from a particular size is another explanation. Finally, a genetic

drift toward larger solutions [33] has been named as an important influence.

Over the last decade, the relation between robustness of organisms and

their evolvability has been under intense study in biology (see for example

Ref. [34]). A seeming paradox between these two features frequently found in

Nature has been resolved. It was found that neutral evolution is a key aspect

of robustness. Neutral evolution refers to the capability of evolution to change

genotypes without changes to phenotypes of individuals. 7 This capability has

been known for decades already, and had previously been discovered to be

an important process in evolution [35]. The understanding of neutrality led

to new mathematical models like the idea of neutral networks [36]. These

ideas are beginning to exert influence in the EC community [37] and it turns

repetitive code [30].
7 The genotype of an individual is its genetic make-up, potentially subjected to

mutation and crossover, whereas the phenotype of an individual is the resulting

program (behaviour).



25

out that also in GP solutions that are more robust are preferred through the

evolutionary process, another emergent phenomenon [38, 39].

While the GA theory has been well established, theoretical progress in

GP has been more difficult to achieve since GP works with variable complexity

and multiple fitness cases for fitness scoring. Many researchers are working to

produce results for GP by gleaning from GA research. The schema theory of

Genetic Algorithms [40, 41] has been a primary target of knowledge transfer. 8

In the meantime, several different schema theorems have been formulated for

GP and theory has progressed substantially [42].

When analyzing search spaces of programs, it was realized that their

size is many orders of magnitude larger than search spaces of combinatorial

optimization problems. A typical size for a program search space might be

10100,000, as opposed to a typical search space for a combinatorial optimization

problem being of the order of 10100. Although this might be interpreted as

discouraging for search mechanisms, it was also realized that the solution

density in program spaces is, above a certain threshold of complexity, constant

with changing complexity [43]. In other words, there are proportionally many

more valid solutions in program spaces than in the spaces of combinatiorial

8 A schema in a GA is a sub-pattern of the genotype that takes the form of a

template and can be used to identify several genotypes. For instance, in a binary

string genotype with 4 bits: 1 ∗ 0∗, all genotypes with a 1 in position 1 and a 0 in

position 3 belong to this schema.



26

optimization problems.

While GP has made great strides over the last two decades, many issues

are still open and require continued investigation. Theory of GP [42]

• has succeeded in finding appropriate schema theorems that allow to under-

stand how the search space and the population representation interact,

• has started to analyze Markov chain models of the search process dynamics,

and

• has found ways to characterize search spaces (difficulty, complexity) and

relate them to the performance of GP systems.

In coming years, GP theory is expected to make progress on the treatment of

dynamical problems, proofs of convergence of the search algorithms, and in

classifying problem spaces.

On the practical side, GP research will target [44]:

• identifying appropriate representations for Genetic Programming in partic-

ular problems,

• the design of open-ended evolutionary systems with GP,

• the problem of generalization in GP,

• the establishment of benchmarks for measuring and comparing GP perfor-

mance, and

• modularity and scalability in GP.



27

There is also more room for adding bio-inspiration to Genetic Program-

ming. For instance, the relation between evolution and development has been

studied for decades in biology [45]. It was found that the time-dependent

process of gene expression and gene regulation through both internal and ex-

ternal cues is the mechanism by which both processes can be unified [46]. Some

progress has also been made in Genetic Programming to couple evolution and

development. The developmental approach in GP takes the form of a recipe

that, upon its execution, generates a structure that is subjected to fitness tests

[47]. Thus, it is not the GP program itself that is tested, but the result of its

execution.

Similar to the coupling between evolution and development, the coupling

between development and learning was considered an important link for un-

derstanding the mechanisms of development and learning processes. Cognitive

neuroscience has presented evidence for this coupling by finding that there are

critical periods in development in which certain learning tasks are facilitated

(and sometimes only possible) to take place. If the critical period is missed,

learning success in a task is substantially reduced [48].

The coupling between development (or evolution) and learning has only

recently been explored in GP. The problem is to clearly separate adaptations or

fitness gains resulting from development or evolution versus those from learn-

ing. Its reason is the less stringent separation of time scales between evolution,

development, and learning in GP systems. While biological evolution can hap-



28

pen over many thousands or millions of years, development over the lifetime of

an organism, and learning over phases of that lifetime, all three mechanisms

are on similar time scales in GP, usually tied into single runs of a GP sys-

tem. In addition, in most GP systems there is no notion of species (and their

evolution). Rather, the entire population is essentially mixed and therefore

belongs to one single species. Finally, the goal under the influence of evolution

is behavior, the same entity usually associated with learning. First attempts

to examine learning as a separate task for which evolution/development have

to provide the means have been made [49], yet this area requires much more

investigation.

5 Applications

The textbook of Banzhaf et al. from 1998 lists 173 GP applications from

A to Z already at the time [24]. Fifteen years have passed, and the field has

continued to develop rapidly. The main application areas of GP are (from

narrow to wide) [24]:

• computer science,

• science,

• engineering,

• business and finance, and

• art and entertainment.



29

Koza has contributed many interesting applications to some of these areas

[50], demonstrating the breadth of the method. However, a more detailed look

is warranted.

In Computer Science, much effort has gone into the development of al-

gorithms using GP. By being able to manipulate symbolic structures, GP is

one of the few heuristic search methods for algorithms. Sorting algorithms,

caching algorithms, compression algorithms [51], random number generators

and algorithms for automatic parallelization of code [52], to name a few, have

been studied. The spectrum of applications in Computer Science spans from

the generation of proofs for predicate calculus to the evolution of machine

code for accelerating function evaluation. The general tendency is to try to

automate the design process for algorithms of different kinds. Recently the

process of debugging code, i.e. the correction of errors has been added to the

list of applications [53]. Computer Science itself has many applications, and

it is natural that those areas also benefit indirectly by improving methods

in Computer Science. For instance, in the area of Computer Vision, Genetic

Programming has been used, among others, for

• object detection (for example Refs. [54, 55]),

• filter evolution (for example [56, 57]),

• edge detection (for example [58]),

• interest point detection (for example [59]), and

• texture segmentation (for example [60]).



30

As well, the area of Software Engineering is a field very fruitful for applications

of GP [61]. Query optimization for database applications is a widespread ap-

plication of evolutionary computation techniques (see their use in PostgreSQL

and H2 [62, 63]).

Typical applications for Genetic Programming in Science are those to

modeling and pattern recognition. Modeling certain processes in Physics and

Chemistry with the unconventional help of evolutionary creativity supports

research and understanding of the systems under study [64, 65]. For instance,

parameters of models in Soil Science can be readily estimated by GP [66].

Predictions based on models generated with GP have widespread applications.

An example from Climate Science is [67], where sea water level is forecast by

a Genetic Programming modelling technique using past time series. Many

modelling applications for EC methods in general exist in Astronomy and

Astrophysics; see for instance Refs. [68, 69].

Modelling is, however, but one of the applications of Genetic Program-

ming in Science. Pattern recognition is another key application, used in molec-

ular biology and other branches of biology and medicine, as well as in Science

in general [70, 71]. Here, GP has delivered results that are competitive if not

better than human-generated results [72, 73], a special area of applications we

have to come back to in the next section. Classification and data-mining are

other applications where GP is in prominent use [74, 75].



31

In Engineering, GP and other evolutionary algorithms are used as stand-

alone tools [76] or sometimes in competition or cooperation with other heuris-

tic methods such as Neural Networks or Fuzzy Systems. The general goal is

again to model processes such as material properties [77], production plants,

or to classify results of production. In recent years, design in Engineering has

regained some prominence [78]. Control of man-made apparatus is another

area where GP has been used successfully, with process control and robot

control (e.g., [79]) the primary applications.

In Business and Finance, GP has been used to predict financial data,

notably bancruptcy of companies [80, 81]. The entire area of computational

finance is ripe with applications for GP (and other evolutionary techniques),

see Refs. [82, 83]. For an early bibliography of business applications of GP and

GAs, the reader is referred to Ref. [84]. Since, generally speaking, modelling

and prediction are core applications in economic contexts, GP is an important

nonlinear modelling technique to consider, see e.g., Refs. [85, 86].

In Art and Entertainment, GP is used to evolve realistic animation scenes

and appealing visual graphics (see [87] for an early example). Computer Games

are another active area of research and application for Genetic Programming

(see for instance [88]). Board games have been studied with GP developed

strategies, too [89, 90]. It also has been used in visual art and music [91]. In

music, for example, GP was used to extract structural information from musi-

cal composition in order to model the process so that automatic composition



32

of music pieces becomes possible [92].

Many of these problems require a huge amount of computational power

on the part of the GP systems. Parallel evolution has hence been a key engi-

neering aspect of developments in GP. As a paradigm, GP is very well suited

for a natural way of parallelization. With the advent of inexpensive paral-

lel hardware, in recent years in particular through Graphics Processing Units

[93, 94, 95], a considerable proliferation of results is expected from GP systems

[96].

6 Human-Competitive Results of Genetic Programming

In the last decade, a substantial number of results have been published

in various fields that claim to have produced human-competitive results by

the application of GP as a problem solving method [97].

These claims are based on a comparison between the presently-best

known human solutions to a problem and their respective counterparts pro-

duced by Genetic Programming. Applications are from areas like quantum

computing algorithms, analog electrical circuit design and other mechanical

and electrical designs, game playing applications, finite algebras and other

mathematical systems, bioinformatics and other scientific pattern recognition

problems, reverse engineering of systems, and empirical model discovery.

The claims of human-competitiveness are based on criteria that Koza et



33

al proposed in 2003:

a) The result was patented as an invention in the past, is an improvement

over a patented invention, or would qualitfy today as a patentable new

invention.

b) The result is equal to or better than a result that was accepted as a

new scientific result at the time when it was published in a peer-reviewed

scientific journal.

c) The result is equal to or better than a result that was placed into a

database or archive of results maintained by an internationally recognized

panel of scientific experts.

d) The result is publishable in its own right as a new scientific result, inde-

pendent of the fact that the result was mechanically created.

e) The result is equal to or better than the most recent human-created

solution to a long-standing problem for which there has been a succession

of increasingly better human-created solutions.

f) The result is equal to or better than a result that was considered an

achievement in its field at the time it was first discovered.

g) The result solves a problem of indisputable difficulty in its field.

h) The result holds its own or wins a regulated competition involving human

contestants (in the form of either live human players or human-written

computer programs).

Some of the similarities of these successes have been summarized by



34

Koza [73] as follows:

• Usually, a large amount of computational power has to be invested in order

to gain human-competitive results from Genetic Programming runs.

• Most times, a dedicated representation for the solution, known to be efficient

by the specialist, has been applied to allow the full power of expression of

solutions to be born on the problem.

• The Genetic Programming system has been equipped with dedicated growth

or development operators such that the adaptation of complexity of a de-

scription can be achieved smoothly.

Due to the ability of the human mind to quickly grasp the recipes of a

problem solution that an artificial system has applied, the question remains

open whether solutions found by a Genetic Programming system will remain

qualitatively better than solutions discovered by human over the long term.

Perhaps the best area to consider for this kind of attempt is Mathematics.

First results have been achieved that seem to indicate that, under very special

circumstances, certain mathematical problems can be solved more efficiently

using GP [98].

7 Conclusions

Implementation of GP will continue to benefit in coming years from new

approaches including results from developmental biology and epigenetics.



35

Application of GP will continue to broaden. Many applications focus on

engineering applications. In this role, Genetic Programming may contribute

considerably to creative solutions to long-held problems in the real world.

Since GP was first used around 1990, raw computational power has in-

creased by roughly a factor of 40,000 following Moore’s law of doubling of

transistor density every 18 months. As Koza points out, while initially only

toy problems were amenable to solution through GP, subsequent increases in

computational power and methodological progress of GP has allowed new so-

lutions to previously patented inventions as well as, more recently, completely

new inventions that are by themselves patentable. A milestone in this regard

was reached in 2005 when the first patent was issued for an invention produced

by a Genetic Programming system [99].

The use of bio-inspiration, notably through lessons from our understand-

ing of natural evolution has led to some very substantial progress in the imple-

mentation of artificial systems that show human-level problem solving abilities.

While achieving “Artficial Intelligence” in computing machines is still far in

the future, in restricted areas steps in that direction have been taken. It is the

firm conviction of the author of this chapter that a major component of any

future system that could truely lay claim to the property of intelligence will

be bio-inspiration.



36

Acknowledgement

I would like to express my sincere gratitude to my students, collaborators

and colleagues with whom it is such a pleasure to work on various projects in

Evolutionary Computation. I also would like to acknowledge funding agencies

that financed many projects over the course of nearly two decades. Specifically

I want to mention the German Science Foundation (DFG), the Technical Uni-

versity of Dortmund and the state of Northrhine-Westphalia for funding from

1993 to 2003 and NSERC (Canada), Memorial University of Newfoundland

and the government of Newfoundland for funding from 2003 to present.

Bibliography

[1] C Darwin. On the Origin of Species. John Murray, London, 1859.

[2] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,

Oxford, UK, 1995.

[3] G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice-Hall, New

Jersey, 1995.

[4] L.N. De Castro and J. Timmis. Artificial Immune Systems: A New Com-

putational Intelligence Approach. Springer, Heidelberg, 2002.

[5] M. Dorigo and C. Blum. Ant colony optimization theory: A survey. The-

oretical Computer Science, 344:243–278, 2005.

[6] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm intelligence: from



37

natural to artificial systems. Oxford University Press, New York, USA,

1999.

[7] C. Adami. Introduction to Artificial Life. Telos, Springer, New York,

1998.

[8] A.M. Turing. Computing machinery and intelligence. Mind, 59:433–460,

1950.

[9] JH Holland. Outline for a logical theory of adaptive systems. Journal of

the ACM, 9:297 – 314, 1962.

[10] J Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, MI, 1975.

[11] RM Friedberg. A Learning Machine: Part I. IBM Journal of Research

and Development, 2:2 – 13, 1958.

[12] L Fogel, A Owens, and M Walsh. Artificial Intelligence through Simulated

Evolution. Wiley, New York, 1966.

[13] I Rechenberg. Evolution Strategy. Holzmann Froboog, Stuttgart, Ger-

many, 1974.

[14] D.B. Fogel, editor. Evolutionary Computation - The Fossil Record. IEEE

Press, New York, 1998.

[15] J Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

[16] JH Holland and J Reitman. Cognitive systems based on adaptive algo-

rithms. In DA Waterman and F Hayes-Roth, editors, Pattern Directed

Inference Systems, pages 313 – 329, New York, 1978. Academic Press.

[17] R.J. Urbanowicz and J.H. Moore. Learning classifier systems: a complete



38

introduction, review, and roadmap. Journal of Artificial Evolution and

Applications, 2009:736398, 2009.

[18] SF Smith. A Learning System based on Genetic Adaptative Algorithms.

PhD thesis, University of Pittsburgh, 1980.

[19] R Forsyth. BEAGLE - A Darwinian Approach to Pattern Recognition.

Kybernetes, 10:159 – 166, 1981.

[20] N Cramer. A representation for the adaptive generation of simple se-

quential programs. In Proc. First International Conference on Genetic

Algorithms, pages 183 – 187, Pittsburgh, 1985. Lawrence Erlbaum.

[21] JF Hicklin. Application of the genetic algorithm to automatic program

generation. Master’s thesis, University of Idaho, 1986.

[22] C Fujiki and J Dickinson. Using the genetic algorithm to generate lisp

source code to solve the prisoner’s dilemma. In Proc. Second International

Conference on Genetic Algorithms, pages 236 – 240, Pittsburgh, 1987.

Lawrence Erlbaum.

[23] J Koza. Hierarchical genetic algorithms operating on populations of com-

puter programs. In Proc. 11th International Joint Conference on Artifi-

cial Intelligence, pages 768 – 774, San Mateo, CA, 1989. Morgan Kauf-

mann.

[24] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming

- An Introduction. Morgan Kaufmann, San Francisco, 1998.

[25] C. Ryan, JJ Collins, and M. Neill. Grammatical evolution: Evolving

programs for an arbitrary language. In W Banzhaf, R Poli, M Schoenauer,



39

and T Fogarty, editors, Proc. EuroGP 1998, pages 83 – 96, Heidelberg,

1998. Springer.

[26] J.F. Miller. An empirical study of the efficiency of learning boolean func-

tions using a cartesian genetic programming approach. In W. Banzhaf

et al., editor, Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO-1999), pages 1135–1142, San Francisco, 1999. Mor-

gan Kaufmann.

[27] T Blickle and L Thiele. A comparison of selection schemes used in evo-

lutionary algorithms. Evolutionary Computation, 4:361–394, 1996.

[28] P Angeline. Genetic programming and emergent intelligence. In KE Kinn-

ear, editor, Advances in Genetic Programming, pages 75 – 98, Cambridge,

MA, 1994. MIT Press.

[29] P. Nordin, W. Banzhaf, and F.D. Francone. Introns in nature and

in simulated structure evolution. In D. Lundh, B. Olsson, and

A. Narayanan, editors, Proceedings of Biocomputing and Emergent Com-

putation (BCEC97), Skovde, Sweden, September 1-2, 1997, pages 22 –

35, Singapore, 1997. World Scientific.

[30] W Langdon and W Banzhaf. Repeated patterns in genetic programming.

Natural Computing, 7:589 – 613, 2008.

[31] P. Nordin and W. Banzhaf. Complexity compression and Evolution. In

L. Eshelman, editor, Genetic Algorithms: Proceedings of the Sixth Inter-

national Conference (ICGA95), pages 310–317, San Francisco, CA, USA,

1995. Morgan Kaufmann.



40

[32] T Soule and JA Foster. Removal bias: A new cause of code growth

in tree-based evolutionary programming. In IEEE Intl. Conference on

Evolutionary Computation, pages 781 – 786, New York, 1998. IEEE Press.

[33] W Langdon. Fitness causes bloat. Technical report, CSRP-97-22. Uni-

versity of Birmingham, United Kingdom, 1997.

[34] A Wagner. Robustness and Evolvability in Living Systems. Princeton

University Press, Princeton, NJ, 2005.

[35] M Kimura. The Neutral Theory of Molecular Evolution. Cambridge Uni-

versity Press, Cambridge, UK, 1983.

[36] C Forst, C Reidys, and J Weber. Evolutionary dynamics and optimiza-

tion. In F Moran, A Moreno, JJ Merelo, and P Chacon, editors, Advances

in Artificial Life, pages 128 – 147, Berlin, 1995. Springer.

[37] T Hu and W Banzhaf. Evolvability and speed of evolutionary

algorithms in light of recent developments in biology. Journal

of Artificial Evolution and Applications, 2010:568375 (available from

http://www.hindawi.com/archive/2010/568375/), 2010.

[38] T Hu, J Payne, J Moore, and W Banzhaf. Robustness, evolvability, and

accessibility in linear genetic programming. In S. Silva, JA. Foster, and

et al, editors, Proc EuroGP 2011, pages 13 – 24, Berlin, 2011. Springer.

[39] T Hu, JL Payne, W Banzhaf, and JH Moore. Evolutionary dynamics on

multiple scales. Genetic Programming and Evolvable Machines, 13:305 –

337, 2012.

[40] D Goldberg. Genetic Algorithms in Search, Optimization and Machine



41

Learning. Addison Wesley, Reading, MA, 1989.

[41] M Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT

Press, Cambridge, MA, 1999.

[42] R Poli, L Vanneschi, WB Langdon, and N Freitag. Theoretical results

in genetic programming: The next ten years. Genetic Programming and

Evolvable Machines, 11:285 – 320, 2010.

[43] W Langdon and R Poli. Boolean functions fitness spaces. In R Poli,

P Nordin, W Langdon, and T Fogarty, editors, Proceedings EuroGP’99,

pages 1 – 14, Berlin, 1999. Springer.

[44] M O’Neill, L Vanneschi, S Gustafson, and W Banzhaf. Open issues in

genetic programming. Genetic Programming and Evolvable Machines,

11:339 – 363, 2010.

[45] MJ West-Eberhard. Developmental Plasticity and Evolution. Oxford

University Press, New York, 2003.

[46] S Ben-Tabou de Leon and EH Davidson. Gene regulation: Gene control

network in development. Annual Reviews in Biophysics and Biomolecular

Structure, 36:191 – 212, 2007.

[47] L Spector and K Stoffel. Ontogenetic programming. In J Koza, DE Gold-

berg, DB Fogel, and R Riolo, editors, Proc Genetic Programming 1996,

pages 394 – 399, Cambridge, MA, 1996. MIT Press.

[48] NW Daw, NE Berman, and M Ariel. Interaction of critical periods in the

visual cortex of kittens. Science, 199:565 – 567, 1978.

[49] S Harding, J Miller, and W Banzhaf. Evolution, development and learn-



42

ing using self-modifying cartesian genetic programming. In F. Rothlauf

and et al, editors, Proc. of the 11th Intl. conference on Genetic and Evo-

lutionary Computation., pages 699 – 706, New York, 2009. ACM Press.

[50] J Koza, FH Bennett, D Andre, and MA Keane. Genetic Programming

III: Darwinian Invention and Problem Solving. Morgan Kaufmann, San

Francisco, 1999.

[51] A Kattan and R Poli. Evolution of human-competitive lossless com-

pression algorithms with gp-zip2. Genetic Programming and Evolvable

Machines, 12:1 – 30, 2011.

[52] C Ryan. Automatic Re-engineering of Software Using Genetic Program-

ming. Kluwer Academic, Boston, MA, 2000.

[53] S Forrest, TV Nguyen, W Weimer, and C Le Goues. A genetic program-

ming approach to automated software repair. In F. Rothlauf and et al,

editors, Proc. of the 11th Intl. conference on Genetic and Evolutionary

Computation, pages 947 – 954, New York, 2009. ACM Press.

[54] B. Bhanu and Y Lin. Object detection in multi-modal images using

genetic programming. Applied Soft Computing, 4:175 – 201, 2004.

[55] M Zhang, U Bhowan, and N Bunna. Genetic programming for object

detection: A two-phase approach with an improved fitness function. Elec-

tronic Letters on Computer Vision and Image Analysis, 6:27 – 43, 2007.

[56] R. Poli. Genetic programming for feature detection and image segmen-

tation. In T Fogarty, editor, Evolutionary Computation, pages 110 – 125,

Berlin, 1996. Springer.



43

[57] S. Harding and W Banzhaf. Genetic programming on gpus for image

processing. International Journal of High-Performance Systems Archi-

tecture, 1:231 – 240, 2008.

[58] W. Fu, M. Johnston, and M Zhang. Genetic programming for edge de-

tection: A global approach. In Proceedings of CEC 2011, pages 254 – 261,

New York, 2011. IEEE Press.

[59] G. Olague and L. Trujillo. Evolutionary-computer-assisted design of im-

age operators that detect interest points using genetic programming. Im-

age and Vision Computing, 29:484 – 498, 2011.

[60] A. Song and V. Ciesielski. Texture segmentation by genetic programming.

Evolutionary Computation, 16:461 – 481, 2008.

[61] M Harman and A. Mansouri. Search based software engineering: In-

troduction to the special issue of the. IEEE Transactions on Software

Engineering, 36:737 –741, 2010.

[62] PostgreSQL. Manual, version 9.1. http://www.postgresql.org/docs/9.1/static/geqo-

pg-intro.html, Accessed 25.6.2012.

[63] H2. H2 database - features. http://www.h2database.com/html/features.html,

Accessed 25.6.2012.

[64] R. Stadelhofer, W. Banzhaf, and D. Suter. Evolving blackbox quantum

algorithms using genetic programming. Artificial Intelligence for Engi-

neering Design, Analysis and Manufacturing, 22:285–297, 2008.

[65] F. Archetti, I. Giordani, and L. Vanneschi. Genetic programming for

QSAR investigation of docking energy. Applied Soft Computing, 10:170–



44

182, 2010.

[66] N. Naderi, P. Roshani, M.Z. Samani, and M.A. Tutunchian. Application

of genetic programming for estimation of soil compaction parameters.

Applied Mechanics and Materials, 147:70–74, 2012.

[67] M. Ali Ghorbani, R. Khatibi, A. Aytek, O. Makarynskyy, and J. Shiri.

Sea water level forecasting using genetic programming and comparing the

performance with artificial neural networks. Computers & Geosciences,

36:620–627, 2010.

[68] P. Charbonneau. Genetic algorithms in astronomy and astrophysics. As-

trophysical Journal Supplement Series, 101:309 – 334, 1995.

[69] J. Li, X. Yao, C. Frayn, H. Khosroshahi, and S. Raychaudhury. An evo-

lutionary approach to modeling radial brightness distributions in ellipti-

cal galaxies. In X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J. Merelo-

Guervs, J.A. Bullinaria, J. Rowe, P. Tino, A. Kabn, and H.-P. Schwefel,

editors, Parallel Problem Solving from Nature-PPSN VIII, pages 591–601.

Springer, 2004.

[70] W.P. Worzel, J. Yu, A.A. Almal, and A.M. Chinnaiyan. Applications of

genetic programming in cancer research. International Journal of Bio-

chemistry & Cell Biology, 41:405–413, 2009.

[71] S.M. Winkler, M. Affenzeller, and S. Wagner. Using enhanced genetic

programming techniques for evolving classifiers in the context of medical

diagnosis. Genetic Programming and Evolvable Machines, 10:111–140,

2009.



45

[72] S. Silva and L. Vanneschi. State-of-the-art genetic programming for pre-

dicting human oral bioavailability of drugs. Advances in Bioinformatics,

74:165–173, 2010.

[73] J Koza. Human-competitive results produced by genetic programming.

Genetic Programming and Evolvable Machines, 11:251 – 284, 2010.

[74] M. Brameier and W. Banzhaf. A comparison of linear genetic program-

ming and neural networks in medical data mining. IEEE Transactions

on Evolutionary Computation, 5:17–26, 2001.

[75] P.G. Espejo, S. Ventura, and F. Herrera. A survey on the application of

genetic programming to classification. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, 40:121–144,

2010.

[76] D. Dasgupta and Z Michalewicz, editors. Evolutionary Algorithms in

Engineering Applications. Springer, 1997.

[77] L. Gusel and M. Brezocnik. Application of genetic programming for

modelling of material characteristics. Expert Systems with Applications,

38:15014 – 15019, 2011.

[78] J Lohn, GS Hornby, and DS Linden. An Evolved Antenna for Deployment

on NASA’s Space Technology 5 Mission. In UM O’Reilly, RL Riolo, G Yu,

and W Worzel, editors, Genetic Programming Theory and Practice II,

pages 301 – 315. Kluwer Academic, Boston, MA, 2004.

[79] JU Dolinsky, ID Jenksinson, and GJ Cloquhoun. Application of genetic

programming to the calibration of industrial robots. Computers in In-



46

dustry, 58:255 – 264, 2007.

[80] H. Iba and T. Sasaki. Using genetic programming to predict financial

data. In Proceedings of the 1999 Congress on Evolutionary Computation

(CEC-1999), pages 244 – 251, New York, 1999. IEEE Press.

[81] T.E. McKee and T. Lensberg. Genetic programming and rough sets:

A hybrid approach to bankruptcy classification. European Journal of

Operational Research, 138:436–451, 2002.

[82] S.H. Chen. Genetic Algorithms and Genetic Programming in Computa-

tional Finance. Kluwer Academic, 2002.

[83] J. Wang. Trading and Hedging in S&P 500 Spot and Futures Markets

using Genetic Programming. Journal of Futures Markets, 20:911–942,

2000.

[84] BK Wong and TA Bodnovich. A Bibliography of Genetic Algorithm

Business Application Research: 1988 - June 1996. Expert Systems, 15:75

– 82, 1998.

[85] M. Álvarez-Dı́az and G. Caballero Miguez. The quality of institutions: A

genetic programming approach. Economic Modelling, 25:161–169, 2008.

[86] M. Alvarez-Diaz, J. Mateu-Sbert, and J. Rossello-Nadal. Forecasting

tourist arrivals to balearic islands using genetic programming. Interna-

tional Journal of Computational Economics and Econometrics, 1:64–75,

2009.

[87] L. Gritz and J. Hahn. Genetic programming for articulated figure motion.

Journal of Visualization and Computer Animation, 6:129 – 142, 1995.



47

[88] K.T. Sun, Y.C. Lin, C.Y. Wu, and Y.M. Huang. An application of the

genetic programming technique to strategy development. Expert Systems

with Applications, 36:5157–5161, 2009.

[89] Y. Azaria and M. Sipper. GP-gammon: Genetically programming

backgammon players. Genetic Programming and Evolvable Machines,

6:283–300, 2005.

[90] M Sipper and M Giacobini. Introduction to special section on evolu-

tionary computation in games. Genetic Programming and Evolvable Ma-

chines, 9:279 – 280, 2008.

[91] C.G. Johnson and J.J.R. Cardalda. Genetic algorithms in visual art and

music. Leonardo, 35:175–184, 2002.

[92] B. Johanson and R. Poli. GP-Music: An Interactive Genetic Program-

ming System for Music Generation with Automated Fitness Raters. In

Genetic Programming: Proceedings 3rd annual conference, page 181, San

Francisco, 1998. Morgan Kaufmann.

[93] W Banzhaf, S Harding, WB Langdon, and G Wilson. Accelerating Ge-

netic Programming through Graphics Processing Units. In R Riolo,

T Soule, and B Worzel, editors, Genetic Programming Theory and Prac-

tice VI, 1 - 23. Springer, New York, 2009.

[94] D. Robilliard, V. Marion, and C. Fonlupt. High performance genetic

programming on gpu. In Proceedings of the 2009 workshop on Bio-inspired

algorithms for distributed systems, pages 85–94, New York, 2009. ACM

Press.



48

[95] W. Langdon. A many threaded CUDA interpreter for genetic program-

ming. Genetic Programming and Evolvable Machines, 11:146–158, 2010.

[96] W.B. Langdon and A.P. Harrison. GP on SPMD parallel graphics hard-

ware for mega bioinformatics data mining. Soft Computing, 12:1169–1183,

2008.

[97] J Koza, M. Keane, MJ Streeter, W Mydlowec, J Yu, G Lanza, and

D. Fletcher. Genetic Programming IV:Routine Human-competitive Ma-

chine Intelligence. Kluwer Academic, Norvell, MA, 2003.

[98] L Spector, DM Clark, I Lindsay, B. Barr, and J Klein. Genetic Pro-

gramming for Finite Algebras. In M Keijzer and et al, editors, Proc. of

the Genetic and Evolutionary Computation Conference (GECCO), pages

1291 – 1298, New York, 2008. ACM Press.

[99] M. Keane, J Koza, and M. Streeter. Improved General-Purpose Con-

trollers. US Patent Nr. 6,847,851, Jan 25 2005.

Bio

Wolfgang Banzhaf is currently University Research Professor at Memo-

rial University of Newfoundland. From 2003 to 2009 he served as Head of the

Department of Computer Science at Memorial. From 1993 to 2003 he was an

Associate Professor for Applied Computer Science at Technical University of

Dortmund, Germany. He also worked in industry, as a researcher with the

Mitsubishi Electric Corporation in Japan and the US. He holds a PhD in



49

Physics from the University of Karlruhe in Germany. His research interests

are in the field of bio-inspired computing, notably evolutionary computation

and complex adaptive systems.


