
Cross-Representation Genetic Programming: A
Case Study on Tree-based and Linear

Representations

Zhixing Huang ID zhixing.huang@ecs.vuw.ac.nz

Yi Mei ID yi.mei@ecs.vuw.ac.nz

Fangfang Zhang� ID fangfang.zhang@ecs.vuw.ac.nz

Mengjie Zhang ID mengjie.zhang@ecs.vuw.ac.nz
Centre for Data Science and Artificial Intelligence & School of Engineering and
Computer Science, Victoria University of Wellington, Wellington, 6140, New Zealand

Wolfgang Banzhaf ID banzhafw@msu.edu
Department of Computer Science and Engineering, BEACON Center for the Study of
Evolution in Action, and Ecology, Evolution and Behavior Program, Michigan State
University, East Lansing, MI 48864, USA

Abstract
Existing genetic programming (GP) methods are typically designed based on a cer-
tain representation, such as tree-based or linear representations. These representations
show various pros and cons in different domains. However, due to the complicated re-
lationships among representation and fitness landscapes of GP, it is hard to intuitively
determine which GP representation is the most suitable for solving a certain problem.
Evolving programs (or models) with multiple representations simultaneously can al-
ternatively search on different fitness landscapes since representations are highly re-
lated to the search space that essentially defines the fitness landscape. Fully using
the latent synergies among different GP individual representations might be helpful
for GP to search for better solutions. However, existing GP literature rarely investi-
gates the simultaneous effective evolution of multiple representations. To fill this gap,
this paper proposes a cross-representation GP algorithm based on tree-based and lin-
ear representations, which are two commonly used GP representations. In addition,
we develop a new cross-representation crossover operator to harness the interplay be-
tween tree-based and linear representations. Empirical results show that navigating
the learned knowledge between basic tree-based and linear representations success-
fully improves the effectiveness of GP with solely tree-based or linear representation
in solving symbolic regression and dynamic job shop scheduling problems.

Keywords
Cross-representation, Tree-based genetic programming, Linear genetic programming,
Symbolic regression, Dynamic job shop scheduling.

1 Introduction

Genetic programming (GP) has shown impressive performance in many machine learn-
ing domains such as classification [4, 27] and symbolic regression [22, 43]. Over the
years, many GP variants have been proposed, such as tree-based GP (TGP)[26], Linear

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

https://orcid.org/0000-0001-9560-3020
https://orcid.org/0000-0003-0682-1363
https://orcid.org/0000-0001-5516-3972
https://orcid.org/0000-0003-4463-9538
https://orcid.org/0000-0002-6382-3245

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

GP (LGP) [32, 33], Cartesian GP [29], gene expression programming [14], graph-based
genetic programming [2], and grammar-guided GP [15]. Traditionally, GP only evolves
individuals within a single representation. The individual representation (and its cor-
responding search mechanism) directly defines the search space and the corresponding
fitness landscape.

Generally speaking, a GP representation is expected to be suitable for only a sub-
set of problems. Although some existing studies have investigated the performance of
different GP representations in solving different problems based on empirical compar-
isons [40, 42], extending such kind of knowledge to unseen domains is difficult, and
such investigations are often too time-consuming and it is hard to cover all different
branches and variants of a problem. When encountering an emerging application or a
new problem, users have scarce domain knowledge in selecting a GP representation.
To address the risk in selecting inappropriate representations, simultaneously evolving
multiple representations is a possible way.

However, simultaneously evolving multiple representations is non-trivial. Evolv-
ing multiple representations independently renders each representation unable to
make full use of all the computation resources to search for effective solutions. Our
empirical results also show that evolving multiple representations independently only
performs similarly to baselines (see Section 4.4.1). On the other hand, different GP rep-
resentations cannot exchange building blocks directly since existing genetic operators
for a certain representation cannot accept parents with another representation.

This paper proposes a new Cross-Representation GP (CRGP) algorithm that si-
multaneously evolves individuals with more than one representation. This paper fo-
cuses on the CRGP with two typical GP representations, tree-based (i.e., TGP) [26] and
linear-based (i.e., LGP) [5] representations, denoted as CRGP-TL. TGP and LGP have
very different program representations, TGP with tree-based structures, and LGP with
instruction lists. Consequently, the structures of TGP programs are usually wide, while
the topological structures of LGP programs are usually long and narrow [20]. It is likely
that the two GP representations and their corresponding search mechanisms lead to
different fitness landscapes. CRGP-TL simultaneously evolves sub-populations with
tree-based and linear GP representations for a single task and exchanges search infor-
mation across representations, aiming to obtain more diverse useful building blocks
with a higher chance to find better solutions. CRGP-TL includes a novel adjacency list-
based crossover to effectively exchange building blocks between tree-based and linear
GP representations. An adjacency list is a common and universal representation of
graphs and can represent different kinds of topological structures. Besides, adjacency
lists can convey graph information such as the frequency of different nodes and their
connections.

Although adjacency lists can be an intermediate representation for tree-based and
linear representations, this does not mean that an adjacency list is a more effective GP
representation than tree-based or linear representations because of the two following
reasons. First, existing literature shows that evolving computer programs based on
graph-based structures is not always better than tree-based and linear representations
[40]. Different representations have their own pros and cons for different tasks. Sec-
ond, a conventional adjacency list relies on graph node indices to distinguish graph
nodes. But different graphs (i.e., GP individuals) likely have different indices for the
same building blocks (e.g., a three-node building block “x1 + x2” might be indexed as
“A → [B, C]” and “D → [E ,F]” in two different GP individuals). Thus, it is difficult
for conventional adjacency lists from different graphs to represent the same building

2 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

blocks when the graphs use different indices.
This paper has three main contributions:

1. We propose a cross-representation evolutionary framework for GP methods.
The proposed evolutionary framework simultaneously evolves multiple sub-
populations, each with a distinct GP representation and all solving the same task.
By simultaneously evolving multiple representation, the cross-representation evo-
lutionary framework reduces the risk of choosing inappropriate representations
and stimulates GP to search for more effective solutions To the best of our knowl-
edge, this paper is the first to highlight that cooperation among different GP rep-
resentations is beneficial for GP search performance.

2. To implement the new evolutionary framework, we propose a CRGP algorithm
based on two representative GP systems (i.e., TGP and LGP), denoted as CRGP-
TL. The newly proposed algorithm simultaneously evolves two sub-populations,
one with tree-based representation and the other with linear representation. A new
crossover operator is introduced based on the adjacency list to exchange building
blocks from tree-based and linear subpopulations in the course of evolution.

3. This paper verifies the effectiveness of CRGP-TL by two substantially different ap-
plications. The two applications are symbolic regression and automatic design of
decision rules in dynamic job shop scheduling problems, which cover a wide range
of applications [6, 10, 38, 39]. The results show that simultaneously evolving ba-
sic tree-based and linear representations is more effective than the original single-
representation methods in both problem domains. Furthermore, by extending the
cross-representation evolutionary framework to other advanced methods, we got
significant performance improvement for dynamic job shop scheduling problems.

2 Literature Review

2.1 Tree-based and Linear GP Representations

TGP [26] uses tree-based representation, where each individual encodes a computer
program as a tree. Every tree node represents a function or a terminal (i.e., input fea-
ture). Function nodes accept inputs from their sub-trees and deliver results to their
parent nodes. Each tree node has up to one parent node. All intermediate results from
sub-trees are aggregated at the root, with the root outputting the final result of the pro-
gram. Tree-based representation has been successfully applied to different domains
[3, 36, 48].

LGP represents a computer program by a sequence of register-based instructions
[5]. In LGP, every instruction f in the instruction sequence F = {f1, f2, ...f|F |} manip-
ulates registers from the same set of registers R = {R[0],R[1], · · · ,R[|R| − 1]}, based
on the operation in the instruction (denoted as ffun). The registers in f can be catego-
rized into destination registers (fd) and source registers (fs). In our work, there are at
most one destination register and two source registers (denoted as fs,1 and fs,2) in each
instruction. The final outputs of LGP programs are stored in designated destination
registers, normally starting from the first register, R[0], by default. An LGP program
can be decoded into a graph. By connecting the operations in the instructions based on
registers, the instruction sequence can be decoded into a directed acyclic graph (DAG),
in which every graph node can have more than one parent. A directed edge points
from a certain graph node to another providing inputs. A comparison between a lin-
ear representation and a tree-based representation for the same mathematical formula

Evolutionary Computation Volume x, Number x 3

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

f(x1,x2,x3)=x1+x2+(x1-x3)

+

+
−

x1

x2

x1 x3

+
R[1]=R[0] - X3

R[2]= X2 + R[1]

R[0]= R[0] + R[2]

+
− x2

x1 x3

Tree-based representation Linear representation

R[0]=X1 ，R[1]=X2 ，R[2]=X3

Figure 1: An example of GP individuals with tree-based and linear representations for
the same mathematical formula.

“f(x1, x2, x3) = x1 + x2 + (x1 − x3)” is shown in Fig. 1. Specifically, in the linear rep-
resentation, x1 to x3 are read-only input registers, and the calculation registers R[0] to
R[2] are initialized by x1 to x3 respectively (e.g., the first instruction is equivalent to
“R[1] = x1 − x3”). The final output of the instruction sequence is stored in R[0]. The
DAG of the LGP individual is also shown in Fig. 1.

Existing literature has shown that different GP representations have superior per-
formance in different domains [25, 40, 42]. For example, tree-based representations
are good at parallelizing the computation of different building blocks (i.e., different
sub-trees), which benefits their performance on even parity problems and synthetic
symbolic regression problems with many distinct sub-programs. On the contrary, the
linear representation is good at reusing building blocks by registers, which enhances
its performance in real-world symbolic regression problems and dispatching rules de-
sign problems where many sub-programs can be reused [18, 40]. However, to the best
of our knowledge, all of the GP methods evolve GP individuals only with one unified
representation which essentially defines the search space and the corresponding fitness
landscape. There is no existing literature that uses the search spaces from different
representations to enhance the GP search for an optimization problem. Since it is not
guaranteed that the chosen representation is effective for a specific problem, evolving
multiple potential representations simultaneously reduces the risks of inadequate GP
representations and is expected to improve GP performance.

2.2 Enhancing Evolution By Switching Fitness Landscapes

A fitness landscape consists of three components: search space, fitness function, and
neighborhood function [37]. Particularly, the search space of GP is the set of all possible
solutions defined by a GP representation, the fitness function evaluates how good the
GP individuals are, and the neighborhood functions are the genetic operators produc-
ing offspring based on parents. This paper simultaneously evolves the GP individuals
with multiple different representations, which is similar to simultaneously searching
on multiple related fitness landscapes (as GP individual representations are highly re-
lated to fitness landscapes). In the existing literature, there have been studies [41, 44]
showing that making full use of related fitness landscapes in designing search mecha-
nisms is an effective way to improve search performance.

Multitask optimization [35] is an example of an optimization method that enhances
search performance by mutually exchanging information among the fitness landscapes
with similar fitness functions. Specifically, multitask optimization constructs similar
fitness functions by simultaneously solving several similar tasks. For example, Gupta
et al. [16] used a multitask evolutionary computation method (i.e., multifactorial evo-

4 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

lutionary algorithm) to simultaneously solve multiple continuous and discrete opti-
mization problems whose optima are close in the search space. Yi et al. [45] further
confirmed that searching for solutions to similar tasks is also effective in solving com-
binatorial optimization problems.

Sharing the GP search information among tasks is helpful to GP evolution. For
example, Zhong et al. [50] proposed a multifactorial gene expression programming
method to solve more than one symbolic regression problem simultaneously. Zhang et
al. [46] compared the effectiveness of different evolutionary multitask frameworks in
solving dynamic flexible job shop scheduling and extended the multitask frameworks
to multiobjective optimization in flexible dynamic job shop scheduling [47]. Huang et
al. [23] investigated the effectiveness of LGP in existing evolutionary multitask frame-
works for solving dynamic job shop scheduling.

The so-called multiform optimization is another way to build up similar fitness
landscapes. The multiform optimization simultaneously optimizes several alternative
formulations for a single problem. For example, Da et al. [9] formulated a traveling
salesman problem into a single-objective and a multiobjective optimization problem
respectively, and solved the two optimization problems via a multitask optimization
method. Since multiobjective formulations often introduce plateaus into fitness land-
scapes by evaluating solutions from multiple perspectives, the multiobjective optimiza-
tion task is expected to remove some local optima from the single-objective formula-
tion. Additional formulations can also be constructed by adding or relaxing constraints
on the optimization problem [24], which is equivalent to constructing different search
spaces (and hence different fitness landscapes) for solving the single task.

Changing neighborhood functions to reshape the fitness landscape can construct
related fitness landscapes in the search for effective solutions. One representative ex-
ample is variable neighborhood search [30], which switches neighborhood functions
in the course of search. By searching within different neighborhoods, variable neigh-
borhood search can reach distant solutions via local search and has a better chance to
jump out from a local optimum. Variable neighborhood search is an effective strategy
to enhance other search techniques [7].

All of these existing studies show that designing search mechanisms based on fit-
ness landscape considerations is beneficial to search performance. However, using dif-
ferent solution representations to construct related fitness landscapes is not well inves-
tigated when solving the same task, especially in the GP area. Although some studies of
evolutionary multitask optimization use different solution representations for different
tasks [12, 13], their solution representations are mainly designed based on problem-
specific decision variables, which is much more intuitive than designing GP represen-
tations. Further, the solutions in most evolutionary computation studies are numerical
and have a simple neighborhood function. This is vastly different from GP representa-
tions that are symbolic and might have neighborhoods exponentially increasing with
program size.

3 Cross-representation Genetic Programming with TGP and LGP

3.1 Overall Framework

We propose an overall framework of the CRGP, as shown in Fig. 2 (with the new com-
ponents highlighted in grey). In contrast to the evolutionary framework of basic GP
methods, CRGP evolves multiple sub-populations, each evolving a unique GP repre-
sentation. When breeding offspring, CRGP selects parents from all the representations
and also applies cross-representation genetic operators to produce offspring. Offspring

Evolutionary Computation Volume x, Number x 5

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

Initialize multi-
population with different

representations
Fitness evaluation

Parent selection from
one or multiple
representations

If stopping criterion
 is met

Apply basic genetic operators and
cross-representation genetic

operators to produce offspring

Output the best
individual

Fill the sub-populations
by offspring

NO

YES

Figure 2: Evolutionary framework of CRGP. The novel components are highlighted by
the dark boxes.

Algorithm 1: CRGP-TL
Input: cross-representation crossover rate θt, tournament selection size s, maximum depth of the

tree d, maximum number of instructions L, minimum number of instruction L
Output: best individual h

1 Initialize two sub-populations, S1 for the tree-based representation and S2 for the linear
representation.

2 while stopping criteria are not satisfied do
// Evaluation

3 Evaluate fitness of individuals ∀f ∈ S1
⋃

S2.
4 Update the best individuals h in S1

⋃
S2;

5 for j ← 1 to 2 do
6 S′j ← ∅;
7 Clone top-1% individuals of Sj into S′j ;
8 while |S′j | < |Sj | do
9 rnd← rand(0, 1);

10 if rnd < θt then
11 p1 ← TournamentSelection(Sj , s);
12 i← randint(1, 2);
13 p2 ← TournamentSelection(Si, s);
14 c← CALX(p1,p2, d, L, L);

15 else
16 Apply corresponding (i.e., TGP or LGP) basic genetic operators on Sj to produce

offspring c (or c1 and c2);

17 S′j ← S′j
⋃
{c} (or S′j ← S′j

⋃
{c1, c2});

18 Sj ← S′j ;

19 Return h.

of a certain representation fill the corresponding sub-population of the next generation.
After a predefined number of generations, the best solution is output. Note that the best
solution is either from the tree-based representation or the linear representation.

This paper studies CRGP based on the TGP and LGP, denoted as CRGP-TL. The
pseudo-code of CRGP-TL is shown in Alg. 1 1. First, CRGP-TL initializes two sub-
populations, one for evolving tree-based GP individuals and the other for evolving
LGP individuals. All individuals in these two sub-populations evolve simultaneously.
For each sub-population, we perform elitism selection to retain elite individuals for

1rand(a, b) returns a random floating-point number in [a, b). randint(a, b) returns a random integer
number in [a, b]. | · | denotes the cardinality of a container (e.g., set or list). (·) following a container denotes
getting an element from the container based on the index.

6 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

 + →[− , x1]

− →[× , max]

Adjacency listTree

DAG

Sub-tree

Sub-DAG

Instruction
segment

Instruction
sequence

Figure 3: The schematic diagram of CALX between trees and instruction sequences

the next generation (line 7). To fill the sub-population of the next generation, we use
tournament selection (i.e., TournamentSelection(·)) to select individuals as parents
and apply different genetic operators based on predefined rates. Specifically, CRGP-
TL triggers the cross-representation adjacency-list based crossover (CALX(·)) based on
a predefined rate θt (line 10). If the cross-representation adjacency-list-based crossover
is triggered, CRGP-TL selects a parent from the current sub-population and selects the
other parent from one of the two sub-populations. CALX(·) accepts the two parents and
produces an offspring. If the operator is not triggered, CRGP-TL applies basic TGP
or LGP genetic operators to evolve tree-based and linear representations separately
(lines 15-16). The newly generated offspring form the new populations with different
representations (line 17). The evolution continues until a stopping criterion is met. The
best individual among all the sub-populations with different representations is output
as the final result.

3.2 Cross-representation Adjacency List-based Crossover

Knowledge transfer among representations is implemented by the cross-representation
adjacency list-based crossover (CALX), as shown in Fig. 3. To swap genetic materials,
a tree or an instruction sequence first selects a sub-tree or an instruction segment. The
instruction segment is essentially a sub-DAG (or multiple disconnected sub-DAGs).
The sub-tree and sub-DAGs are further converted into adjacency lists2. Based on the
representation of the recipient, a new sub-tree or instruction segment is constructed
based on the adjacency list and swapped into the recipient.

An adjacency list is a high-level representation of a graph. This paper denotes an
adjacency list as

L =
(
[fun1,A1] [fun2,A2] · · ·

[
fun|L|,A|L|

])
where each item [funi,Ai] specifies a function funi and its adjacent nodes Ai. Specif-
ically, Ai contains one or two nodes in this paper since we only consider unary and
binary functions. For example, we convert the left tree in Fig. 1 as

L =
(
[+, [x1,+]] [+, [x2,−]] [−, [x1, x3]]

)
It is worth noting that the adjacency list in this paper uses primitive symbols (i.e., func-
tions or terminals) to specify graph nodes to highlight building blocks, which is differ-
ent from conventional adjacency lists which distinguish graph nodes by the indexes.

2Disconnected graph nodes are converted into adjacency lists with empty adjacent nodes A

Evolutionary Computation Volume x, Number x 7

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

Algorithm 2: CALX
Input: Parent individuals p1 and p2, maximum depth of the tree d, maximum number of

instructions L, minimum number of instruction L
Output: An offspring c

1 Clone p1 as c;
2 if p1 is a TGP individual then

// breeding trees based on adjacency lists
3 Randomly pick an inner tree node t1 from c;
4 if p2 is a TGP individual then
5 Randomly pick an inner tree node t2 from p2;
6 L← get the adjacency list of the sub-tree in p2 whose root is t2;

7 else if p2 is an LGP individual then
8 Randomly select a crossover point t2 and select an instruction segment

F′ ⊆ [p2(t2),p2(|p2|)];
9 L← get the adjacency list of the sub-graph from F′;

10 t′1 ← GrowTreeBasedAL(L, the depth of t1 in c, 1, d);
11 Replace the sub-tree with the root of t1 as the sub-tree with the root of t′1 in c;

12 else if p1 is an LGP individual then
// breeding instructions based on adjacency lists

13 if p2 is a TGP individual then
14 Randomly select a crossover point t1 and select an instruction segment

F′
1 ⊆ [c(1), c(t1)];

15 L1 ← get the adjacency list of the sub-graph from F′
1;

16 Randomly pick an inner tree node t2 from p2;
17 L2 ← get the adjacency list of the sub-tree in p2 whose root is t2;

18 else if p2 is an LGP individual then
19 Randomly select a crossover point t1 and select an instruction segment

F′
1 ⊆ [c(t1), c(|c|)];

20 L1 ← get the adjacency list of the sub-graph from F′
1;

21 Randomly select a crossover point t2 and select an instruction segment
F′

2 ⊆ [p2(t2),p2(|p2|)];
22 L2 ← get the adjacency list of the sub-graph from F′

2;

23 c← GrowInstructionBasedAL(p1,L1,L2, t1, n1)

24 if |c| /∈ [L,L] then
25 c← p1;

26 Return c;

3.2.1 Breeding Trees Based on Adjacency Lists

The pseudo-code of CALX(·) is shown in Alg.2. If the first and second parents are
both TGP individuals, an inner tree node t2 is randomly selected from the second par-
ent, and an adjacency list L is generated based on the sub-tree under t2 (lines 3-6).
If the first parent is a TGP individual and the second parent is an LGP individual,
we randomly select an instruction segment F′ (lines 7-8) and convert it to sub-DAGs.
L is further constructed based on the selected sub-graphs (line 9). Then, we apply
GrowTreeBasedAL(·) to build a sub-tree based on L, as shown in Alg. 3.

GrowTreeBasedAL(·) is a recursive function to construct tree nodes based on
L. Specifically, if GrowTreeBasedAL(·) accepts an empty L or has reached the max-
imum depth, it returns a random sub-tree to ensure the validity (lines 1-2). Oth-
erwise, GrowTreeBasedAL(·) grows a tree node r based on L (line 3). If r is
a function, GrowTreeBasedAL(·) checks the adjacency list and recursively applies
GrowTreeBasedAL(·) to grow the sub-trees of r (lines 4-13). Random sub-trees are
constructed if there are no consistent entities in L (lines 11-12).

Fig. 4 is an example of constructing a tree based on an adjacency list. The first

8 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

Algorithm 3: GrowTreeBasedAL
Input: Adjacency list L, current depth d, index of L I , maximum depth of the tree d
Output: A tree root r

1 if |L| = 0 or d = d then
2 Return r ← a random sub-tree whose depth ≤ d− d+ 1;

3 [r,A]← L(I);
4 if r is a function then
5 for j ← 1 to |A| do
6 c′ ← A(j);
7 if c′ is a function then
8 L′ ← collect the entities from L(k), k ∈ [I, |L|] with L(k).fun = c′;
9 if L′ 6= ∅ then

10 c′ ← GrowTreeBasedAL(L, d+ 1,randint(1, |L′|), d);
11 else
12 c′ ← a random sub-tree whose depth ≤ d− d− 1;

13 Append c′ as r’s child;

14 Return r;

 [+, [− , x1]]

[−, [* , max]]

+

− x1

+

x1 x1

+

x1

+

− x1

 [+, [− , x1]]

[−, [* , max]] R[3]=R[0]+R[1]
R[2]=R[1]−R[2]

R[0]=R[2]×R[0]
R[3]=max(R[1],R[2])

R[1]=R[2]+x1

R[2]=R[0]−R[3]

R[0]=R[2]×R[0]
R[3]=max(R[1],R[2])

+
x2

R[0]=min(x1,R[3])
R[3]=x1+R[3]

R[0]=R[0]*R[1]

R[3]=R[0]+R[1]
R[2]=R[1]−R[2]

Construct
instruction list

Assign
registers

Swap into the program context

Figure 4: An example of constructing a tree by GrowTreeBasedAL(·). The dashed tree
nodes are randomly generated.

item in the adjacency list is “[+, [−, x1]]”, and hence the root node of the new sub-tree
is “+”. Since the adjacent nodes of “+” are “−” (a function) and “x1” (a terminal), we
append “x1” to the “+” and recursively apply GrowTreeBasedAL(·) with the second
item (i.e., [−, [∗,max]]) in the adjacency list to grow the sub-tree since the function of
the second item “−” is coincident with the function adjacent node in the first item.
Since the adjacent nodes of “−” (i.e., “∗” and “max”) are not included as items in the
adjacency list, we randomly generate the sub-trees under “−”.

3.2.2 Breeding Instructions Based on Adjacency Lists
In CALX(·), if the first parent p1 is an LGP individual, sub-tree and sub-DAGs are re-
spectively selected based on parents’ representation, a sub-tree for TGP parent and
sub-DAGs for LGP parent (lines 14, 16, 19, and 21). Specifically, the sub-DAGs are se-
lected by selecting an instruction segment from the LGP parent. Then, adjacency lists
L1 and L2 are constructed respectively based on the selected sub-tree and sub-graphs
(lines 15, 17, 20 and 22). A new instruction sequence is constructed and swapped into
p1 to produce offspring by GrowInstructionBasedAL(·) (line 23).

CALX applies GrowInstructionBasedAL(·) to construct a new instruction seg-
ment for LGP, as shown in Alg. 4. First, |L1| instructions are randomly removed (line 1).
Then an insertion point s is selected for inserting the new instruction segment (line 2).
Instructions are sequentially constructed based on L2 and swapped into the program
context (lines 3-6). To connect the functions and maintain the topological structure of

Evolutionary Computation Volume x, Number x 9

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

Algorithm 4: GrowInstructionBasedAL
Input: An LGP individual c, adjacency list of the first parent L1, adjacency list of the second

parent L2, crossover point t1, instruction range n1

Output: The LGP offspring c
1 Randomly remove |L1| instructions from [c(t1), c(t1 + n1)];
2 s← t1 + randint(n1 − |L1|);
// Construct an instruction list

3 for j ← 1 to |L2| do
4 [a,A]← L2(j);
5 f ← randomly generate an instruction whose function is a;

// Swap into the program context
6 Insert f to c(s);

// Assign registers
7 for j ← s+ |L2| − 1 to s do
8 [a,A]← L2(s+ L2 − j);

// Assign destination registers
9 if c(j) is not effective to the final output then

10 Randomly mutate c(j)d until c(j) is effective;

// Assign source registers
11 for g ← 1 to |A| do
12 b← A(g);
13 if b is a function then
14 L′ ← collect the entity indices from [j, s] where L2(k).fun = b and k ∈ [j, s];
15 if L′ 6= ∅ then
16 c(j)s,g ← c(L′(randint(1, |L′|)))d;

17 else
18 if j > 0 and randint(0, j)− 1 > 0 then
19 c(j)s,g ← c(randint(1, j))d;

20 else if b is a constant then
21 c(j)s,g ← b;

22 Return c;

the functions based on L2, we check the instruction sequence reversely (i.e., from the
top of the graph to the bottom) (lines 7-21) so that every newly generated instruction
1) is effective to the final output by altering the destination registers c(j)d (lines 9-10),
and 2) accepts the inputs from corresponding functions and constants based on L2 by
altering the source registers c(j)s,g (lines 11-21). Specifically, the effectiveness of an in-
struction is checked by an O(n) algorithm [5] (line 9). If the selected instruction is not
effective, we randomly mutate the destination register of the instruction until it is ef-
fective. GrowInstructionBasedAL(·) assigns source registers based on the adjacent
node b (line 12). If b is a function, we set the source register of the selected instruction
c(j) as the destination register of a random instruction whose function is coincident
with b (lines 14-16). If there is no such an instruction, we set the source register as the
destination register of a random instruction precedent to c(j) (lines 18-19). The con-
stant adjacent nodes replace the source registers directly (lines 20-21).

Fig. 5 shows an example of constructing an instruction list based on the adjacency
list. First, we construct an instruction list in which the functions (i.e., “+” and “−”) are
specified by the adjacency list. Note that the order of functions in the instruction list
is reversed to the order in the adjacency list since LGP programs output final results
from the bottom. Second, we swap the newly constructed instruction list into the pro-
gram context. Third, we adjust the registers in the newly constructed instruction list
to maintain the adjacency relationship in the offspring. In this example, we change the

10 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

 [+, [− , x1]]

[−, [* , max]]

+

− x1

+

x1 x1

+

x1

+

− x1

 [+, [− , x1]]

[−, [* , max]] R[3]=R[0]+R[1]
R[2]=R[1]−R[2]

R[0]=R[2]×R[0]
R[3]=max(R[1],R[2])

R[1]=R[2]+x1

R[2]=R[0]−R[3]

R[0]=R[2]×R[0]
R[3]=max(R[1],R[2])

+
x2

R[0]=min(x1,R[3])
R[3]=x1+R[3]

R[0]=R[0]*R[1]

R[3]=R[0]+R[1]
R[2]=R[1]−R[2]

Construct
instruction list

Assign
registers

Swap into the program context

Figure 5: An example of constructing instructions by GrowInstructionBasedAL(·).
Shadowed primitives are the focus of each step.

destination register R[3] into R[1] to ensure the new instruction list to be effective in
the offspring, change R[0] in the second instruction into R[2] and change R[1] into x1 to
fulfill the adjacency relationship “+ → [−, x1]”. To connect the newly constructed in-
struction list with the precedent instructions in existing programs, the source registers
in the first instruction are also updated.

4 Empirical Studies of CRGP-TL

We verify the effectiveness of CRGP-TL by two applications, symbolic regression and
automatic design of decision rules in dynamic combinatorial optimization problems.
Symbolic regression is a supervised learning problem, in which GP learns regression
models to map the input features to given target outputs without presuming the model
structure. GP has shown great success in solving symbolic regression problems [3, 28].
Automatically designing decision rules for dynamic combinatorial optimization prob-
lems uses GP to automatically learn decision rules to make instant reactions for dy-
namic events in combinatorial optimization problems. Unlike symbolic regression
problems where there are target outputs for training, the decision rule design problems
have no target outputs available. GP methods have to search for solutions based on
a black-box performance indicator (e.g., the performance of simulations). Specifically,
we focus on dynamic job shop scheduling (DJSS) as an example of dynamic combi-
natorial optimization in this paper. DJSS is a common and important combinatorial
optimization problem in real-world practice. Designing instant decision rules for DJSS
is a challenging problem for all GP representations [11, 23].

4.1 Comparison Design

To verify the effectiveness of CRGP-TL, we compare CRGP-TL with three baseline
methods in these two applications. The first two are the basic TGP and LGP. Then, a
baseline GP method with two independent sub-populations is developed (denoted as
“TLGP”). The two sub-populations independently evolve tree-based and linear repre-
sentations by the basic genetic operators for each representation and do not exchange
genetic materials among representations. The best individual between the two sub-
populations is output as the final solution. To ensure fairness, we set the parameters of
the compared GP methods for the two applications respectively, following the settings
used in existing studies [8, 18, 26]. The parameter settings for the two applications are
demonstrated in Sections 4.2.2 and 4.3.2.

4.2 Application I: Symbolic Regression

4.2.1 Problem Description
In this section, we apply CRGP-TL to symbolic regression problems. We select three
synthetic benchmarks and five real-world benchmarks, as shown in Table 1. The bench-

Evolutionary Computation Volume x, Number x 11

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

Table 1: The symbolic regression problems
Benchmarks Function #Features Data

range
#Points

(Train,Test)
Synthetic benchmarks

Nguyen4 f(x) = x6 + x5 + x4 +
x3 + x2 + x

1 [-1,1] (20,1000)

Keijzer11 f(x, y) = xy + sin((x −
1)(y − 1))

2 [-1,1] (100,900)

R1 f(x) =
(x+1)3

x2−x+1
1 [-2,2] (20,1000)

Real-world benchmarks
Airfoil unknown 5 - (1127,376)

BHouse unknown 13 - (380,126)
Tower unknown 25 - (3749,1250)

Concrete unknown 8 - (772,258)
Redwine unknown 11 - (1199, 400)

marks are selected from recently published papers for solving symbolic regression
[1, 22]. The ground truth functions of the synthetic benchmarks cover a wide range
of functions (e.g., × and sin), and the real-world benchmarks have various numbers of
features and data ranges.

This paper applies relative square error (RSE) to measure the performance of GP
methods, as shown in Eq. 1.

RSE =
MSE(y, ŷ)

VAR(y)
=

∑n
i (yi − ŷi)2∑n
i (yi − y)2

(1)

where MSE is the mean square error, VAR is the variance, and y and ŷ are the target
output and estimated output respectively. y is the average of the target output. A
small RSE value implies that a regression model has a good fitting performance with
the given data.

4.2.2 Parameter Settings
In symbolic regression problems, LGP evolves a population with 256 individuals for
200 generations. LGP applies linear crossover, effective macro mutation, effective
micro mutation, and reproduction in breeding [5], with a genetic operator rate of
30%:30%:30%:10% respectively. Each LGP individual has at most 100 instructions and
manipulates 8 registers. TGP evolves a population with 1024 individuals for 50 gener-
ations, and applies crossover, mutation, and reproduction in breeding, with a genetic
operator rate of 80%:15%:5% respectively. Each TGP individual has a maximum tree
depth of 10.

For the two algorithms with multiple representations (i.e., TLGP and CRGP-TL),
each sub-population has 128 individuals and evolves for 200 generations. The pa-
rameters of the CRGP-TL are defined based on the baseline method. Specifically, the
knowledge transfer rate is defined as 30% by default, without loss of generality. Since
the proposed adjacency list-based operators used to transfer knowledge among sub-
populations can also exchange the genetic materials for the same representation, the
LGP sub-population in CRGP-TL does not apply linear crossover operator, and the
TGP sub-population in CRGP-TL reduces the crossover rate from 80% to 50%. All the
compared methods apply a tournament selection with a size of 7 to perform parent
selection and apply an elitism selection with an elitism rate of 10% to retain elite indi-
viduals. The other parameters of TLGP and CRGP-TL are kept the same as in the basic
TGP and LGP methods.

All the compared GP methods use the same function set and terminal set (LGP
methods have registers in the terminal set additionally). The function set includes 8

12 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

functions, which are {+,−,×,÷, sin, cos, ln(|·|),
√
| · |}3. The input feature set is defined

based on the inputs of benchmark problems.

4.3 Application II: Dynamic Job Shop Scheduling Problems

4.3.1 Problem Description
This section applies CRGP-TL to design decision rules (i.e., dispatching rules) for DJSS
[31, 49]. We focus on the DJSS problems with new job arrival, in which jobs come into
the job shop over time. A DJSS problem has a set of jobs J and a set of machines
M. Each j ∈ J consists of a sequence of operations Oj = {oj1, oj2, ..., ojlj} where lj
is the number of operations in job j. Every oji can only be processed after oj,i−1 is
finished (2 ≤ i ≤ lj). Each job j has an arrival time αj , a due date dj , and a weight
ωj . oji(1 ≤ i ≤ lj) is going to be processed by a specific machine π(oji) ∈ M with a
positive processing time δ(oji). Every machine can only process one operation at any
time, and the execution of the operation cannot be interrupted by other operations.

A DJSS simulation is built up based on the description, and the settings of the
DJSS simulations are designed based on the existing literature [21]. Specifically, there
are 10 machines in the job shop. Each job has 2 to 10 operations, each operation with a
processing time ranging from 1 to 99. To evaluate the performance of GP individuals
in a steady job shop, we warm up the job shop with the first 1000 jobs and only take the
subsequent 5000 jobs into account when evaluating GP individuals.

Jobs come into the job shop based on a Poisson distribution, as shown in Eq. 2. ta
is the time interval before the next job arrival. λ is the mean processing time of a job
in the job shop, defined by Eq. 3. ν is the average number of operations in the jobs,
and µ is the average processing time of operations. The utilization level of machines ρ
defines the arrival rate of jobs. A large ρ implies that jobs will be processed by the job
shop very quickly (i.e., a small mean actual processing time of jobs) and that new jobs
arrive to the job shop in a shorter time.

P (ta = time interval before the next job arrival time) ∼ exp(− ta
λ
) (2)

λ =
ν · µ
ρ · |M|

(3)

The simulation performance is seen as the performance of GP individuals. There
are six optimization objectives for the job shop in our work, which are formulated
as follows. Tmax and Fmax denote the maximum tardiness (tardiness of job j: Tj =
max(cj − dj , 0), j ∈ J) and flowtime (flowtime of job j: Fj = cj − aj , j ∈ J) among all
the jobs respectively. cj , dj , and aj denote the completion time, the due date, and the
arrival time of job j. Tmean and Fmean denote the mean tardiness and flowtime over all
the jobs respectively. WTmean and WFmean denote the weighted mean tardiness and
flowtime respectively. The maximum and mean objectives comprehensively indicate
the worst case and average performance of the compared methods.

1. Tmax = maxj∈J (max(cj − dj , 0))

2. Tmean =
∑

j∈J (max(cj−dj ,0))

|J |

3. WTmean =
∑

j∈J (ωj×max(cj−dj ,0))

|J |

3÷ returns 1.0 if the denominator equals 0.0. ln(| · |) returns the operand if the raw output is smaller than
−50.

Evolutionary Computation Volume x, Number x 13

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

Table 2: The terminal set
Notation Description Notation Description
PT Processing time of an operation in a job W Weight of a job
NPT Processing time of the next operation

for a certain operation in a job
rDD Difference between the given

due date of a job and the sys-
tem time

WINQ Total processing time of the operations
in a machine buffer. The machine is the
corresponding machine for the next
operation in a job

NWT Waiting time of the next to-be-
ready machine

WKR Total remaining processing time of a
job

TIS Difference between system
time and the job arrival time

rFDD Difference between the given due date
of an operation and the system time

SL Slack: difference between the
given due date and the sum of
the system time and WKR

OWT Waiting time of an operation NIQ Number of operations in a ma-
chine buffer

NOR Number of remaining operations of a
job

WIQ Total processing time of opera-
tions in a machine buffer

NINQ Number of operations in the buffer of
a machine which is the corresponding
machine of the next operation in a job

MWT Waiting time of a machine

4. Fmax = maxj∈J (cj − aj)

5. Fmean =
∑

j∈J (cj−aj)

|J |

6. WFmean =
∑

j∈J ωj(cj−aj)

|J |

To comprehensively verify the performance of the proposed method on different diffi-
culty levels, two utilization levels (i.e., 0.85 and 0.95) are adopted for the simulation. A
higher utilization level implies a busier job shop and more difficulty to find a schedule.
In short, this paper tests twelve scenarios which are notated by “〈Objective, Utilization
level〉”. The twelve scenarios are 〈Tmax, 0.85〉, 〈Tmax, 0.95〉, 〈Tmean, 0.85〉, 〈Tmean, 0.95〉,
〈WTmean, 0.85〉, 〈WTmean, 0.95〉, 〈Fmax, 0.85〉, 〈Fmax, 0.95〉, 〈Fmean, 0.85〉, 〈Fmean, 0.95〉,
〈WFmean, 0.85〉, and 〈WFmean, 0.95〉.

4.3.2 Parameter Settings
The parameters of the compared methods are set based on the common settings in
using GP methods to design dispatching rules for DJSS problems [18, 49]. Specifically,
all the TGP individuals have a maximal tree depth of eight, and all the LGP individuals
have at least one instruction and at most fifty instructions. The knowledge transfer rate
between TGP and LGP populations is the same as in symbolic regression problems (i.e.,
30%). The rest of the parameters are kept the same as in Section 4.2.2. In DJSS problems,
all the compared methods adopt the function set (i.e., {+,−,×,÷,max,min}) and the
terminal set in Table 2.

For each independent run, a GP method first evolves on the training set and pro-
duces a final output rule based on a validation set with 10 DJSS instances. The rule with
the best performance on the validation set is tested on 50 unseen DJSS instances. The
test performance is defined as the mean performance on these test instances. The GP
methods are trained on one DJSS instance for each generation, and the DJSS training
instances are rotated every generation to improve the generalization ability of GP rules

14 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

[17]. All the compared methods have the same maximum number of simulations (i.e.,
fitness evaluation) in training.

4.4 Empirical Results

This section analyzes the test and training performance of the compared methods for
solving the symbolic regression and DJSS problems.

4.4.1 Test Performance

Table 3 shows the average test performance of the compared methods in solving the
two kinds of problems. We perform a Friedman test (α = 0.05) with a Bonferroni
correction on the test performance of the compared methods. We treat the rank of the
median over 50 independent runs on a dataset as a sampled value of the compared
methods in the Friedman test.

The p-value of the Friedman test is 7.4E-4, which indicates a significant difference
among the compared methods. Moreover, CRGP-TL has the best (i.e., smallest) mean
rank of test performance among all the compared methods, with very promising pair-
wise comparison p-values with other compared methods. The results and statistical
analyses confirm that the proposed CRGP-TL has a significantly better overall perfor-
mance than the other three compared methods.

To further investigate the effectiveness of the compared methods on different
datasets, Table 3 shows the results of Wilcoxon rank-sum test with Bonferroni correc-
tion and an α of 0.05 over the test performance of the compared methods. +, −, and
≈ denote that a certain compared method is significantly better than, worse than, or
performs similarly to the proposed CRGP-TL respectively, based on the Wilcoxon rank-
sum test. We treat the test performance of an independent run as a sampled value in the
Wilcoxon rank-sum test. The best mean performance is highlighted in bold font. We
see that in most datasets and scenarios, CRGP-TL has a very competitive performance
with the compared methods. More specifically, CRGP-TL has significantly better test
performance than the compared methods on at least 7 of 20 datasets and scenarios
based on the Wilcoxon rank-sum test. The results confirm that sharing knowledge be-
tween tree-based and linear representation successfully improves the effectiveness of
GP methods.

4.4.2 Training Performance

To analyze the learning ability of the compared methods, Fig. 6 shows the test perfor-
mance of the compared methods over generations in eight example problems. Specifi-
cally, we select four real-world symbolic regression benchmarks and four DJSS scenar-
ios with a high utilization level (i.e., 0.95) as the example problems since the real-world
symbolic regression benchmarks and the DJSS scenarios with a high utilization level
have better real-world practical value.

CRGP-TL (i.e., red curves) has better test performance (i.e., lower objective values)
within fewer fitness evaluations than other methods in many cases, such as BHouse
and Concrete. In some other cases, though CRGP-TL levels off at a test performance
similar to the other compared methods, it achieves the test performance earlier than the
compared methods at the early stage of the evolution. The results imply that CRGP-
TL has a very competitive training performance with other compared methods in both
symbolic regression and DJSS problems and can find solutions with better effectiveness
within fewer fitness evaluations in some specific cases.

Evolutionary Computation Volume x, Number x 15

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

Table 3: The mean test performance (std.) of the compared methods
Datasets or
scenarios TLGP TGP LGP CRGP-TL

Test RSE (std.) of Symbolic Regression
Nguyen4 0.069 (0.059) ≈ 0.053 (0.091) ≈ 0.149 (0.248) − 0.049 (0.041)
Keijzer11 1.744 (9.749) − 0.273 (0.121) − 0.339 (0.142) − 0.217 (0.121)

R1 0.035 (0.029) − 0.022 (0.023) − 0.034 (0.035) − 0.011 (0.017)
Airfoil 0.667 (0.091) − 0.638 (0.117) − 0.643 (0.132) − 0.526 (0.1)
Bhouse 0.384 (0.1) ≈ 0.392 (0.131) ≈ 0.404 (0.126) ≈ 0.362 (0.104)
Tower 0.358 (0.052) − 0.364 (0.053) − 0.345 (0.046) − 0.316 (0.031)

Concrete 0.496 (0.096) − 0.438 (0.107) − 0.471 (0.099) − 0.291 (0.063)
Redwine 0.745 (0.042) − 0.761 (0.036) − 0.759 (0.034) − 0.724 (0.031)

Test Objective Values (std.) of DJSS
〈Tmax,0.85〉 1939.8 (50.4) ≈ 1928.4 (40.4) ≈ 1956.3 (53.8) − 1931.8 (58.3)
〈Tmax,0.95〉 4009.2 (98.9) ≈ 4060.6 (116) − 3999.2 (90.9) ≈ 3968.5 (81.8)
〈Tmean,0.85〉 417 (3.2) ≈ 417.3 (2.5) ≈ 417.9 (2.3) − 416.2 (2.5)
〈Tmean,0.95〉 1116.3 (9.3) ≈ 1116.2 (10) ≈ 1118.2 (10.7) ≈ 1117.7 (11)
〈WTmean,0.85〉 725.8 (6.1) ≈ 727.5 (6.5) − 724.3 (5.4) ≈ 723.4 (5.9)
〈WTmean,0.95〉 1730.4 (23.6) ≈ 1747.4 (29.6) − 1729.6 (27.7) ≈ 1727 (24.2)
〈Fmax,0.85〉 2506.6 (50.3) − 2494.3 (30) ≈ 2509.8 (58.8) − 2485 (29.5)
〈Fmax,0.95〉 4544.3 (98.5) ≈ 4572.3 (96.5) − 4585.4 (126.1) − 4534.3 (112)
〈Fmean,0.85〉 864 (3.2) ≈ 863.2 (4.2) ≈ 864.7 (4) − 862.8 (3)
〈Fmean,0.95〉 1564.9 (10.3) ≈ 1565.4 (8.5) ≈ 1566.8 (10.8) ≈ 1563.6 (10.4)
〈WFmean,0.85〉 1704 (10.2) ≈ 1705.4 (7.5) ≈ 1702.6 (7) ≈ 1702.6 (6.2)
〈WFmean,0.95〉 2718.4 (26.4) ≈ 2730.1 (29.3) − 2715.8 (16.4) ≈ 2712.8 (17.8)
win-draw-lose 0-13-7 0-9-11 0-8-12

Mean rank 2.9 2.625 3.2 1.275
p-value

(vs. CRGP-TL) 3E-4 5E-3 1E-5

0 20000 40000 60000
0.6

0.7

0.8

0.9

1.0

A
ir

fo
il

 TLGP TGP LGP MRGP-TL

0 20000 40000 60000
0.2

0.4

0.6

0.8

1.0

B
h

ou
se

0 20000 40000 60000
0.2

0.4

0.6

0.8

1.0

T
ow

er

0 20000 40000 60000

0.4

0.5

0.6

0.7

C
on

cr
et

e

0 20000 40000 60000

4000

4200

4400

4600

<
T

m
ax

,0
.9

5>

0 20000 40000 60000

1100

1200

1300

1400

<
T

m
ea

n
,0

.9
5>

0 20000 40000 60000
4400

4600

4800

5000

5200

5400

<
F

m
ax

,0
.9

5>

0 20000 40000 60000
1500

1600

1700

1800

<
F

m
ea

n
,0

.9
5>

Figure 6: Test performance of the compared methods over generations in the nine sym-
bolic regression benchmarks. X-axis: fitness evaluations. Y-axis: average test RSE for
symbolic regression problems and average test objective values for DJSS problems.

16 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

4.5 Summary

In summary, CRGP-TL substantially improves the effectiveness of baseline methods
and has a very competitive training performance with other compared methods in
solving symbolic regression and DJSS problems. The results imply that sharing search
information among different GP representations is a very potential direction in im-
proving GP performance. The experiments on tree-based and linear representations
shows that CRGP-TL can automatically take advantage of the most suitable representa-
tion to achieve better performance, which is less dependent on the domain knowledge
of the suitable representations for different problems than GP methods with a single
representation. Further comparison between CRGP-TL and TLGP confirms that the
performance gain of CRGP stems from the knowledge sharing among different rep-
resentations, which is fulfilled by the newly proposed cross-representation adjacency
list-based crossover.

5 Further Analyses and Discussion

To have a further understanding of the cross-representation mechanism, this section
conducts six investigations based on the two applications. First, we compare CRGP-TL
with two state-of-the-art GP methods in solving symbolic regression and DJSS prob-
lems respectively to further verify the effectiveness of CRGP-TL. Second, we analyze
the average program size of the GP population over generations. Third, we analyze
the sensitivity of the key parameters in CRGP-TL. Fourth, we highlight the benefit of
knowledge sharing between representations by comparing CRGP-TL with other diver-
sification methods. We also investigate the effectiveness of different computation re-
source allocations to GP representations. Finally, we study the effectiveness of knowl-
edge sharing between tree-based and linear representations and take two examples of
adjacency lists to analyze the knowledge sharing in CRGP.

5.1 Comparison with Advanced Methods

We compare CRGP-TL with two recently published GP methods, semantic linear ge-
netic programming [22] for symbolic regression problems and grammar-guided linear
genetic programming [19] for DJSS problems. These two compared methods have been
published recently and have shown promising performance in symbolic regression and
DJSS problems respectively. The experiment settings in this section follow the ones in
[22] and [19] for a fair comparison. To further investigate the performance impact of
the cross-representation mechanism, we developed two algorithms that incorporate the
cross-representation mechanism with the two advanced methods, respectively. For the
sake of simplicity, we add the advanced GP ([22] for symbolic regression problems and
[19] for DJSS problems) as the third sub-population besides basic TGP and LGP. The
three sub-populations with different representations simultaneously evolve based on
the proposed mechanism. We simply denote semantic linear genetic programming and
grammar-guided linear genetic programming as ADVAN for symbolic regression and
DJSS problems and denote both the advanced methods with the cross-representation
mechanism as CRGP-advan.

Table 4 applies the Friedman test with the Bonferroni correction and the Wilcoxon
rank-sum test with α = 0.05 to analyze the results where +, −, and ≈ denote that a
certain compared method is significantly better than, worse than, or performs similarly
to ADVAN respectively, based on the Wilcoxon rank-sum test.

For symbolic regression problems, CRGP-TL is significantly worse than ADVAN
in all the datasets based on the Wilcoxon rank-sum test. Although CRGP-advan has a

Evolutionary Computation Volume x, Number x 17

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

Table 4: Average Test performance (std.) comparison among CRGP-TL and advanced
methods

Datasets or scenarios ADVAN CRGP-TL CRGP-advan

Sy
m

bo
lic

R
eg

re
ss

io
n

Nguyen4 0.001 (0.001) 0.041 (0.05) − 0.009 (0.019) −
Keijzer11 0.031 (0.012) 0.194 (0.128) − 0.047 (0.033) ≈

R1 0.001 (0.002) 0.008 (0.009) − 0.003 (0.004) −
Airfoil 0.402 (0.022) 0.489 (0.111) − 0.391 (0.046) ≈
Bhouse 0.212 (0.028) 0.326 (0.102) − 0.223 (0.028) −
Tower 0.137 (0.012) 0.302 (0.034) − 0.144 (0.016) −

Concrete 0.187 (0.014) 0.272 (0.05) − 0.211 (0.027) −
Redwine 0.651 (0.014) 0.717 (0.035) − 0.662 (0.025) ≈

mean rank 1.125 3 1.875
p-value(vs. ADVAN) 5E-4 0.401

D
JS

S

〈Tmax,0.85〉 1922.1 (42.9) 1931.8 (58.3) ≈ 1920.3 (35.3) ≈
〈Tmax,0.95〉 3943.1 (84) 3968.5 (81.8) ≈ 3992.4 (121) ≈
〈Tmean,0.85〉 417.7 (2.6) 416.2 (2.5) ≈ 417.8 (2.8) ≈
〈Tmean,0.95〉 1116.7 (8.7) 1117.7 (11) ≈ 1122.9 (15) ≈
〈WTmean,0.85〉 723.6 (7.5) 723.4 (5.9) ≈ 726.2 (7.2) ≈
〈WTmean,0.95〉 1724.4 (26.6) 1727 (24.2) ≈ 1732.3 (26.4) ≈
〈Fmax,0.85〉 2534.6 (74.1) 2485 (29.5) + 2488.2 (36.2) +
〈Fmax,0.95〉 4599.7 (80.6) 4534.3 (112) + 4551.4 (97.6) +
〈Fmean,0.85〉 864.6 (3.2) 862.8 (3) + 865.2 (4) ≈
〈Fmean,0.95〉 1565.3 (10.9) 1563.6 (10.4) ≈ 1567.8 (14.4) ≈
〈WFmean,0.85〉 1701.7 (6.1) 1702.6 (6.2) ≈ 1701.2 (4.8) ≈
〈WFmean,0.95〉 2722.8 (25.4) 2712.8 (17.8) ≈ 2713.7 (23.1) ≈

mean rank 1.833 1.833 2.333
p-value(vs. ADVAN) 1 0.633

statistically similar overall performance to ADVAN (p-value=0.401), it is less competi-
tive than ADVAN in some datasets.

For DJSS problems, CRGP-TL has a very competitive performance with ADVAN.
CRGP-TL has better test performance on three scenarios than ADVAN and has the same
mean rank based on Friedman’s test. CRGP-TL also has the best mean performance on
seven of twelve DJSS problems. Cooperating CRGP with the advanced GP method also
shows a competitive performance.

Based on these results, we conclude that CRGP has potential in enhancing the
performance of existing GP representations. Based on the basic tree-based and linear-
based representations, CRGP-TL shows very competitive results with manually de-
signed advanced GP methods in DJSS problems. However, its inferior performance
compared to advanced GP methods in symbolic regression implies that the effective-
ness of CRGP-TL is limited by the less effective representations since they might waste
too many computation resources. The results imply that to guarantee the effectiveness
of the cross-representation mechanism, we should incorporate similarly competitive
representations in case some less effective representations consume a large amount of
computation resources.

5.2 Program Size

To further understand the evolution of CRGP-TL, we analyze the average program
size of the population in all the compared methods for solving eight example prob-
lems, as shown in Fig. 7. Specifically, we show the program size of tree-based and
linear programs respectively in TLGP and CRGP-TL, denoted by “-T” and “-L” (e.g.,
tree-based programs in TLGP are denoted as “TLGP-T”). We use the number of tree
nodes to denote the program size of tree-based programs and use the number of ef-
fective instructions multiplied by a factor of 2.0 to denote the program size of linear

18 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

0 20000 40000 60000

20

30

40

50

60

70

A
ir
fo
il

 TLGP-T TLGP-L TGP LGP MRGP-T MRGP-L

0 20000 40000 60000
10

20

30

40

50

60

70

80

B
h
ou

se

0 20000 40000 60000

10

20

30

40

50

60

70

T
ow

er

0 20000 40000 60000

10

20

30

40

50

60

70

C
on

cr
et
e

0 5000 10000
0

10

20

30

40

50

<
T
m
ax
,0
.9
5>

0 5000 10000
0

10

20

30

40

50

<
T
m
ea
n
,0
.9
5>

0 5000 10000
0

5

10

15

20

25

30

35

40

45

50

<
F
m
ax
,0
.9
5>

0 5000 10000
0

5

10

15

20

25

30

35

40

45

50

<
F
m
ea
n
,0
.9
5>

0 20000 40000 60000

20

30

40

50

60

70

A
ir
fo
il

 TLGP-T TLGP-L TGP LGP MRGP-T MRGP-L

0 20000 40000 60000
10

20

30

40

50

60

70

B
h
ou

se

0 20000 40000 60000

10

20

30

40

50

60

70

T
ow

er

0 20000 40000 60000

10

20

30

40

50

60

70

80

C
on

cr
et
e

0 20000 40000 60000
0

20

40

60

<
T
m
ax
,0
.9
5>

0 20000 40000 60000
0

10

20

30

40

50

60

<
T
m
ea
n,
0.
95
>

0 20000 40000 60000
0

20

40

60

80

<
F
m
ax
,0
.9
5>

0 20000 40000 60000
0

10

20

30

40

50

60

<
F
m
ea
n
,0
.9
5>

0 20000 40000 60000

20

30

40

50

60

70

A
ir
fo
il

 TLGP-T TLGP-L TGP LGP MRGP-T MRGP-L

0 20000 40000 60000
10

20

30

40

50

60

70

B
h
ou

se

0 20000 40000 60000

10

20

30

40

50

60

70

T
ow

er

0 20000 40000 60000

10

20

30

40

50

60

70

80

C
on

cr
et
e

0 20000 40000 60000
0

20

40

60

<
T
m
ax
,0
.9
5>

0 20000 40000 60000
0

10

20

30

40

50

60

<
T
m
ea
n,
0.
95
>

0 20000 40000 60000
0

20

40

60

80

<
F
m
ax
,0
.9
5>

0 20000 40000 60000
0

10

20

30

40

50

60

<
F
m
ea
n
,0
.9
5>

Figure 7: The average program size of the population from the compared methods over
generations over 50 independent runs. X-axis: fitness evaluations, Y-axis: the average
program size of the population.

programs[21]. We can see that the average program size from the same representation
grows similarly in all the tested problems. For example, in the four symbolic regression
benchmarks, TLGP-L, LGP, and CRGP-L all grow from about 20 to about 65, and TLGP-
T, TGP, and CRGP-T all grow from about 10 to about 25. The similar growing curves
of the same representation confirm that the proposed cross-representation adjacency
list-based crossover operator has a similar variation step size with basic genetic oper-
ators and does not significantly change the average program size of the population.
Fully utilizing the interplay between tree-based and linear representations improves
the effectiveness of solutions without enlarging the program size of the solutions.

5.3 Parameter Sensitivity Analyses

The knowledge transfer rate among representations θt is a newly introduced parameter.
To investigate the influence of θt on performance, CRGP-TL with different transfer rates
are compared in this section. Specifically, we investigate the performance of CRGP-TL
with a θt of 0%, 10%, 30%, 50%, and 70% respectively, which are denoted as TL0 (i.e.,
TLGP), TL10, TL30, TL50, and TL70.

The test performances of CRGP-TL with different θts are shown in Fig. 8. We
see that CRGP-TL methods with θt > 0 on average have smaller (i.e., better) objec-
tive values than CRGP without any knowledge sharing (i.e., TL0 or TLGP). Besides,
TL10, TL30, TL50, and TL70 have statistically similar test performance in most cases.
But in some cases such as Airfoil, Concrete, 〈Tmax, 0.95〉, and 〈Fmax, 0.95〉, the increase
of θ value improves the performance of CRGP-TL on average. To conclude, θt, the
knowledge transfer rate among representations shows robust performance in princi-
ple, but tuning on specific scenarios has the potential to further improve CRGP-TL
performance.

5.4 Benefit of Cross-representation Knowledge Sharing

Sharing knowledge between tree-based and linear representations helps GP methods
discover more diverse and effective building blocks and jump out of local optima.

Evolutionary Computation Volume x, Number x 19

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

TL0 TL10 TL30 TL50 TL70

0.4

0.6

0.8

1.0

1.2

1.4

A
ir

fo
il

 25%~75% 1.5IQR Median Mean Outlier

TL0 TL10 TL30 TL50 TL70

0.2

0.4

0.6

0.8

B
H

ou
se

TL0 TL10 TL30 TL50 TL70

0.2

0.3

0.4

0.5

0.6

T
ow

er

TL0 TL10 TL30 TL50 TL70

0.2

0.4

0.6

0.8

C
on

cr
et

e

TL0 TL10 TL30 TL50 TL70

3800

4000

4200

4400

4600

<
T

m
ax

,0
.9

5>

TL0 TL10 TL30 TL50 TL70

1100

1150

1200

1250

<
T

m
ea

n,
0.

95
>

TL0 TL10 TL30 TL50 TL70
4250

4500

4750

5000

5250

5500

<
F

m
ax

,0
.9

5>

TL0 TL10 TL30 TL50 TL70

1550

1600

1650

1700

1750

<
F

m
ea

n,
0.

95
>

TL0 TL10 TL30 TL50 TL70

0.4

0.6

0.8

1.0

1.2

1.4

A
ir

fo
il

 25%~75% 1.5IQR Median Mean Outlier

TL0 TL10 TL30 TL50 TL70

0.2

0.4

0.6

0.8

B
H

ou
se

TL0 TL10 TL30 TL50 TL70

0.2

0.3

0.4

0.5

0.6

T
ow

er

TL0 TL10 TL30 TL50 TL70

0.2

0.4

0.6

0.8

C
on

cr
et

e

TL0 TL10 TL30 TL50 TL70

3800

4000

4200

4400

4600

<
T

m
ax

,0
.9

5>

TL0 TL10 TL30 TL50 TL70

1100

1150

<
T

m
ea

n
,0

.9
5>

TL0 TL10 TL30 TL50 TL70

4250

4500

4750

5000

5250

<
F

m
ax

,0
.9

5>

TL0 TL10 TL30 TL50 TL70
1500

1550

1600

1650

<
F

m
ea

n
,0

.9
5>

Figure 8: The box plots on the test performance of CRGP-TL with different θt values
over 50 independent runs.

Table 5: The average test performance (std.) of exchanging search information by basic
crossover operators and CALX

Datasets and scenarios CRGP-TL CRGP-rand MP-TGP MP-LGP
Airfoil 0.526 (0.1) 0.526 (0.106) ≈ 0.51 (0.071) ≈ 0.579 (0.116) ≈
Bhouse 0.362 (0.104) 0.376 (0.124) ≈ 0.353 (0.104) ≈ 0.418 (0.102) −
Tower 0.316 (0.031) 0.316 (0.03) ≈ 0.32 (0.041) ≈ 0.311 (0.043) ≈

Concrete 0.291 (0.063) 0.332 (0.078) − 0.366 (0.089) − 0.334 (0.103) ≈
〈Tmean,0.85〉 416.2 (2.5) 418 (3.5) − 417.7 (3.2) ≈ 418.3 (2.6) −
〈Tmean,0.95〉 1117.7 (11) 1122 (11.8) ≈ 1119.1 (11.4) ≈ 1117.3 (9.5) ≈
〈WTmean,0.85〉 723.4 (5.9) 727.8 (6.6) − 730 (8.9) − 724.3 (6.2) ≈
〈WTmean,0.95〉 1727 (24.2) 1739.2 (22.9) − 1741.6 (31.3) ≈ 1731.9 (22.5) ≈
〈WFmean,0.85〉 1702.6 (6.2) 1705.5 (7.3) ≈ 1706.2 (6.4) − 1701.7 (6.5) ≈
〈WFmean,0.95〉 2712.8 (17.8) 2720.4 (28.7) ≈ 2727.9 (30.7) ≈ 2715.6 (21.5) ≈

mean rank 1.4 2.75 2.95 2.9
p-values (vs. CRGP-TL) 0.113 0.042 0.054

To verify the effectiveness of knowledge sharing between the two representations,
this section compares CRGP-TL with other diversification methods. Specifically, we
implement three multipopulation GP methods, CRGP-rand, MP-TGP, and MP-LGP.
CRGP-rand evolves two sub-populations, each with tree-based or linear representa-
tions. However, CRGP-rand exchanges random adjacency lists to make the population
more diverse. MP-TGP and MP-LGP evolve two subpopulations of tree-based and
linear-based representations, respectively. These subpopulations in MP-TGP and MP-
LGP apply genetic operators with different settings to improve the diversity of subpop-
ulations. CRGP-rand, MP-TGP, and MP-LGP exchange building blocks with the same
exchange rate as CRGP-TL (i.e., θt = 30%).

Table 5 shows the test performance of the four compared methods for solving ten
example problems. We apply the Friedman test (α = 0.05) with a Bonferroni correction
to analyze the overall performance. The p-value of the Friedman test is 0.019, indicat-
ing a significant difference in the test performance of the compared methods. The mean
ranks given by the Friedman test verify that CRGP-TL has the best test performance
among the four compared methods. Specifically, the p-values of the pair-wise compar-

20 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

1000 10000 100000
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Airfoil

 CRGP-TL
 CRGP-rand
 MP-TGP
 MP-LGP

T
es

t p
er

fo
rm

an
ce

Semantic diversity

1000 10000 100000 1000000 1E7 1E9 1E101E11
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bhouse

 CRGP-TL
 CRGP-rand
 MP-TGP
 MP-LGP

T
es

t p
er

fo
rm

an
ce

Semantic diversity

2048 4096 8192 16384 32768 65536
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Concrete

 CRGP-TL
 CRGP-rand
 MP-TGP
 MP-LGP

T
es

t p
er

fo
rm

an
ce

Semantic diversity

10000 1000000 1E8 1E10 1E14 1E16 1E18
0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tower

 CRGP-TL
 CRGP-rand
 MP-TGP
 MP-LGP

T
es

t p
er

fo
rm

an
ce

Semantic diversity

Figure 9: Test performance (Y-axis) over semantic diversity (X-axis) on the four exam-
ple problems. Dots are the test performance and semantic diversity of an independent
run, and squares are the average of test performance and semantic diversity for each
method.

ison show that CRGP-TL is significantly better than MP-TGP. Based on the Friedman
test, we apply the Wilcoxon rank-sum test (α = 0.05) with a Bonferroni correction to
analyze the performance of each dataset. Although the overall performance of CRGP-
TL is not significantly different from MP-LGP and CRGP-rand, the post-hoc Wilcoxon
rank-sum test verifies that CRGP-TL has superior performance to MP-LGP and CRGP-
rand on two problems and has better mean performance than MP-LGP and CRGP-rand
on seven of the ten problems. The results confirm that knowledge sharing between
representations is more effective than simple diversification methods in enhancing GP
performance.

To further verify that the cross-representation knowledge sharing helps GP find
different but effective building blocks, we investigate the semantic diversity of elite
individuals (i.e., top 20 individuals) at the final generation. We define the Euclidean
distance of program outputs over all training instances as semantic differences and the
average pair-wise semantic differences over elite individuals as semantic diversity. We
take the four real-world symbolic regression problems as examples. Fig. 9 shows the
scatter plots of the test performance over semantic diversity over 50 independent runs.
The squares are the centroids of the scatter dots of the four compared methods. We
can see that our proposed CRGP-TL (i.e., the red points) achieves better semantic di-
versity than MP-TGP and CRGP-rand in three problems. Although MP-LGP has better
semantic diversity than CRGP-TL in most cases, MP-LGP often sacrifices its effective-
ness (also as shown in Table 5). The results confirm that CRGP-TL finds more diverse
and effective building blocks.

To verify that the cross-representation knowledge sharing helps GP jump out of

Evolutionary Computation Volume x, Number x 21

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

A
ir
fo
il

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

B
ho

us
e

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

T
ow

er

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

C
on

cr
et
e

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<T
m
ax
,0
.9
5>

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<
T
m
ea
n,
0.
95

>

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<
F
m
ax
,0
.9
5>

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<
F
m
ea
n,
0.
95

>

Figure 10: The average ratio of tree-based and linear representations producing the
best-of-run individual over generations in CRGP-TL. X-axis: generations, Y-axis: ratio
of producing the best-of-run individual. The green (i.e., upper) area denotes the ratio
of linear representation, and the yellow (i.e., lower) area denotes the ratio of tree-based
representation.

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

A
ir
fo
il

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

B
ho

us
e

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

T
ow

er

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

C
on

cr
et
e

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<T
m
ax
,0
.9
5>

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<
T
m
ea
n,
0.
95

>

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<
Fm

ax
,0
.9
5>

20 40 60 80 100 120 140 160 180 200

0.2

0.4

0.6

0.8

0.0

1.0

<
F
m
ea
n,
0.
95

>

Figure 11: The average ratio of tree-based and linear representations producing the
best-of-run individual over generations in TLGP (i.e., without knowledge sharing). X-
axis: generations, Y-axis: ratio of producing the best-of-run individual.

22 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

0.0 0.5 1.0

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 mean performance standard deviation

A
ir

fo
il

0.0 0.5 1.0
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

B
h

ou
se

0.0 0.5 1.0
0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

T
ow

er

0.0 0.5 1.0

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
on

cr
et

e

0.0 0.5 1.0

3950

4000

4050

4100

4150

4200

4250

4300

4350

4400

<
T

m
ax

,0
.9

5>

0.0 0.5 1.0

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

<
T

m
ea

n
,0

.9
5>

0.0 0.5 1.0

4550

4600

4650

4700

4750

4800

4850

4900

4950

<
F

m
ax

,0
.9

5>

0.0 0.5 1.0
1560

1570

1580

1590

1600

1610

<
F

m
ea

n
,0

.9
5>

0.0 0.5 1.0

0.50

0.55

0.60

0.65

0.70

0.75

0.80
 mean performance standard deviation

A
ir

fo
il

0.0 0.5 1.0
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

B
h

ou
se

0.0 0.5 1.0
0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

T
ow

er

0.0 0.5 1.0

0.30

0.35

0.40

0.45

0.50

0.55

0.60

C
on

cr
et

e

0.0 0.5 1.0
3800

3850

3900

3950

4000

4050

4100

4150

4200

<
T

m
ax

,0
.9

5>

0.0 0.5 1.0
1100

1105

1110

1115

1120

1125

1130

1135

<
T

m
ea

n
,0

.9
5>

0.0 0.5 1.0
4400

4450

4500

4550

4600

4650

4700

4750

<
F

m
ax

,0
.9

5>

0.0 0.5 1.0

1550

1560

1570

1580

1590

<
F

m
ea

n
,0

.9
5>

Figure 12: Test performance of different population ratios in CRGP-TL. X-axis: LGP
population proportion. Y-axis: test performance of CRGP-TL

local optima, this section investigates the average ratio of each GP representation pro-
ducing the best-of-run individuals over generations. Fig. 10 shows the average ratio in
CRGP-TL. By contrast, Fig. 11 shows the ratio without knowledge sharing (i.e., tree-
based and linear representations in TLGP). In CRGP (i.e., Fig. 10), tree-based and linear
representations help each other to find effective individuals with a similar ratio (i.e.,
0.4∼0.6) in all the selected problems. For example, in the Concrete dataset, LGP has
better solutions at the beginning of evolution. Then, tree-based representation rapidly
finds more effective solutions with the help of LGP search information from genera-
tions 10 to 30. After 30 generations, effective solutions in the tree-based representation
in turn help the linear representation find effective solutions and catch up with the tree-
based representation at about generation 80. On the contrary, in TLGP for the Concrete
dataset, the best-of-run individuals are mainly produced by the linear representation
during most of the evolution (i.e., the green area covers over 60% at each generation).

5.5 Representations with Various Computation Budgets

Different problems often have their own suitable GP representations, implying that
allocating different amounts of computation resources to different representations in
CRGP-TL might bring benefits to the performance of CRGP-TL. To investigate the im-
pact of computation budgets on different GP representations, we adjust the allocation
of computation resources by increasing the LGP population proportion from 0% to
100% (and decreasing the TGP population proportion from 100% to 0%). Specifically,
we investigate five settings of LGP proportions, which are 0%, 25%, 50%, 75%, and
100%. The average test performance and standard deviation of CRGP-TL are shown in
Fig. 12.

In most of the eight tested problems, the mean test performances in the same prob-
lem rougly form a “V” shape over different population ratios. This implies that CRGP-
TL achieves a relatively good mean test performance and standard deviation when
LGP and TGP share a similar proportion of computation resources (i.e., similarly large
sub-populations). Although the performance of CRGP-TL can be further improved by

Evolutionary Computation Volume x, Number x 23

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

LLGP = ([×, [min, max]] [min, [−, −]] [max, [−, −]] [−, [max, min]] [min, [min, min]] [min, [max, +]]
[max, [max, max]] [max, [−, −]] [−, [max, max]] [−, [×,×]] [×, [max, NINQ]] [max, [×, NPT]] [×, [max,
PT]] [max, [+,+]] [min, [÷, ÷]] [+, [÷, +]] [+, [+, ÷]] [÷, [÷, NINQ]] [÷, [×, −]] [×, [÷, min]] [÷, [÷, min]]
[max, [+, max]] [max, [min,×]] [×, [PT −]] [min, [max, max]] [max, [+,+]] [−, [+,NPT]] [+, [+,+]] [+,
[NPT, min]] [min, [TIS,÷]] [÷, [−,+]] [−, [+, max]] [max, [×, ÷]] [÷, [WIQ, +]] [+, [+, PT]] [+, [+, max]]
[+, [×, PT]] [max, [W, min]] [min, [×, NPT]] [×, [NPT, NINQ]])

LTGP = ([×, [max, PT]] [max, [×, +]] [×, [WIQ, +]] [+, [+, PT]] [+, [+, −]] [+, [×, PT]] [×, [NPT,
NINQ]] [−, [NOR, NPT]] [+, [+, min]] [+, [×, PT]] [×, [NPT, NINQ]] [min, [÷, +]] [÷, [max, −]] [max,
[max, min]] [max, [NWT, NINQ]] [min, [rFDD, PT]] [−, [max,×]] [max, [WIQ, WKR]] [×, [OWT,
WIQ]] [+, [WKR, rFDD]])

+ − × ÷ max min

LLGP = ([×, [min, max]] [min, [−, −]] [max, [−, −]] [−, [max, min]] [min, [min, min]] [min, [max, +]]
[max, [max, max]] [max, [−, −]] [−, [max, max]] [−, [×,×]] [×, [max, NINQ]] [max, [×, NPT]] [×, [max,
PT]] [max, [+,+]] [min, [÷, ÷]] [+, [÷, +]] [+, [+, ÷]] [÷, [÷, NINQ]] [÷, [×, −]] [×, [÷, min]] [÷, [÷, min]]
[max, [+, max]] [max, [min,×]] [×, [PT −]] [min, [max, max]] [max, [+,+]] [−, [+,NPT]] [+, [+,+]] [+,
[NPT, min]] [min, [TIS,÷]] [÷, [−,+]] [−, [+, max]] [max, [×, ÷]] [÷, [WIQ, +]] [+, [+, PT]] [+, [+, max]]
[+, [×, PT]] [max, [W, min]] [min, [×, NPT]] [×, [NPT, NINQ]])

LTGP = ([×, [max, PT]] [max, [×, +]] [×, [WIQ, +]] [+, [+, PT]] [+, [+, −]] [+, [×, PT]] [×, [NPT,
NINQ]] [−, [NOR, NPT]] [+, [+, min]] [+, [×, PT]] [×, [NPT, NINQ]] [min, [÷, +]] [÷, [max, −]] [max,
[max, min]] [max, [NWT, NINQ]] [min, [rFDD, PT]] [−, [max,×]] [max, [WIQ, WKR]] [×, [OWT,
WIQ]] [+, [WKR, rFDD]])

+ − × ÷ max min

Figure 13: The adjacency lists of the output TGP and LGP heuristics from a run in
〈Fmean, 0.95〉. The dark shadow highlights the shared adjacency of primitives between
the two adjacency lists.

carefully adjusting the proportion of TGP and LGP population for a certain problem,
uniformly allocating the training resources to different representations is a relatively
good and robust setting for CRGP-TL.

5.6 Example Analyses on Adjacency Lists

The proposed adjacency list-based crossover shares the search information between
tree-based and linear representations by the adjacency of primitives. To have a bet-
ter understanding of knowledge sharing via adjacency lists, this section analyzes the
shared knowledge (i.e., primitive adjacency) in two example adjacency lists, where each
item in the lists contains two pairs of primitive connections. Fig. 13 shows two adja-
cency lists of the best-of-run individuals from the two representations, respectively, of
the same run for solving the 〈Fmean, 0.95〉DJSS problem. If a primitive connection can
be seen in both adjacency lists, we highlight the connection with a dark shadow. For
example, as the first shadowed item in LTGP shows the adjacency from “×” to “max”,
the adjacency items with the same connection in LLGP are shadowed (e.g., the last item
at the second line of LLGP). We can see that the adjacency lists of the output heuristics
with tree-based and linear representations have a large number of shared members.
For example, both of them prefer concatenating “PT”, “NPT”, and “NINQ” with “×”
and “+”, which further form the shared building blocks such as “[+, [×, PT]]” and
“[×, [NPT,NINQ]]”.

Furthermore, the adjacency lists from different representations have distinct char-
acteristics. Because of short and wide tree structures, the adjacency list of the tree-based
representation considers more distinct input features, such as “WKR” and “rFDD”. In
contrast, the adjacency list of the linear representation uses a large number of “max”
and “min” to assemble the final result.

Overall, by exchanging adjacency lists, tree-based and linear representations can 1)
learn the shared adjacency of effective solutions and 2) learn the distinct characteristics
of the other representation.

6 Conclusions

The main goal of this paper is to verify the effectiveness of a new idea, utilizing the in-
terplay of different GP representations to automatically identify the most suitable rep-
resentation for the problem at hand. We developed a cross-representation GP method
based on tree-based and linear GP representations, denoted as CRGP-TL. Furthermore,

24 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

we proposed a novel cross-representation adjacency list-based crossover operator to ex-
change building blocks between tree-based and linear GP representations in CRGP-TL.
To the best of our knowledge, this paper is the first work highlighting that the interplay
among different GP representations is useful for improving GP performance.

The experimental studies on symbolic regression and automatic decision rule de-
sign show that the proposed CRGP-TL significantly improves the performance of base-
line GP methods in the two domains and has a very competitive performance with
advanced methods in solving DJSS problems. Further analyses confirm that the cross-
representation knowledge sharing helps GP methods have more diverse and effective
elite individuals and jump out of local optima.

Our experiments also reveal that the effectiveness of CRGP might be limited by
the less effective representations since CRGP-TL has to waste computation resources
in those representations. Therefore, we plan to develop more effective collaboration
methods among GP representations in the future. Specifically, adaptively and selec-
tively evolving GP representations is a promising research direction to further improve
the performance of cross-representation GP methods. We will also extend CRGP to di-
verse GP representations such as gene expression programming [14], multi-expression
programming [34], Cartesian GP [29], and graph-based genetic programming [2].

References
[1] Al-Helali, B., Chen, Q., Xue, B., and Zhang, M. (2021). Multitree Genetic Programming With

New Operators For Transfer Learning In Symbolic Regression With Incomplete Data. IEEE
Transactions on Evolutionary Computation, 25:1049–1063.

[2] Atkinson, T., Plump, D., and Stepney, S. (2018). Evolving Graphs by Graph Programming. In
Proceedings of European Conference on Genetic Programming, pages 35–51.

[3] Banzhaf, W., Machado, P., and Zhang, M., editors (2024). Handbook of Evolutionary Machine
Learning. Genetic and Evolutionary Computation. Springer Nature, 1 edition.

[4] Bi, Y., Xue, B., and Zhang, M. (2022). Genetic Programming-Based Evolutionary Deep Learn-
ing for Data-Efficient Image Classification. IEEE Transactions on Evolutionary Computation.
doi:10.1109/TEVC.2022.3214503.

[5] Brameier, M. and Banzhaf, W. (2007). Linear Genetic Programming. Springer US.

[6] Cai, X., Gao, L., and Li, X. (2020). Efficient Generalized Surrogate-Assisted Evolutionary
Algorithm for High-Dimensional Expensive Problems. IEEE Transactions on Evolutionary Com-
putation, 24(2):365–379.

[7] Cazzaro, D. and Pisinger, D. (2022). Variable Neighborhood Search for Large Offshore Wind
Farm Layout Optimization. Computers and Operations Research, 138:105588.

[8] Chen, Q., Xue, B., and Zhang, M. (2019). Instance Based Transfer Learning for Genetic Pro-
gramming for Symbolic Regression. In Proceedings of IEEE Congress on Evolutionary Computa-
tion, pages 3006–3013.

[9] Da, B., Gupta, A., Ong, Y. S., and Feng, L. (2016). Evolutionary Multitasking Across Sin-
gle and Multi-objective Formulations for Improved Problem Solving. In Proceedings of IEEE
Congress on Evolutionary Computation, pages 1695–1701.

[10] D’Ariano, A., Pacciarelli, D., Pistelli, M., and Pranzo, M. (2015). Real-time Scheduling of
Aircraft Arrivals and Departures in A Terminal Maneuvering Area. Networks, 65(3):212–227.

[11] Fan, H., Xiong, H., and Goh, M. (2021). Genetic Programming-based Hyper-heuristic Ap-
proach for Solving Dynamic Job Shop Scheduling Problem with Extended Technical Prece-
dence Constraints. Computers & Operations Research, 134:105401.

Evolutionary Computation Volume x, Number x 25

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

[12] Feng, L., Huang, Y., Zhou, L., Zhong, J., Gupta, A., Tang, K., and Tan, K. C. (2021). Explicit
Evolutionary Multitasking for Combinatorial Optimization: A Case Study on Capacitated Ve-
hicle Routing Problem. IEEE Transactions on Cybernetics, 51(6):3143–3156.

[13] Feng, L., Zhou, L., Zhong, J., Gupta, A., Ong, Y. S., Tan, K. C., and Qin, A. K. (2019). Evolu-
tionary Multitasking via Explicit Autoencoding. IEEE Transactions on Cybernetics, 49(9):3457–
3470.

[14] Ferreira, C. (2001). Gene Expression Programming: a New Adaptive Algorithm for Solving
Problems. Complex Systems, 13:87–129.

[15] Forstenlechner, S., Fagan, D., Nicolau, M., and O’Neill, M. (2017). A Grammar Design
Pattern for Arbitrary Program Synthesis Problems in Genetic Programming. In Proceedings of
European Conference on Genetic Programming, volume 10196, pages 262–277.

[16] Gupta, A., Ong, Y. S., and Feng, L. (2016). Multifactorial Evolution: Toward Evolutionary
Multitasking. IEEE Transactions on Evolutionary Computation, 20:343–357.

[17] Hildebrandt, T., Heger, J., and Scholz-reiter, B. (2010). Towards Improved Dispatching Rules
for Complex Shop Floor Scenarios - a Genetic Programming Approach. In Proceedings of the
Annual Conference on Genetic and Evolutionary Eomputation, pages 257–264.

[18] Huang, Z., Mei, Y., Zhang, F., and Zhang, M. (2022a). A Further Investigation to Improve
Linear Genetic Programming in Dynamic Job Shop Scheduling. In Proceedings of 2022 IEEE
Symposium Series on Computational Intelligence, pages 496–503.

[19] Huang, Z., Mei, Y., Zhang, F., and Zhang, M. (2023a). Grammar-guided Linear Genetic
Programming for Dynamic Job Shop Scheduling. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1137–1145.

[20] Huang, Z., Mei, Y., Zhang, F., and Zhang, M. (2023b). Multitask Linear Genetic Program-
ming with Shared Individuals and its Application to Dynamic Job Shop Scheduling. IEEE
Transactions on Evolutionary Computation, pages 1–15. doi:10.1109/TEVC.2023.3263871.

[21] Huang, Z., Mei, Y., and Zhang, M. (2021). Investigation of Linear Genetic Programming
for Dynamic Job Shop Scheduling. In Proceedings of IEEE Symposium Series on Computational
Intelligence, pages 1–8.

[22] Huang, Z., Mei, Y., and Zhong, J. (2022b). Semantic Linear Genetic Pro-
gramming for Symbolic Regression. IEEE Transactions on Cybernetics, pages 1–14.
doi:10.1109/TCYB.2022.3181461.

[23] Huang, Z., Zhang, F., Mei, Y., and Zhang, M. (2022c). An Investigation of Multitask Linear
Genetic Programming for Dynamic Job Shop Scheduling. In Proceedings of European Conference
on Genetic Programming, pages 162–178.

[24] Jiao, R., Xue, B., and Zhang, M. (2022). A Multiform Optimization Framework for
Constrained Multiobjective Optimization. IEEE Transactions on Cybernetics, pages 1–13.
doi:10.1109/TCYB.2022.3178132.

[25] Kantschik, W. and Banzhaf, W. (2001). Linear-tree GP and Its Comparison with Other GP
Structures. In Proceedings of European Conference on Genetic Programming, volume 2038, pages
302–312.

[26] Koza, J. R. (1992). Genetic Programming : On the Programming of Computers By Means of Natural
Selection. Cambridge, MA, USA: MIT Press.

[27] Magalhães, D., Lima, R. H., and Pozo, A. (2023). Creating Deep Neural Networks for
Text Classification Tasks Using Grammar Genetic Programming. Applied Soft Computing,
135:110009.

[28] Makke, N. and Chawla, S. (2024). Interpretable scientific discovery with symbolic regres-
sion: A review. Artificial Intelligence Review, 57(1):2.

26 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Cross-Representation Genetic Programming

[29] Miller, J. F. (1999). An Empirical Study of the Efficiency of Learning Boolean Functions
Using a Cartesian Genetic Programming Approach. Proceedings of the Genetic and Evolutionary
Computation Conference, 2:1135–1142.

[30] Mladenović, N. and Hansen, P. (1997). Variable Neighborhood Search. Computers & Opera-
tions Research, 24:1097–1100.

[31] Nguyen, S., Mei, Y., and Zhang, M. (2017). Genetic Programming for Production Schedul-
ing: A Survey with A Unified Framework. Complex & Intelligent Systems, 3(1):41–66.

[32] Nordin, P. (1994). A Compiling Genetic Programming System That Directly Manipulates
the Machine Code. Advances in Genetic Programming, 1:311–331.

[33] Nordin, P. (1997). Evolutionary Program Induction of Binary Machine Code and Its Applications.
PhD thesis, University of Dortmund.

[34] Oltean, M. and Dumitrescu, D. (2002). Multi Expression Programming. Technical report,
Babeş-Bolyai University.

[35] Ong, Y. S. (2015). Towards Evolutionary Multitasking: A New Paradigm in Evolution-
ary Computation. In Proceedings of Computational Intelligence, Cyber Security and Computational
Models, pages 25–26.

[36] Pei, W., Xue, B., Zhang, M., Shang, L., Yao, X., and Zhang, Q. (2023). A Survey on Un-
balanced Classification: How Can Evolutionary Computation Help? IEEE Transactions on
Evolutionary Computation, pages 1–21.

[37] Pitzer, E. and Affenzeller, M. (2012). A Comprehensive Survey on Fitness Landscape Anal-
ysis. In Fodor, J., Klempous, R., and Suárez Araujo, C., editors, Recent Advances in Intelligent
Engineering Systems, volume 378, pages 161–191. Springer, Berlin, Heidelberg.

[38] Schauer, J. and Schwarz, C. (2013). Job-shop Scheduling in A Body Shop. Journal of Schedul-
ing, 16(2):215–229.

[39] Song, X., Sun, H., Wang, X., and Yan, J. (2019). A Survey of Automatic Generation of Source
Code Comments: Algorithms and Techniques. IEEE Access, 7:111411–111428.

[40] Sotto, L. F. D. P., Kaufmann, P., Atkinson, T., Kalkreuth, R., and Basgalupp, M. P. (2021).
Graph Representations in Genetic Programming. Genetic Programming and Evolvable Machines,
22:607–636.

[41] Wei, T., Wang, S., Zhong, J., Liu, D., and Zhang, J. (2021). A Review on Evolutionary Multi-
Task Optimization: Trends and Challenges. IEEE Transactions on Evolutionary Computation,
26:941–960.

[42] Wilson, G. and Banzhaf, W. (2008). A Comparison of Cartesian Genetic Programming and
Linear Genetic Programming. In Proceedings of European Conference on Genetic Programming,
pages 182–193.

[43] Wittenberg, D. and Rothlauf, F. (2023). Small Solutions for Real-World Symbolic Regression
Using Denoising Autoencoder Genetic Programming. In Genetic Programming. EuroGP 2023,
pages 101–116.

[44] Wu, Y., Ding, H., Gong, M., Qin, A. K., Ma, W., Miao, Q., and Tan, K. C. (2022). Evo-
lutionary Multiform Optimization with Two-stage Bidirectional Knowledge Transfer Strat-
egy for Point Cloud Registration. IEEE Transactions on Evolutionary Computation, pages 1–15.
doi:10.1109/TEVC.2022.3215743.

[45] Yi, J., Bai, J., He, H., Zhou, W., and Yao, L. (2020). A Multifactorial Evolutionary Algorithm
for Multitasking under Interval Uncertainties. IEEE Transactions on Evolutionary Computation,
24(5):908–922.

Evolutionary Computation Volume x, Number x 27

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

Z. Huang, Y. Mei, F. Zhang, M. Zhang, and W. Banzhaf

[46] Zhang, F., Mei, Y., Nguyen, S., Tan, K. C., and Zhang, M. (2022a). Multitask Genetic
Programming-Based Generative Hyperheuristics: A Case Study in Dynamic Scheduling. IEEE
Transactions on Cybernetics, 52:10515–10528.

[47] Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2022b). Multitask Multiobjective Genetic
Programming for Automated Scheduling Heuristic Learning in Dynamic Flexible Job-Shop
Scheduling. IEEE Transactions on Cybernetics, pages 1–14. doi:10.1109/TEVC.2023.3263871.

[48] Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2023). Survey on Genetic Programming and
Machine Learning Techniques for Heuristic Design in Job Shop Scheduling. IEEE Transactions
on Evolutionary Computation, 28(1):147–167.

[49] Zhang, F., Nguyen, S., Mei, Y., and Zhang, M. (2021). Genetic Programming for Production
Scheduling. Springer Singapore.

[50] Zhong, J., Feng, L., Cai, W., and Ong, Y. S. (2020). Multifactorial Genetic Programming for
Symbolic Regression Problems. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
50(11):4492–4505.

28 Evolutionary Computation Volume x, Number x

025
25

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/doi/10.1162/evco.a.25/2523398/evco.a.25.pdf?casa_token=om
Q

M
Tf5C

BrgAAAAA:5J4U
PLQ

0JX1F7-ApAG
dsR

lG
pubzVH

ST6IR
skFlR

k90gD
n47fp_M

KflrQ
lC

f-YD
r-ISaG

tf0S by Victoria U
niversity of W

ellington user on 24 June 2025

	Introduction
	Literature Review
	Tree-based and Linear GP Representations
	Enhancing Evolution By Switching Fitness Landscapes

	Cross-representation Genetic Programming with TGP and LGP
	Overall Framework
	Cross-representation Adjacency List-based Crossover
	Breeding Trees Based on Adjacency Lists
	Breeding Instructions Based on Adjacency Lists

	Empirical Studies of CRGP-TL
	Comparison Design
	Application I: Symbolic Regression
	Problem Description
	Parameter Settings

	Application II: Dynamic Job Shop Scheduling Problems
	Problem Description
	Parameter Settings

	Empirical Results
	Test Performance
	Training Performance

	Summary

	Further Analyses and Discussion
	Comparison with Advanced Methods
	Program Size
	Parameter Sensitivity Analyses
	Benefit of Cross-representation Knowledge Sharing
	Representations with Various Computation Budgets
	Example Analyses on Adjacency Lists

	Conclusions

